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Warning


Here are the notes I took while discovering and using the statistical environment R. However,
I do not claim any competence in the domains I tackle: I hope you will find those notes
useful, but keep you eyes open – errors and bad advice are still lurking in those pages...


The latest, HTML version of this document should be here: http://zoonek2.free.fr/
UNIX/48_R/all.html.


The LATEX version of this document was automatically generated from a text file: formulas,
tables, enumerations will be as ugly (or nonexistent) as in the typewriter era – if you are
used to the high quality of LATEX-typeset documents, you will be appalled...


This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 2.5 License.
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Chapter 1


Introduction to R


In this part, we give a bird’s eye view of the software: what is its position with respect to
other software for numeric computations? What are its advantages, its drawbacks? What
can we do with it? What are its limitations? What is its syntax?


1.1 Features


1.1.1 Statistics vs Signal processing


It is a statistical software: contrary to other numerical computation software (Scilab, Oc-
tave),
http://www-rocq.inria.fr/scilab/
http://www.octave.org/


it already provides functions to perform non trivial statistical operations, be they classic
(regression, logistic regression, analysis of variance (anova), decision trees, principal com-
ponent analysis, etc.) or more modern (neural networks, bootstrap, generalized additive
models (GAM), mixed models, etc.).
However, sometimes, in statistics, we use a lot of signal processing algorithms (Fourrier
transform, wavelet transforms, etc.); if this is your case, you might find Scilab or Matlab
more appropriate.


1.1.2 GUI – or lack thereof


It is a real programming language, not a point-and-click software (in French I have a good
neologism to describe those “point-and-click” programs: “cliquodromes” – if someone knows
of a good English translation, he is welcome): we are not limited by the software designers’
imagination, we can use it to any means.
If you really need a simple and powerful GUI, have a look at R Commander, mentionned
later in this document: it is a GUI that helps you learn the underlying language.


1.1.3 Speed issues


R is an interpreted language: the advantage, is that we spend less time writing code, the
drawback is that the computations are slower – but unless you wish to do real-time compu-
tations on the National Insurance files, taking into account the whole British population, or
real-time computations involving billions of financial records, it is sufficiently fast.
If speed is really an issue, you can have a look at SAS (commercial, expensive, dating back
to the mainframe era), DAP (free but far from complete: it was initially designed as a
free replacement for SAS, but turned out to be a modest C library to perform statistical
computations)
http://www.gnu.org/software/dap/dap.html


or you can program everything yourself (in C or C++), with the help of a few libraries
GSL (GNU Scientific Library), for special functions
(a good replacement for the ageing Numerical Recipes,
with a licence that actually allows you to use the software)
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http://www.gnu.org/software/gsl/


LibSVM (Support Vector Machines)
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


FFTW (Fast Fourier Transform)
http://www.fftw.org/
djbFFT (Fast Fourier Transform)
http://cr.yp.to/djbfft.html


IT++ (Signal processing)
http://itpp.sourceforge.net/


CLN (arbitrary precision)
http://www.ginac.de/CLN/
Core (Multi-precision library?)
http://www.cs.nyu.edu/exact/core_pages/


Gaul (Genetic algorithms)
http://gaul.sourceforge.net/
GALib (Genetic algorithms)
http://lancet.mit.edu/ga/


GTS (GNU Triangulated Surface library)
http://gts.sourceforge.net/


???
http://www.gnu.org/software/goose/goose.html


???
http://scythe.wustl.edu/scythe01/intro01-1.html


or (it is the approach I would advise) you can start to program in R, until you have a
slow but correct program, profile your program (it means: find where it spends most of its
time), try to change the algorithm so that it be faster and, if it fails, implement in C the
most computation-intensive parts. If you try to optimize your program too early, you run
the risk of either losing your time by optimizing parts of the implementation that have no
real importance on the total time and getting a program with an awkward structure, very
difficult to modify or extend – or simply giving up your project before its completion.


1.1.4 Memory issues


There is another problem in R: it tends to load all the data into memory (this is slowly
changing, starting with R version 2). For very large data, R might not be the best choice: I
recently spoke to a statistician working with genetic data: their data were too large for R,
too large for SAS and they had to resort to home-made programs. Yet, I said above, R might
be a platform of choice for prototyping, i.e., to write the first versions of an application,
while we know neither which algorithms to choose, nor how long the computations will take.
Furthermore, as R can access most databases (some, such as PostgreSQL, even allow you to
write stored procedures in R): you can store your data there and only retrieve the bits you
need, when you need them. Personnaly, the first time I ran into memory problems once, I
was playing with a time series containing several minutes of music.
If you have memory issues, you should also avoid Windows: it imposes further memory
limitations – indeed, if you read the R-help mailing list, all the people having memory issues
are under Windows and their problems come from the operating system, not from R.


1.1.5 Graphics


R can produce graphics, but it is not a presentation software: for informative pictures, for
graphical data exploration, it is fine, but if you want to use them in an advert, to impress
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or deceive your customers, you might have to process them through other software – for
instance, the title image of this document was created with R, PovRay and The Gimp.
http://www.gimp.org/
http://gimp-savvy.com/BOOK/index.html
http://gug.sunsite.dk/
http://www.povray.org/


1.1.6 Freedom


Finally, R is a free software (“free” as in “free speech” – and also, incidentally, as in “free
beer”, but this is just a side effect). But beware: some (rare) libraries are not free but just
“freely useable for non commercial purposes”: be sure to read the licence.


1.1.7 Examples


Some people have started to set up R galleries:
http://addictedtor.free.fr/graphiques/
http://bg9.imslab.co.jp/Rhelp/
http://wiki.r-project.org/
http://fawn.unibw-hamburg.de/cgi-bin/Rwiki.pl?GraphGallery


1.2 Installing R


1.2.1 Windows


You should really consider Linux instead of Windows. People using R on Windows always
have a lot of problems: especially memory problems (Windows specialists tell me that this
operating system becomes unstable when a process wants to use more than 1Gb of memory
– and now that I use it at work, I can confirm the problems) and installation problems (if
you want to install a package, you will have to find a binary version of it, for the very version
of R you have installed – alternatively, you can try to compile the packages from source, but
this is very tricky, because Windows lacks all the tools for this: you end up installing Unix
utilities on your Windows machine, but you will also run into version problems).
Not convinced?
> library(fortunes)
> fortune("install")


Benjamin Lloyd-Hughes: Has anyone had any joy getting the
rgdal package to compile under windows? Roger Bivand: The
closest anyone has got so far is Hisaji Ono, who used MSYS
(http://www.mingw.org/) to build PROJ.4 and GDAL (GDAL
depends on PROJ.4, PROJ.4 needs a PATH to metadata files
for projection and transformation), and then hand-pasted
the paths to the GDAL headers and library into
src/Makevars, running Rcmd INSTALL rgdal at the Windows
command prompt as usual. All of this can be repeated, but
is not portable, and does not suit the very valuable
standard binary package build system for Windows. Roughly:
[points 1 to 5 etc omitted]


Barry Rowlingson: At some point the complexity of
installing things like this for Windows will cross the
complexity of installing Linux... (PS excepting live-Linux
installs like Knoppix)


-- Benjamin Lloyd-Hughes, Roger Bivand and Barry Rowlingson
R-help (August 2004)
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Still not convinced? Well, good luck (you will need it). You can download a Windows
version of R from
http://cran.r-project.org/bin/windows/base/


1.2.2 MacOS X


I am not familiar with MacOS, but you should not have any problem.
http://cran.r-project.org/


1.2.3 Linux


If you are new to Linux, you should first play around with a “live CD”, i.e., a CD or DVD
containing the whole operating system and useable without installing anything on your hard
drive.
If you want one targeted to numerical computations and containing R, I suggest Quantian.
http://dirk.eddelbuettel.com/quantian.html


If you want a more general distribution, try Knoppix (I use it as a rescue disk, e.g., in case
of password loss).
http://www.knopper.net/knoppix/index-en.html
http://www.oreilly.com/catalog/knoppixhks/


If you want a lot of eye-candy, have a look at eLive.
http://www.elivecd.org/


Once you are satisfied with one of those distributions, you can install Linux on your com-
puter. Many people suggest Ubuntu (I have had a very bad experience with it, but you can
assume I was unlucky); I was quite pleased when I last tried Suse; I used to use Mandriva
but became dissatisfied with it. Many companies use Red Hat or its free, RedHat-sponsored
equivalent, Fedora Core, mainly on their servers – organizations using Linux on the desk-
top prefer Suse. To choose, check what people around you are using and take the same
distribution: those people will be able to answer your questions.
http://distrowatch.com/table.php?distribution=ubuntu
http://distrowatch.com/table.php?distribution=suse
http://distrowatch.com/table.php?distribution=mandriva
http://distrowatch.com/table.php?distribution=redhat
http://distrowatch.com/table.php?distribution=fedora


I personnaly use Gentoo – if you are not already an experienced Linux user, do not even
think using it.
http://distrowatch.com/table.php?distribution=gentoo


1.2.4 Linux: Installing R on Mandriva


Just type
urpmi R-base R-bioconductor


That is all. No need to roam the web to find where you can download the software, no need
to answer lengthy questions about where to install the software, no need to do anything
yourself.


1.2.5 Linux: Installing R on Gentoo


Just type
emerge R
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1.2.6 Linux: installing R from the sources


I proceed as follows:
# Installing R, from source


# A few required packages (when I currently use Gentoo Linux)
emerge lapack graphviz


wget http://cran.r-project.org/src/base/R-4/R-2.4.0.tar.gz
tar zxvf R-*.tar.gz
cd R-*/
./configure
make
make test
make install


# Installing the shared library libRmath (needed to
# compile some third-party programs, such as JAGS)
cd src/nmath/standalone
make
make install
echo /usr/local/lib >> /etc/ld.so.conf
ldconfig
cd ../../../../


# Installing ALL the CRAN packages
wget -r -l 1 -np -nc -x -k -E -U Mozilla -p -R zip www.stats.bris.ac.uk/R/src/contrib/
for i in www.stats.bris.ac.uk/R/src/contrib/*.tar.gz
do
R CMD INSTALL $i


done


# Bioconductor
echo ’
source("http://www.bioconductor.org/getBioC.R")
getBioC(groupName="all")


’ | R --vanilla


echo /usr/lib/graphviz/ >> /etc/ld.so.conf
ldconfig
ln -s /usr/lib/graphviz/*.so* /usr/local/lib/ # Should not be necessary, but...


1.3 R: Documentation


1.3.1 First steps


The following document explains how to use R, progressively, at an elementary level (as long
as the expressions “standard deviation” and “gaussian distribution” do not frighten you, it
will be fine). Since I read it, this document became a book.
http://cran.r-project.org/doc/contrib/SimpleR.pdf
http://www.math.csi.cuny.edu/UsingR/


Here is the official introduction to R – it is garanteed to be up to date.
http://cran.r-project.org/doc/manuals/R-intro.pdf


Another elementary document, with exercises, for German-speaking people.
http://cran.r-project.org/doc/contrib/s.pdf
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1.3.2 RTFM


The reference manual is available under R: just type the name of the command whose
reference you want prefixed by an interrogation mark.
?round


For reserved words or non-alphanumeric commands, use quotes.
?"for"
?"[["
?"[<-.data.frame"


If you do not know the command name (this happens very often), use “help.search” or
“apropos”.
help.search("stem")
apropos("stem")
RSiteSearch("stem")


The first one, “help.search”, looks everywhere, especially in all the packages that are not
loaded, while the second one, “help.search”, looks in the search path, i.e., in all the functions
and variables that are currently available. The last one looks on the R web site and on the
R-help mailing list; a new tab will open in your browser.
https://stat.ethz.ch/pipermail/r-help/


Some of you might prefer to read the manuals in HTML (R launches your default web
browser – in my case, konqueror).
help.start()


There are also a few PDF files in /usr/lib/R/library/*/doc/: it is sometimes a PDF version
of the reference manual (when the file name is that of the library), but sometimes different,
more pedagogic explainations, called “vignettes”.
% cd /usr/local/lib/R/library/
% ls */doc/*pdf
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lmtest/doc/lmtest-intro.pdf
locfdr/doc/locfdr-example-Compute-local-fdr.pdf
locfdr/doc/locfdr-example.pdf
logcondens/doc/logcondens vignette.pdf
maanova/doc/hckidney.pdf
maanova/doc/maanova.pdf
maanova/doc/vgprofile.pdf
makecdfenv/doc/makecdfenv.pdf
marg/doc/Rnews-paper.pdf
marray/doc/ExampleHTML.pdf
marray/doc/marray.pdf
marray/doc/marrayClasses.pdf
marray/doc/marrayClassesShort.pdf
marray/doc/marrayInput.pdf
marray/doc/marrayNorm.pdf
marray/doc/marrayPlots.pdf
marray/doc/widget1.pdf
matchprobes/doc/matchprobes.pdf
maxstat/doc/maxstat.pdf
mboost/doc/SurvivalEnsembles.pdf
mboost/doc/mboost illustrations.pdf
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mcmc/doc/demo.pdf
mcmc/doc/metrop.pdf
mfp/doc/mfp.pdf
mice/doc/Manual.pdf
mitools/doc/smi.pdf
mlmRev/doc/MlmSoftRev.pdf
mlmRev/doc/StarData.pdf
monoProc/doc/monoproc.pdf
msm/doc/msm-manual.pdf
multcomp/doc/Rmc.pdf
multtest/doc/MTP.pdf
multtest/doc/MTPALL.pdf
multtest/doc/multtest.pdf
mvtnorm/doc/MVT Rnews.pdf
nlreg/doc/Rnews-paper.pdf
npmlreg/doc/npmlreg-manual.pdf
npmlreg/doc/npmlreg-v.pdf
numDeriv/doc/numDeriv.pdf
odfWeave/doc/RnewsExample.pdf
odfWeave/doc/RnewsOut.pdf
odfWeave/doc/odfWeave.pdf
optmatch/doc/listOfDistancesHowTo.pdf
optmatch/doc/mahalanobisMatching.pdf
optmatch/doc/optmatch.pdf
orientlib/doc/orientlib paper.pdf
panel/doc/Panel-users-guide.pdf
partsm/doc/partsm.pdf
party/doc/MOB.pdf
party/doc/party.pdf
pastecs/doc/pastecs.pdf
pcalg/doc/Sweave-pcalg.pdf
plm/doc/baltagi.pdf
pmg/doc/pmg.pdf
poLCA/doc/poLCA-manual.pdf
polyapost/doc/pp1.pdf
portfolio/doc/matching portfolio.pdf
portfolio/doc/portfolio.pdf
portfolio/doc/tradelist.pdf
powell/doc/NA2000 14.pdf
powell/doc/NA2002 02.pdf
pps/doc/pps-ug.pdf
proto/doc/cloning3.pdf
proto/doc/proto.pdf
proto/doc/protoref.pdf
proto/doc/test.pdf
qtlbim/doc/hyperpaper.pdf
qtlbim/doc/hyperslide.pdf
qtlbim/doc/qtlbim.pdf
qtlbim/doc/scan.pdf
quantreg/doc/rq.pdf
qvalue/doc/manual.pdf
qvalue/doc/pHist.pdf
qvalue/doc/qHist.pdf
qvalue/doc/qPlots.pdf
qvalue/doc/qvalue.pdf
rake/doc/rake-manual.pdf
random/doc/random-essay.pdf
random/doc/random-intro.pdf
relaimpo/doc/ChangeLog.pdf
relaimpo/doc/relaimpo vignette.pdf
reposTools/doc/reposClient.pdf
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reposTools/doc/reposServer.pdf
reshape/doc/introduction.pdf
resper/doc/huber-sim.pdf
reweight/doc/reweight-presentation.pdf
rhosp/doc/rhosp.pdf
rmetasim/doc/Using Rmetasim.pdf
rmetasim/doc/islandtheta.pdf
rmetasim/doc/mismatch.pdf
rmetasim/doc/struct.pdf
rv/doc/rv.pdf
sandwich/doc/sandwich.pdf
scape/doc/dsc.pdf
scatterplot3d/doc/barplot.pdf
scatterplot3d/doc/binorm.pdf
scatterplot3d/doc/business.pdf
scatterplot3d/doc/colorcube.pdf
scatterplot3d/doc/drill1.pdf
scatterplot3d/doc/drill2.pdf
scatterplot3d/doc/elements.pdf
scatterplot3d/doc/helix.pdf
scatterplot3d/doc/hemisphere.pdf
scatterplot3d/doc/meta.pdf
scatterplot3d/doc/residuals.pdf
scatterplot3d/doc/s3d.pdf
seqinr/doc/seqinr 1 0-6.pdf
setRNG/doc/setRNG.pdf
siggenes/doc/siggenes.pdf
smoothSurv/doc/smmr-paper.pdf
sp/doc/sp.pdf
spatstat/doc/Intro.pdf
spatstat/doc/Quickref.pdf
spdep/doc/auckland.pdf
spdep/doc/sids.pdf
strucchange/doc/strucchange-intro.pdf
survBayes/doc/survBayes.pdf
surveillance/doc/flowchart.pdf
surveillance/doc/vignette.pdf
survey/doc/domain.pdf
survey/doc/epi.pdf
survey/doc/phase1.pdf
survey/doc/survey.pdf
systemfit/doc/vignette systemfit.pdf
tframe/doc/tframe.pdf
tgp/doc/as.pdf
tgp/doc/exp.pdf
tgp/doc/fried.pdf
tgp/doc/linear.pdf
tgp/doc/moto.pdf
tgp/doc/sin.pdf
tgp/doc/tgp.pdf
tkWidgets/doc/importWizard.pdf
tkWidgets/doc/tkWidgets.pdf
trust/doc/trust.pdf
tsDyn/doc/tsDyn.pdf
tsfa/doc/tsfa.pdf
twang/doc/twang.pdf
ump/doc/design.pdf
vars/doc/vars.pdf
vcd/doc/labeling.pdf
vcd/doc/shading.pdf
vcd/doc/spacing.pdf
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vcd/doc/struc.pdf
vcd/doc/strucplot.pdf
vegan/doc/partitioning.pdf
vegan/doc/vegan-FAQ.pdf
vsn/doc/convergence.pdf
vsn/doc/vsn.pdf
widgetTools/doc/widget.pdf
widgetTools/doc/widgetTools.pdf
wnominate/doc/wnominate.pdf
zipfR/doc/zipfr-tutorial.pdf
zoo/doc/zoo-quickref.pdf
zoo/doc/zoo-refcard.pdf
zoo/doc/zoo.pdf


1.3.3 CRAN Task Views


Most users will start to use R with a given application in mind, or at least, with a given
domain in mind. This can be troublesome, because a given statistical procedure can be
known under completely different names in different domains. Furthermore, some statisti-
cal procedures (or plots) will be used extremely often in a domain, to the point of being
considered elementary, while it will be so rare in others that hardly anyone knows it.
To avoid those problems and directly jump to the packages and functions you need for your
study, have a look at the CRAN Task Views: these are commented lists of R packages
tailored for some domains.
http://cran.r-project.org/src/contrib/Views/


1.3.4 Graphics


The following document (very enlightening, even if it is written in a language I cannot read
– probably spanish) explains in details what kinds of graphics R can produce. At least,
browse through it.
http://cran.r-project.org/doc/contrib/grafi3.pdf


See also P. Murrell’s book:
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2005/04/a_new_book_


on_r.html
http://zoonek.free.fr/blosxom/R/2006-08-10_R_Graphics.html


1.3.5 More technical documents


Anova in psychology:
http://cran.r-project.org/doc/contrib/rpsych.html


Linear regression:
http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf


Everything (rather complete, but very dense: with no previous knowledge of the subjects
tackled, it is not understandable, but otherwise, it is fine – there are even exercises):
http://cran.r-project.org/doc/contrib/usingR.pdf


1.3.6 The pictures in the manual


I said earlier that an HTML version of the manual was available (look in /usr/lib/R/), but
it lacks the illustrations... (The development team is aware of the problem and it may be
tackled in the near future.) The following web site has added them:



http://cran.r-project.org/src/contrib/Views/

http://cran.r-project.org/doc/contrib/grafi3.pdf

http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

http://www.stat.columbia.edu/~cook/movabletype/archives/2005/04/a_new_book_on_r.html

http://www.stat.columbia.edu/~cook/movabletype/archives/2005/04/a_new_book_on_r.html

http://zoonek.free.fr/blosxom/R/2006-08-10_R_Graphics.html

http://cran.r-project.org/doc/contrib/rpsych.html

http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

http://cran.r-project.org/doc/contrib/usingR.pdf
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http://bg9.imslab.co.jp/Rhelp/


You can create them yourself, as follows.
#! perl -w
use strict;
my $n = 0;


# Writing R files
mkdir "Rdoc" || die "Cannot mkdir Rdoc/: $!";
my @libraries= ‘ls lib/R/library/‘;
foreach my $lib (@libraries) {
chomp($lib);
print STDERR "Processing library \"$lib\"\n";
print STDERR ‘pwd‘;
my @pages = grep /\.R$/, ‘ls lib/R/library/$lib/R-ex/‘;
chdir "Rdoc" || die "Cannot chdir to Rdoc: $!";
mkdir "$lib" || die "Cannot mkdir $lib: $!";
chdir "$lib" || die "Cannot chdir to $lib: $!";
open(M, ’>’, "Makefile") || die "Cannot open Makefile for writing: $!";
print M "all:\n";
foreach my $page (@pages) {
chomp($page);
print STDERR " Processing man page \"$page\" in library \"$lib\"\n";
my $res = "";
$res .= "library($lib)\n";
$res .= "library(lattice)##VZ##\n";
$res .= "library(nlme)##VZ##\n";
$res .= "library(MASS)##VZ##\n";
$res .= "identify <- function (...) {}##VZ##\n";
$res .= "x11()##VZ##\n";
open(P, ’<’, "../../lib/R/library/$lib/R-ex/$page") ||
die "Cannot open lib/R/library/$lib/R-ex/$page for reading: $!";


# Tag the lines where we must copy the screen (between two commands)
while(<P>) {
s/^([^ #}])/try(invisible(dev.print(png,width=600,height=600,bg="white",filename="doc$n.png")))##VZ##\n$1/
&& $n++;


$res .= $ ;
}
$res .= "try(invisible(dev.print(png,width=600,height=600,bg=\"white\",filename=\"doc$n.png\")))##VZ##\n";


$n++;
close P;
# We discard the line in the following cases:
# The previous line ends with a comma, an opening bracket, an "equal"


sign
$res =~ s/[,(=+]\s*\n.*##VZ##.*?\n/,\n/g;
# The previous line is empty
$res =~ s/^\s*\n.*##VZ##.*\n/\n/gm;
# The previous line only contains a comment
$res =~ s/^(\s*#.*)\n.*##VZ##.*\n/$1\n/gm;
# The nest line starts with a { TODO: check (boot / abc.ci)
$res =~ s/^.*##VZ##.*\n\s*\{/\{/gm;
# We write the corresponding number
$res =~ s/doc([0-9]).png/doc00000$1.png/g;
$res =~ s/doc([0-9][0-9]).png/doc0000$1.png/g;
$res =~ s/doc([0-9][0-9][0-9]).png/doc000$1.png/g;
$res =~ s/doc([0-9][0-9][0-9][0-9]).png/doc00$1.png/g;
$res =~ s/doc([0-9][0-9][0-9][0-9][0-9]).png/doc0$1.png/g;
open(W, ">", "${lib} ${page}") || die "Cannot open ${lib} ${page} for writing:


$!";
print W $res;
close W;



http://bg9.imslab.co.jp/Rhelp/
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print M "\tR --vanilla <${lib} ${page} >${lib} ${page}.out\n";
my $p = $page;
$p =~ s/\.R$//;
system ’cp’, "../../lib/R/library/$lib/html/$p.html", "${lib} $p.html";


}
print M "\ttouch all\n";
close(M);
chdir "../../" || die "Cannot chdir to ../../: $!";


}


we compile them (it should take a few hours: for some packages, it may crash).
cd Rdoc/
for i in *
do
(
cd $i
make


)
done


I prefer to parallelize all this:
\ls -d */ | perl -p -e ’s/(.*)/cd $1; make/’ | perl fork.pl 5


where fork.pl allows you to launch several processes at the same time, but not too many:
#! /usr/bin/perl -w
use strict;
my $MAX PROCESSES = shift || 10;
use Parallel::ForkManager;
my $pm = new Parallel::ForkManager($MAX PROCESSES);
while(<>){
my $pid = $pm->start and next;
system($ );
$pm->finish; # Terminates the child process


}


We clean the PNG files thus generated and we write the HTML files,
for i in */
do
(
cd $i
perl ../do.it 2.pl


)
done


Where do.it 2.pl contains:
#! perl -w
use strict;


# Delete the empty or duplicated PNG files
print STDERR "Computing checksums\n";
use Digest::MD5 qw(md5);
my %checksum;
foreach my $f (sort(<*.png>)) {
if( -z $f ) {
unlink $f;
next;


}
local $/;
open(F, ’<’, $f) || warn "Cannot open $f for reading: $!";
my $m = md5(<F>);
close F;
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if( exists $checksum{$m} ){
unlink $f;


} else {
$checksum{$m} = $f;


}
}


# Turn all this into HTML
print STDERR "Converting to HTML\n";
open(HTML, ’>’, "ALL.html") || warn "Cannot open ALL.html for writing: *!";
select(HTML);
print "<html>\n";
print "<head><title>R</title></head>\n";
print "<body>\n";
foreach my $f (<*.R.out>) {
my $page = $f;
$page =~ s/\.R.out$//;
# Read the initial HTML file
if( open(H, ’<’, "$page.html") ){
my $a = join ’’, <H>;
close H;
$a =~ s#^.*?<body>##gsi;
$a =~ s#<hr>.*?$##gsi;
print $a;


} else {
warn "Cannot open $page.html for reading: $!";


}
open(F, ’<’, $f) || warn "Cannot open $f for reading: $!";
#print "<h1>$f</h1>\n";
print "<h2>Worked out examples</h2>\n";
print "<pre>\n";
my $header=1;
while(<F>) {
if($header) {
$header=0 if m/to quit R/;
next;


}
if( m/(doc.*png).*##VZ##/ ){
my $png = $1;
next unless -f $png;
print "</pre>\n";
print "<img width=600 height=600 src=\"$png\">\n";
print "<pre>\n";


}
next if m/##VZ##/;
next if m/^>\s*###---/;
next if m/^>\s*##\s* /;
next if m/^>\s*##\s*(alias|keywords)/i;
s/\&/\&amp;/g;
s/</&lt;/g;
print;


}
close F;
print "</pre>\n";
print "<hr>\n";


}
print "</body>\n";
print "</html>\n";
close HTML;


For an unknown reason, the PNG files have a transparent background: I turn it into a white
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background with ImageMagick (the white.png file is a white PNG file, of the same size,
600x600, created with The Gimp) – here as well, it is pretty long...
for i in */*png
do
echo $i
composite $i white.png $i


done


I do not take into account the potential links in the HTML files (not very clean, but...).
perl -p -i.bak -e ’s#<a\s.*?>##gi; s#</a>##gi’ **/ALL.html


The HTML files should rather be called index.html:
rename ’s/ALL.html/index.html/’ */ALL.html


where “rename” is the program:
#!/usr/bin/perl -w
use strict;
my $reg = shift @ARGV;
foreach (@ARGV) {
my $old = $ ;
eval "$reg;";
die $@ if $@;
rename $old, $ ;


}


here is a very small piece of the result (2.7Mb, 268 pictures, while the whole documentation
reaches 93Mb and 2078 images – this was R 1.6 – it is probably much more now).
Rdoc/index.html


In particular, one might be interested in the packages whose documentation contains the
highest number of graphics.
% find -name "*.png" | perl -p -e ’s#^\./##;s#/.*##’ | sort | uniq -c | sort


-n | tail -20
26 sm
27 cluster
29 ade4
29 nls
29 spatial
31 mgcv
34 car
38 cobs
41 MPV
44 mclust
45 MASS
45 vcd
49 grid
60 gregmisc
64 pastecs
70 qtl
77 splancs
88 strucchange
90 waveslim
113 spdep



Rdoc/index.html
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1.4 Graphical interface – R for non-statisticians and
non-programmers


1.4.1 ESS


It is the statistical mode of Emacs (it may be automatically installed with (X)Emacs: under
Mandriva Linux (formerly Mandrake), it is with XEmacs, it is not with Emacs). One may
then edit code with automatic indentication and syntax highlighting (Emacs recognises the
files from their extension).


You can even run R under Emacs (M-x R).


1.4.2 Windows-specific stuff


Under windows, R has a graphical interface – it is just a makeshift replacement to accomo-
date for the lack of a decent terminal under Windows: it is not a menu-driven interface.
You might still need a text editor, though. Some people advise Tinn-R, an R-aware simple
text editor.
http://www.sciviews.org/Tinn-R/


1.4.3 R Commander


This really is a menu-oriented interface to R, that allows you to navigate through your data
sets, to perform simple statistical analyses,



http://www.sciviews.org/Tinn-R/





CHAPTER 1. INTRODUCTION TO R 19


If you do not need anything beyond regression (but if you need all the graphical diagnostics
that should be performed after a regression) and simple tests, or simply, if you have to teach
statistics to non-statisticians and non-programmers, it seems to me an excellent choice. Users
who later want to unleash the full power of R as a real programming language will face a
gentle transition: R Commander displays all the commands that are run in the background
to perform the tests and regressions and to produce the plots.
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If you want to provide a GUI tailored to a certain domain, providing analyses specific to it,
it is a good starting point: you can add you own menus to the interface.
Several projects have started to do this, in specific areas, for instance fBrowser, for finance
and econophysics, in Rmetrics, and GEAR, for introductory econometrics.


1.4.4 Zelig


One big problem with R, and one big difference with menu-driven software, is that you
never know where the feature you need is – and this is even more true if you do not know
the feature in question (you cannot wander through the menus). The typical example is
“logistic regression”: the main function to perform logistic regression is “glm”. This stands
for “Generalized Linear Models” (do not worry, you are not supposed to know what it is)
and the manual page does not even give an example of a logistic regression. If you know the
theory behind logistic regression, if you know that it is a special case of GLM, you might be
fine – but most users do not know, or do not want to, and should not need to.
The Zelilg library fulfils the needs of such people by providing a simplified and uniform
interface to most statistical procedures.
http://gking.harvard.edu/zelig/


Basically, you only need to know five functions: “zelig” (to fit a model), “setx” to change the
data (for predictions), “sim” to simulate new values (i.e., to predict the values), “summary”
and “plot”.
TODO: Give an example...



http://gking.harvard.edu/zelig/
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library(Zelig)
d <- data.frame(
y = crabs$sp,
x1 = crabs$FL,
x2 = crabs$RW


)
r <- zelig( y ~ x1 + x2, model="probit", data=d )
summary(r)
op <- par(mfrow=c(2,2), mar=c(4,4,3,2))
plot(r)
par(op)


NOT RUN %G
N <- dim(d)[1]
new.x1 <- rnorm( N, mean(d$x1), sd(d$x1) )
new.x2 <- rnorm( N, mean(d$x2), sd(d$x2) )
## BUG in Zelig?
s <- sim(r, setx(r, data=data.frame(x1=new.x1, x2=new.x2)))
plot(s)
%--


You can choose the model among the following list:
To predict a quantitative variable:
ls Least Squares
normal (almost the same)
gamma Gamma regression


To predict a binary variable:
logit Logistic regression
relogit Logistic regressioni for rare events
probit Probit regression


To predict two binary variables:
blogit Bivariate logistic regression
bprobit Bivariate probit regression


To predict a qualitative variable
mlogit Multinomial logistic


To predict an ordered qualitative variable:
ologit Ordinal logistic regression
oprobit Ordinal probit regression


To predict count data:
poisson Poisson regression
negbin Negative binomial regression (as Poisson regression, but


with more dispersed observations)


To predict survival data:
exp Exponential model (the hazard rate is constant)
weibull Weibull model (the hazard rate increases with time)







CHAPTER 1. INTRODUCTION TO R 22


lognorm Log-normal model (the hazard rate increases and then decreases)


The unification of the various statistical models is a great thing, but this library does not
put enough emphasis on the graphics to be looked at before, during and after the analysis
– as opposed to R Commander.


1.4.5 SciViews


An other user-friendly interface to R.
http://www.sciviews.org/SciViews-R/


1.4.6 JGR (pronounce “jaguar”)


Yet another GUI, in Java.
http://stats.math.uni-augsburg.de/JGR/


1.5 R: Some elementary functions


In this part, we present the simplest functions of R, to allow you to read data (or to simulate
them – it is so easy, you end up doing it all the time, to check if your algorithms are correct
(i.e., if they behave as expected if the assumptions you made on your data are satisfied)
before applying them to real data) and to numerically or graphically explore them.
In the following, the ”>” at the begining of the lines is R’s prompt – you should not type
it –, the [1] at the begining of some lines is part or R’s answers.
Statistics, computations:
> # 20 numbers, between 0 and 20
> # rounded at 1e-1
> x <- round(runif(20,0,20), digits=1)
> x
[1] 10.0 1.6 2.5 15.2 3.1 12.6 19.4 6.1 9.2 10.9 9.5 14.1 14.3 14.3


12.8
[16] 15.9 0.1 13.1 8.5 8.7


> min(x)
[1] 0.1


> max(x)
[1] 19.4


> median(x) # median
[1] 10.45


> mean(x) # mean
[1] 10.095


> var(x) # variance
[1] 27.43734


> sd(x) # standard deviation
[1] 5.238067


> sqrt(var(x))
[1] 5.238067


> rank(x) # rank
[1] 10.0 2.0 3.0 18.0 4.0 12.0 20.0 5.0 8.0 11.0 9.0 15.0 16.5 16.5


13.0



http://www.sciviews.org/SciViews-R/

http://stats.math.uni-augsburg.de/JGR/
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[16] 19.0 1.0 14.0 6.0 7.0


> sum(x)
[1] 201.9


> length(x)
[1] 20


> round(x)
[1] 10 2 2 15 3 13 19 6 9 11 10 14 14 14 13 16 0 13 8 9


> fivenum(x) # quantiles
[1] 0.10 7.30 10.45 14.20 19.40


> quantile(x) # quantiles (different convention)
0% 25% 50% 75% 100%


0.10 7.90 10.45 14.15 19.40


> quantile(x, c(0,.33,.66,1))
0% 33% 66% 100%


0.100 8.835 12.962 19.400


> mad(x) # normalized mean deviation to the median ("median average
distance"
[1] 5.55975


> cummax(x)
[1] 10.0 10.0 10.0 15.2 15.2 15.2 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4


19.4
[16] 19.4 19.4 19.4 19.4 19.4


> cummin(x)
[1] 10.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6


1.6
[16] 1.6 0.1 0.1 0.1 0.1


> cor(x,sin(x/20)) # correlation
[1] 0.997286


Plot a histogram
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Histogram of x
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x <- rnorm(100)
hist(x, col = "light blue")


Display a scatter plot of two variables
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N <- 100
x <- rnorm(N)
y <- x + rnorm(N)
plot(y ~ x)


Add a “regression line” to that scatter plot.
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N <- 100
x <- rnorm(N)
y <- x + rnorm(N)
plot(y ~ x)
abline( lm(y ~ x), col = "red" )


Print a message or a variable
print("Hello World!")


Concatenate character strings
paste("min: ", min (x$DS1, na.rm=T)))


Write in a file (or to the screen)
cat("\\end{document}\n", file="RESULT.tex", append=TRUE)







Chapter 2


Programming in R


In this part, after quickly listing the main characteristics of the language, we present the
basic data types, how to create them, how to explore them, how to extract pieces of them,
how to modify them.
We then jump to more advanced subjects (most of which can – should? – be omitted by
first-time readers): debugging, profiling, namespaces, objects, interface with other programs,
with data bases, with other languages.


2.1 The R language


2.1.1 Control structures


Actually, R is a programming language: as such, we have the usual control structures (loops,
conditionnals, recursion, etc.)
Conditionnal statements:
if(...) {
...


} else {
...


}


Conditionnals may be used inside other constructions.
x <- if(...) 3.14 else 2.71


You can also construct vectors from conditionnal expressions, with the “ifelse” function.
x <- rnorm(100)
y <- ifelse(x>0, 1, -1)
z <- ifelse(x>0, 1, ifelse(x<0, -1, 0))


Switch (I do not like this command – this is probably the last time you see it in this
document):
x <- letters[floor(1+runif(1,0,4))]
y <- switch(x,


a=’Bonjour’,
b=’Gutten Tag’,
c=’Hello’,
d=’Konnichi wa’,
)


For loop (we loop over the elements of a vector or list):
for (i in 1:10) {
...
if(...) { next }
...
if(...) { break }
...


26
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}


While loop:
while(...) {
...


}


Repeat loop:
repeat {
...
if(...) { break }
...


}


2.1.2 Functions


R belongs to the family of functionnal languages (Lisp, OCaML, but also Python): the
notion of function is central. In particular, if you need it, you can write functions that take
other functions as argument – and in case you wonder, yes, you need it.
A function is defined as follows.
f <- function(x) {
x^2 + x + 1


}


The return value is the last value computed – but you can also use the “return” function.
f <- function(x) {
return( x^2 + x + 1 )


}


Arguments can have default values.
f <- function(x, y=3) { ... }


When you call a function you can use the argument names, without any regard to their order
(this is very useful for functions that expect many arguments – in particular arguments with
default values).
f(y=4, x=3.14)


After the arguments, in the definition of a function, you can put three dots represented the
arguments that have not been specified and that can passed through another function (very
often, the “plot” function).
f <- function(x, ...) {
plot(x, ...)


}


But you can also use this to write functions that take an arbitrary number of arguments:
f <- function (...) {
query <- paste(...) # Concatenate all the arguments to form a string
con <- dbConnect(dDriver("SQLite"))
dbGetQuery(con, query)
dbDisconnect(con)


}


f <- function (...) {
l <- list(...) # Put the arguments in a (named) list
for (i in seq(along=l)) {
cat("Argument name:", names(l)[i], "Value:", l[[i]], "\n")


}
}
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Functions have NO SIDE EFFECTS: all the modifications are local. In particular, you
cannot write a function that modifies a global variable. (Well, if you really want, you can:
see the “Dirty Tricks” part – but you should not).


2.1.3 How to get the code of a function?


To get the code of a function, you can just type its name – wit no brackets.
> IQR
function (x, na.rm = FALSE)
diff(quantile(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, names = FALSE))
<environment: namespace:stats>


But sometimes, it does not work that well: if we want to peer inside the “predict” function
that we use for predictions of linear models, we get.
> predict
function (object, ...)
UseMethod("predict")
<environment: namespace:stats>


This is a generic function: we can use the same function on different objects (lm for lin-
ear regression, glm for Poisson or logistic regression, lme for mixed models, etc.). The
actual function called is “predict.Foo” where “Foo” is the class of the object given as a first
argument.
> methods("predict")
[1] predict.ar* predict.Arima*
[3] predict.arima0* predict.glm
[5] predict.HoltWinters* predict.lm
[7] predict.loess* predict.mlm
[9] predict.nls* predict.poly
[11] predict.ppr* predict.prcomp*
[13] predict.princomp* predict.smooth.spline*
[15] predict.smooth.spline.fit* predict.StructTS*


Non-visible functions are asterisked


As we wanted the one for the “lm” object, we just type (I do not include all the code, it
would take several pages):
> predict.lm
function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf,


interval = c("none", "confidence", "prediction"), level = 0.95,
type = c("response", "terms"), terms = NULL, na.action = na.pass,
...)


{
tt <- terms(object)
if (missing(newdata) || is.null(newdata)) {


mm <- X <- model.matrix(object)
mmDone <- TRUE
offset <- object$offset


(...)
else if (se.fit)


list(fit = predictor, se.fit = se, df = df, residual.scale = sqrt(res.var))
else predictor


}
<environment: namespace:stats>


But if we wanted the “predict.prcomp” function (to add new observations to a principal
component analysis), it does not work:
> predict.prcomp
Error: Object "predict.prcomp" not found
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The problem is that the function is in a given namespace (R functions are stored in “pack-
ages” and each function is hidden in a namespace; the functions that a normal user is likely
to use directly are exported and visible – but the others, that are not supposed to be invoked
directly by the user are hidden, invisible). We can get it with the “getAnywhere” function
(here again, I do not include all the resulting code).
> getAnywhere("predict.prcomp")
A single object matching "predict.prcomp" was found
It was found in the following places
registered S3 method for predict from namespace stats
namespace:stats


with value


function (object, newdata, ...)
{


if (missing(newdata)) {
(...)
}
<environment: namespace:stats>


Alternatively, we can use the getS3Method function.
> getS3method("predict", "prcomp")
function (object, newdata, ...)
{
(...)


Alternatively, if we know in which package a function (or any object, actually is), we can
access it with the ”::” operator if it is exported (it can be exported but hidden by another
object with the same name) or the ”:::” operator if it is not.
> stats::predict.prcomp
Error: ’predict.prcomp’ is not an exported object from ’namespace:stats’


> stats:::predict.prcomp
function (object, newdata, ...)
{
(...)


> lm <- 1
> lm
[1] 1
> stats::lm
function (formula, data, subset, weights, na.action, method = "qr",


model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)


(...)


Things can get even more complicated. The most common reason you want to peer into the
code of a function is to extract some information that gets printed when it is run (typically, a
p-value when performing a regression). Actually, quite often, this information is not printed
when the function is run: the function performs some computations and returns an object,
with a certain class (with our example, this would be the “lm” function and the “lm” class)
which is then printed, with the “print” function.
> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>


As the object belong to the “lm” class:
> print.lm
function (x, digits = max(3, getOption("digits") - 3), ...)
{


cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
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if (length(coef(x))) {
cat("Coefficients:\n")
print.default(format(coef(x), digits = digits), print.gap = 2,


quote = FALSE)
}
else cat("No coefficients\n")
cat("\n")


invisible(x)
}
<environment: namespace:stats>


Same for the “summary” function: it takes the result of a function (say, the result of the
“lm” function), builds another object (here, of class “summary.lm”) on which the “print”
function is called.
> class(r)
[1] "lm"


> s <- summary(r)


> class(s)
[1] "summary.lm"


> summary
function (object, ...)
UseMethod("summary")
<environment: namespace:base>


> summary.lm
function (object, correlation = FALSE, symbolic.cor = FALSE, ...)
{
z <- object
p <-


(...)


> print.summary.lm
Error: Object "print.summary.lm" not found


> getAnywhere("print.summary.lm")
A single object matching "print.summary.lm" was found
It was found in the following places
registered S3 method for print from namespace stats
namespace:stats


with value


function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)


{
cat("\nCall:\n")
cat(paste(deparse(x$cal


(...)


But it does not always work... There are two object-oriented programming paradigms in R:
what we have explained works for the first (old, simple, understandandable) one. Here is an
example for the other.
> class(r)
[1] "lmer"
attr(,"package")
[1] "lme4"


> print.lmer
Error: Object "print.lmer" not found
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> getAnywhere("print.lmer")
no object named "print.lmer" was found


The function is no longer called “print” but “show”...
> getMethod("show", "lmer")
Method Definition:


function (object)
show(new("summary.lmer", object, useScale = TRUE, showCorrelation = FALSE))
<environment: namespace:lme4>


Signatures:
object


target "lmer"
defined "lmer"


In this case, it simply calls the “summary” function (with arguments that are not the default
arguments) and the “show” on the result.
> getMethod("summary", "lmer")
Method Definition:


function (object, ...)
new("summary.lmer", object, useScale = TRUE, showCorrelation = TRUE)
<environment: namespace:lme4>


Signatures:
object


target "lmer"
defined "lmer"
> getMethod("show", "summary.lmer")
Method Definition:


function (object)
{


fcoef <- fixef(object)
useScale <- object@useScale


(...)
invisible(object)


}
<environment: namespace:lme4>


Signatures:
object


target "summary.lmer"
defined "summary.lmer"


2.1.4 Functions with side effects


Plotting functions are used for their side effect (the plot that appears on the screen), but
they can also return a value.
That value can be the result of the computations that lead to the plot. Usually, you do
not want the result to be printed, because most users will to see the plot and nothing else,
and those who actually want the data, want it for further processing and will store it in a
variable. To this end, you can return the value as invisible(): it will not be printed.
f <- function (x, y, N=10, FUN=median, ...) {
x <- cut(x, quantile(x, seq(0,1,length=N)), include.lowest=TRUE)
y <- tapply(y, x, FUN, na.rm=TRUE)
x <- levels(x)
plot(1:length(x), y, ...)
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result <- cbind(x=x, y=y)
invisible(result)


}
f(rnorm(100), rnorm(100),
type="o", pch=15, xlab="x fractiles", ylab="y median", las=1)


res <- f(rnorm(100), rnorm(100),
type="o", pch=15, xlab="x fractiles", ylab="y median", las=1)


str(res)
res # Now its gets printed


Some plotting functions return a “plotting object”, that can be stored, modified and later
plotted, with the print() function.
r <- xyplot(rnorm(10) ~ rnorm(10)) # Does not plot anything
print(r) # Plots the data
r # Plots the data: print() is implicitely called
str(r) # An object of class "treillis", so that print(r)


# actually calls
r$panel.args.common$pch <- 15 # Modify the plot
r # Replot it


2.1.5 Operators


The following operators mean what you thing they mean – but they tend to be applied to
vectors.
+ * / - ^
< <= > >= == !=


The boolean operators are !, & et — (but you can write && or —— instead of — and &:
the result is then a scalar, even if the arguments are vectors).
The : (colon) operator creates vectors.
> -5:7
[1] -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7


The [ operator retrieves one or several elements of a vector, matrix, data frame or arrow.
> x <- floor(10*runif(10))
> x
[1] 3 6 5 1 0 6 7 8 5 8
> x[3]
[1] 5
> x[1:3]
[1] 3 6 5
> x[c(1,2,5)]
[1] 3 6 0


The $ operator retrieves an element in a list, with no need to put its name between quotes,
contrary to the [[ operator. The interest of the [[ operator is that is argument can be a
variable.
> op <- par()
> op$col
[1] "black"
> op[["col"]]
[1] "black"
> a <- "col"
> op[[a]]
[1] "black"


Assignment is written ”<-”. Some people use ”=” instead: this will work most of the time,
but not always (for instance, in “try” statements) – it is easier, safer and more readable to
use ”<-”.
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x <- 1.17
y <- c(1, 2, 3, 4)


The matrix product is %*%, tensor product (aka Kronecker product) is %x%.
> A <- matrix(c(1,2,3,4), nr=2, nc=2)
> J <- matrix(c(1,0,2,1), nr=2, nc=2)
> A


[,1] [,2]
[1,] 1 3
[2,] 2 4
> J


[,1] [,2]
[1,] 1 2
[2,] 0 1
> J %x% A


[,1] [,2] [,3] [,4]
[1,] 1 3 2 6
[2,] 2 4 4 8
[3,] 0 0 1 3
[4,] 0 0 2 4


The %o% operator builds multiplication tables (it calls the “outer” function with the mul-
tiplication).
> A <- 1:5
> B <- 11:15
> names(A) <- A
> names(B) <- B


> A %o% B
11 12 13 14 15


1 11 12 13 14 15
2 22 24 26 28 30
3 33 36 39 42 45
4 44 48 52 56 60
5 55 60 65 70 75


> outer(A,B, ’*’)
11 12 13 14 15


1 11 12 13 14 15
2 22 24 26 28 30
3 33 36 39 42 45
4 44 48 52 56 60
5 55 60 65 70 75


Euclidian division is written %/%, its remainder %%.
> 1234 %% 3
[1] 1
> 1234 %/% 3
[1] 411
> 411*3 + 1
[1] 1234


“Set” membership is written %in%.
> 17 %in% 1:100
[1] TRUE
> 17.1 %in% 1:100
[1] FALSE


The ˜ and — operators are used to describe statistical model: more about them later.
For more details (and for the operators I have not mentionned, such as <<- -> ->> @ :: :::
=), read the manual.
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?"+"
?"<"
?"<-"
?"!"
?"["
?Syntax
?kronecker
?match
library(methods)
?slot


TODO: mention <<- (and the reverse ->, ->>)


You can also define your own operators: these are just 2-arguments functions whose name
starts and ends with ”%”. The following example comes from the manual.
> "%w/o%" <- function(x,y) x[!x %in% y]
> (1:10) %w/o% c(3,7,12)
[1] 1 2 4 5 6 8 9 10


Other example, to turn a 2-argument function into an operator, that can be easily used for
more than two arguments:
"%i%" <- intersect
intersect(x,y) # Only two arguments
intersect( intersect(x,y), z )
x %i% y %i% z


2.1.6 Global variables


TODO: See below ("dirty tricks") for actual global variables -- avoid them
TODO: options(), par()


2.1.7 Object Oriented Programming


This is a tricky bit. Object Orientation was added to R as an afterthought – even worse, it
has been added twice.
The first flavour, S3 classes, is rather simple: you add a “class” attribute to a normal object
(list, vector, etc.); you then define a “generic” (C++ programmers would say “virtual”
function), e.g., “plot”, that looks at the class of its first argument and dispatches the call
to the right function (e.g., for an object of class “Foo”, the plot.Foo() function would be
called).
The second flavour, S4 classes, is more intricate: it tries to copy the paradigm used in most
object-oriented programming languages. For large projects, it might be a good idea, but
think carefully!
More recently, several packages suggested other ways of programming with objects within
R: R.oo and proto


2.2 Data structures


As all Matlab-like software (remember that “Matlab” stands for “Matrix Laboratory” – it
has noting to do with Mathematics), R handles tables of numbers. Yet, there are different
kinds of tables: vectors (tables of dimension 1), matrices (tables of dimension 2), arrays
(tables of any dimension), “Data Frames” (tables of dimension 2, in which each column may
have a different type – for instance, a table containing the results of an experiment, with one
row per subject and one column per variable). We shall now present in more detail each of
these, explain how to build them, to manipulate them, to transform them, to convert them
– in the next chapter, we shall plot them.
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2.2.1 Vectors


Here are several ways to define them (here, “c” stands for “concatenate”).
> c(1,2,3,4,5)
[1] 1 2 3 4 5


> 1:5
[1] 1 2 3 4 5


> seq(1, 5, by=1)
[1] 1 2 3 4 5


> seq(1, 5, lenth=5)
[1] 1 2 3 4 5


Here are several ways to select a part of a vector.
> x <- seq(-1, 1, by=.1)
> x
[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3


0.4
[16] 0.5 0.6 0.7 0.8 0.9 1.0


> x[5:10]
[1] -0.6 -0.5 -0.4 -0.3 -0.2 -0.1


> x[c(5,7:10)]
[1] -0.6 -0.4 -0.3 -0.2 -0.1


> x[-(5:10)] # We remove the elements whose index lies between 5 and 10
[1] -1.0 -0.9 -0.8 -0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9


1.0


> x>0
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> x[ x>0 ]
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


We can name the coordinates of a vector – and then access its elements by their names.
> names(x)
NULL
> names(x) <- letters[1:length(x)] # "letters" is a vector of strings,


# containing 26 lower case letters.
# There is also LETTERS for upper
# case letters.


> x
a b c d e f g h i j k l m n o


p
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4


0.5
q r s t u


0.6 0.7 0.8 0.9 1.0
> x["r"]
r


0.7


One can also define those names while creating the vector.
> c(a=1, b=5, c=10, d=7)
a b c d
1 5 10 7
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A few operations on vectors:
> x <- rnorm(10)
> sort(x)
[1] -1.4159893 -1.1159279 -1.0598020 -0.2314716 0.3117607 0.5376470
[7] 0.6922798 0.9316789 0.9761509 1.1022298
> rev(sort(x))
[1] 1.1022298 0.9761509 0.9316789 0.6922798 0.5376470 0.3117607
[7] -0.2314716 -1.0598020 -1.1159279 -1.4159893
> o <- order(x)
> o
[1] 3 1 9 6 4 7 8 10 2 5
> x[ o[1:3] ]
[1] -1.415989 -1.115928 -1.059802


> x <- sample(1:5, 10, replace=T)
> x
[1] 1 4 5 3 1 3 4 5 3 1
> sort(x)
[1] 1 1 1 3 3 3 4 4 5 5
> unique(x) # We need not sort the data before (this contrasts


# with Unix’s "uniq" command)
[1] 1 4 5 3


Here are still other ways of creating vectors. The “seq” command generates arithmetic
sequences.
> seq(0,10, length=11)
[1] 0 1 2 3 4 5 6 7 8 9 10
> seq(0,10, by=1)
[1] 0 1 2 3 4 5 6 7 8 9 10


The “rep” command repeats a number or a vector.
> rep(1,10)
[1] 1 1 1 1 1 1 1 1 1 1
> rep(1:5,3)
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5


It can also repeat each element several times.
> rep(1:5,each=3)
[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5


We can mix the two previous operations.
> rep(1:5,2,each=3)
[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5


The “gl” command serves a comparable purpose, mainly to create factors – more about this
in a few pages.


2.2.2 Factors


A factor is a vector coding for a qualitatitative variable (a qualitative variable is a non-
numeric variable, such as gender, color, species, etc. – or, at least, a variable whose actual
numeric values are meaningless, for example, zip codes). We can create them with the
“factor” command.
> x <- factor( sample(c("Yes", "No", "Perhaps"), 5, replace=T) )
> x
[1] Perhaps Perhaps Perhaps Perhaps No
Levels: No Perhaps


We can specify the list of acceptable values, or “levels” of this factor.
> l <- c("Yes", "No", "Perhaps")
> x <- factor( sample(l, 5, replace=T), levels=l )
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> x
[1] No Perhaps No Yes Yes
Levels: Yes No Perhaps
> levels(x)
[1] "Yes" "No" "Perhaps"


One can summarize a factor with a contingency table.
> table(x)
x


Yes No Perhaps
2 2 1


We can create a factor that follows a certain pattern with the “gl” command.
> gl(1,4)
[1] 1 1 1 1
Levels: 1
> gl(2,4)
[1] 1 1 1 1 2 2 2 2
Levels: 1 2
> gl(2,4, labels=c(T,F))
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
Levels: TRUE FALSE
> gl(2,1,8)
[1] 1 2 1 2 1 2 1 2
Levels: 1 2
> gl(2,1,8, labels=c(T,F))
[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
Levels: TRUE FALSE


The “interaction” command builds a new factor by concatenating the levels of two factors.
> x <- gl(2,4)
> x
[1] 1 1 1 1 2 2 2 2
Levels: 1 2
> y <- gl(2,1,8)
> y
[1] 1 2 1 2 1 2 1 2
Levels: 1 2
> interaction(x,y)
[1] 1.1 1.2 1.1 1.2 2.1 2.2 2.1 2.2
Levels: 1.1 2.1 1.2 2.2
> data.frame(x,y, int=interaction(x,y))
x y int


1 1 1 1.1
2 1 2 1.2
3 1 1 1.1
4 1 2 1.2
5 2 1 2.1
6 2 2 2.2
7 2 1 2.1
8 2 2 2.2


The “expand.grid” computes a cartesian product (and yields a data.frame).
> x <- c("A", "B", "C")
> y <- 1:2
> z <- c("a", "b")
> expand.grid(x,y,z)


Var1 Var2 Var3
1 A 1 a
2 B 1 a
3 C 1 a
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4 A 2 a
5 B 2 a
6 C 2 a
7 A 1 b
8 B 1 b
9 C 1 b
10 A 2 b
11 B 2 b
12 C 2 b


When playing with factors, people sometimes want to turn them into numbers. This can be
ambiguous and/or dangerous.
> x <- factor(c(3,4,5,1))
> as.numeric(x) # No NOT do that
[1] 2 3 4 1
> x
[1] 3 4 5 1
Levels: 1 3 4 5


What you get is the numbers internally used to code the various levels of the factor – and
it depends on the order of the factors...
Instead, try one of the following:
> x
[1] 3 4 5 1
Levels: 1 3 4 5


> levels(x)[ x ]
[1] "3" "4" "5" "1"


> as.numeric( levels(x)[ x ] )
[1] 3 4 5 1


> as.numeric( as.character(x) ) # probably slower
[1] 3 4 5 1


2.2.3 Ordered factors


TODO


2.2.4 Missing values


The missing values are coded as “NA” (it stands for “Not Available”).
> x <- c(1,5,9,NA,2)
> x
[1] 1 5 9 NA 2


The default behaviour of many functions is to reject data containing missing values – this
is natural when the result would depend on the missing value, were it not missing.
> mean(x)
[1] NA


But of course, you can ask R to first remove the missing values.
> mean(x, na.rm=T)
[1] 4.25


You can do that yourself with the “na.omit” function.
> x
[1] 1 5 9 NA 2
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> na.omit(x)
[1] 1 5 9 2
attr(,"na.action")
[1] 4
attr(,"class")
[1] "omit"


This also works with data.frames – it discards the rows containing at least one missing value.
> d <- data.frame(x, y=rev(x))


> d
x y


1 1 2
2 5 NA
3 9 9
4 NA 5
5 2 1


> na.omit(d)
x y


1 1 2
3 9 9
5 2 1


You should NOT use missing values in boolean tests: if you test wether two numbers are
equal, and if one (or both) is (are) missing, then you cannot conclude: the result will be
NA.
> x
[1] 1 5 9 NA 2


> x == 5
[1] FALSE TRUE FALSE NA FALSE


> x == NA # If we compare with something unknown, the
# result is unknown.


[1] NA NA NA NA NA


To test if a value is missing, use the “is.na” function.
> is.na(x)
[1] FALSE FALSE FALSE TRUE FALSE


This is not the only way of getting non-numeric values in a numeric vector: you can also
get +Inf, -Inf (positive and negative infinites), and NaN (Not a Number).
> x <- c(-1, 0,1,2,NA)
> cbind(X=x, LogX=log(x))


X LogX
[1,] -1 NaN
[2,] 0 -Inf
[3,] 1 0.0000000
[4,] 2 0.6931472
[5,] NA NA
Warning message:
NaNs produced in: log(x)


You can check wether a numeric value is actually numeric with the “is.finite” function.
> is.finite(log(x))
[1] FALSE FALSE TRUE TRUE FALSE
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2.2.5 Data Frames


A data frame may be seen as a list of vectors, each with the same length. Usually, the
table has one row for each subject in the experiment, and one column for each variable
measured in the experiement – as the different variables measure different things, they
maight have different types: some will be quantitative (numbers; each column may contain
a measurement in a different unit), others will be qualitative (i.e., factors).
> n <- 10
> df <- data.frame( x=rnorm(n), y=sample(c(T,F),n,replace=T) )


The “str” command prints out the structure of an object (any object) and display a part of
the data it contains.
> str(df)
‘data.frame’: 10 obs. of 2 variables:
$ x: num 0.515 -1.174 -0.523 -0.146 0.410 ...
$ y: logi FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE


The “summary” command print concise information about an object (here, a data.frame,
but it could be anything).
> summary(df)


x y
Min. :-1.17351 Length:10
1st Qu.:-0.42901 Mode :logical
Median : 0.13737
Mean : 0.09217
3rd Qu.: 0.48867
Max. : 1.34213


> df
x y


1 0.51481130 FALSE
2 -1.17350867 TRUE
3 -0.52338041 FALSE
4 -0.14589347 FALSE
5 0.41022626 FALSE
6 1.34213009 TRUE
7 0.77715729 FALSE
8 -0.55460889 FALSE
9 -0.03843468 FALSE
10 0.31318467 FALSE


Different ways to access the columns of a data.frame.
> df$x
[1] 0.51481130 -1.17350867 -0.52338041 -0.14589347 0.41022626 1.34213009
[7] 0.77715729 -0.55460889 -0.03843468 0.31318467
> df[,1]
[1] 0.51481130 -1.17350867 -0.52338041 -0.14589347 0.41022626 1.34213009
[7] 0.77715729 -0.55460889 -0.03843468 0.31318467
> df[["x"]]
[1] 0.51481130 -1.17350867 -0.52338041 -0.14589347 0.41022626 1.34213009
[7] 0.77715729 -0.55460889 -0.03843468 0.31318467


> dim(df)
[1] 10 2
> names(df)
[1] "x" "y"
> row.names(df)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"


One may change the colomn/row names.
> names(df) <- c("a", "b")
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> row.names(df) <- LETTERS[1:10]
> names(df)
[1] "a" "b"
> row.names(df)
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"


> str(df)
‘data.frame’: 10 obs. of 2 variables:
$ a: num 0.515 -1.174 -0.523 -0.146 0.410 ...
$ b: logi FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE


We can turn the columns the data.frame into actual variables with the “attach” command
(it is the same principle as namespaces in C++). Do not forget to “detach” the data.frame
after use.
> data(faithful)
> str(faithful)
‘data.frame’: 272 obs. of 2 variables:
$ eruptions: num 3.60 1.80 3.33 2.28 4.53 ...
$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...


> attach(faithful)
> str(eruptions)
num [1:272] 3.60 1.80 3.33 2.28 4.53 ...


> detach()


The “merge” command joins two data frames – it is the same JOIN as in Databases. More
precisely you have two data frames a (with columns x, y, z) and b (with columns x1, x2, y,z)
and certain observations (rows) of a correspond to certain observations of b: the command
merges them to yield a data frame with columns x, x1, x2, y, z. In this example, the
command
merge(a,b)


is equivalent to the SQL command
SELECT * FROM a,b WHERE a.y = b.y AND a.z = b.z


In SQL, this is called an inner join can also be written as
SELECT * FROM a INNER JOIN b ON a.y = b.y AND a.z = b.z


There are several types of SQL JOINs: in an INNER JOIN, we only get the rows that are
present in both tables; in a LEFT JOIN, we get all the elements of the first table and the
corresponding elements of the second (if any); a RIGHT JOIN is the opposite; an OUTER
JOIN is the union of the LEFT and RIGHT JOINs. In R, you can get the other types of
JOIN with the “all”, “all.x” and “all.y” arguments.
merge(x, y, all.x = TRUE) # LEFT JOIN
merge(x, y, all.y = TRUE) # RIGHT JOIN
merge(x, y, all = TRUE) # OUTER JOIN


By default, the join is over the columns common present in both data frames, but you can
restrict it to a subset of them, with the “by” argument.
merge(a, b, by=c("y", "z"))


Data frames are often used to store data to be analyzed. We shall detail those examples later
– do not be frightened if you have never heard of “regression”, we shall shortly demystify
this notion.
# Regression
data(cars) # load the "cars" data frame
lm( dist ~ speed, data=cars)


# Polynomial regression
lm( dist ~ poly(speed,3), data=cars)


# Regression with splines
library(Design)
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lm( y ~ rcs(x) ) # TODO: Find some data


# Logistic regression
glm(y ~ x1 + x2, family=binomial, data=...) # TODO: Find some data
library(Design)
lrm(death ~ blood.presure + age) # TODO: Find some data


# Non linear regression
nls( y ~ a + b * exp(c * x), start = c(a=1, b=1, c=-1) ) # TODO: Find some


data
?selfStart


# Principal Component Analysis
data(USArrest)
princomp( ~ Murder + Assault + UrbanPop, data=USArrest)


# Treillis graphics
xyplot( x ~ y | group ) # TODO: Find some data


We shall see in a separate section how to transform data frames, because there are several
ways of putting the result of an experiment in a table – but usually, we shall prefer the one
with the most rows and the fewer columns.
Some people may advise you to use the “subset” command to extract subsets of a data.frame.
Actually, you can do the same thing with the basic subsetting syntax – which is more general:
the “subset” function is but a convenience wrapper around it.
d[ d$subject == "laika", ]
d[ d$day %in% c(1, 3, 9, 10, 11), ]
d[ d$value < .1 | d$value > .9, ]
d[ d$x < d$y, ]


TODO
d <- data.frame(...)
as.matrix(d)
data.matrix(d)


2.2.6 Lists


Vectors only contain simple types (numbers, booleans or strings); lists, on the contrary, may
contain anything, for instance sata frames or other lists. They can be used to store complex
data, for instamce, trees. They can also be used, simply, as hash tables.
> h <- list()
> h[["foo"]] <- 1
> h[["bar"]] <- c("a", "b", "c")
> str(h)
List of 2
$ foo: num 1
$ bar: chr [1:3] "a" "b" "c"


You can access one element with the ”[[” operator, you can access several elements with the
”[” operator.
> h[["bar"]]
[1] "a" "b" "c"


> h[[2]]
[1] "a" "b" "c"


> h[1:2]
$foo
[1] 1
$bar
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[1] "a" "b" "c"


> h[2] # Beware, the result is not the second element, but a
# list containing this second element.


$bar
[1] "a" "b" "c"


> str(h[2])
List of 1
$ bar: chr [1:3] "a" "b" "c"


For instance, the graphic parameters are stored in a list, used as a hash table.
> str( par() )
List of 68
$ adj : num 0.5
$ ann : logi TRUE
$ ask : logi FALSE
$ bg : chr "transparent"
$ bty : chr "o"
$ cex : num 1
$ cex.axis : num 1
$ cex.lab : num 1
$ cex.main : num 1.2
$ cex.sub : num 1
$ cin : num [1:2] 0.147 0.200
...
$ xpd : logi FALSE
$ yaxp : num [1:3] 0 1 5
$ yaxs : chr "r"
$ yaxt : chr "s"
$ ylog : logi FALSE


The results of most statistical analyses is not a simple number or array, but a list containing
all the relevant values.
> n <- 100
> x <- rnorm(n)
> y <- 1 - 2 * x + rnorm(n)
> r <- lm(y~x)


> str(r)
List of 12
$ coefficients : Named num [1:2] 0.887 -2.128
..- attr(*, "names")= chr [1:2] "(Intercept)" "x"
$ residuals : Named num [1:100] 0.000503 0.472182 -1.079153 -2.423841


0.168424 ...
..- attr(*, "names")= chr [1:100] "1" "2" "3" "4" ...
$ effects : Named num [1:100] -9.5845 -19.5361 -1.0983 -2.5001 0.0866


...
..- attr(*, "names")= chr [1:100] "(Intercept)" "x" "" "" ...
$ rank : int 2
$ fitted.values: Named num [1:100] 0.67 1.65 1.75 4.20 4.44 ...
..- attr(*, "names")= chr [1:100] "1" "2" "3" "4" ...
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:100, 1:2] -10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:100] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "(Intercept)" "x"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.10 1.04
..$ pivot: int [1:2] 1 2
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..$ tol : num 1e-07


..$ rank : int 2


..- attr(*, "class")= chr "qr"
...


> str( summary(r) )
List of 11
$ call : language lm(formula = y ~ x)
$ terms :Classes ’terms’, ’formula’ length 3 y ~ x
.. ..- attr(*, "variables")= language list(y, x)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "y" "x"
.. .. .. ..$ : chr "x"
.. ..- attr(*, "term.labels")= chr "x"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=length 6 <environment>
.. ..- attr(*, "predvars")= language list(y, x)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
.. .. ..- attr(*, "names")= chr [1:2] "y" "x"
$ residuals : Named num [1:100] 0.000503 0.472182 -1.079153 -2.423841


0.168424 ...
..- attr(*, "names")= chr [1:100] "1" "2" "3" "4" ...


...


To delete an element from a list:
> h[["bar"]] <- NULL
> str(h)
List of 1
$ foo: num 1


2.2.7 Matrices


Matrices are 2-dimensional tables, but contrary to data frames (whose type may vary from
one column to the next), their elements all have the same type.
A matrix:
> m <- matrix( c(1,2,3,4), nrow=2 )
> m


[,1] [,2]
[1,] 1 3
[2,] 2 4


Caution: by default, the elements of a matrix are given vertically, column after column.
> matrix( 1:3, nrow=3, ncol=3 )


[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3


> matrix( 1:3, nrow=3, ncol=3, byrow=T )
[,1] [,2] [,3]


[1,] 1 2 3
[2,] 1 2 3
[3,] 1 2 3


> t(matrix( 1:3, nrow=3, ncol=3 ))
[,1] [,2] [,3]


[1,] 1 2 3
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[2,] 1 2 3
[3,] 1 2 3


Matrix product (beware: A * B is an element-by-element product):
> x <- matrix( c(6,7), nrow=2 )
> x


[,1]
[1,] 6
[2,] 7
> m %*% x


[,1]
[1,] 27
[2,] 40


Determinant:
> det(m)
[1] -2


Transpose:
> t(m)


[,1] [,2]
[1,] 1 2
[2,] 3 4


A diagonal matrix:
> diag(c(1,2))


[,1] [,2]
[1,] 1 0
[2,] 0 2


Identity matrix (or, more generally, a scalar matrix, i.e., the matrix of a homothety):
> diag(1,2)


[,1] [,2]
[1,] 1 0
[2,] 0 1


> diag(rep(1,2))
[,1] [,2]


[1,] 1 0
[2,] 0 1


> diag(2)
[,1] [,2]


[1,] 1 0
[2,] 0 1


There is also a “Matrix” package, in case you prefer a full object-oriented framework and/or
you need other operations on matrices.
library(help=Matrix)


We have already seen the “cbind” and “rbind” functions that put data frames side by side
or on top of each other: they also work with matrices.
> cbind( c(1,2), c(3,4) )


[,1] [,2]
[1,] 1 3
[2,] 2 4


> rbind( c(1,3), c(2,4) )
[,1] [,2]


[1,] 1 3
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[2,] 2 4


The trace of a matrix:
> sum(diag(m))
[1] 5


The inverse of a matrix:
> solve(m)


[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5


Actually, one rarely need the inverse of a matrix – we usually just want to multiply a given
vector by this inverse: this operation is simpler, faster and numerically more stable.
> solve(m, x)


[,1]
[1,] -1.5
[2,] 2.5


> solve(m) %*% x
[,1]


[1,] -1.5
[2,] 2.5


Eigenvalues:
> eigen(m)$values
[1] 5.3722813 -0.3722813


Eigenvectors:
> eigen(m)$vectors


[,1] [,2]
[1,] -0.5742757 -0.9093767
[2,] -0.8369650 0.4159736


Let us check that the matrix has actually been diagonalized:
> p <- eigen(m)$vectors
> d <- diag(eigen(m)$values)
> p %*% d %*% solve(p)


[,1] [,2]
[1,] 1 3
[2,] 2 4


It might be the good moment to recall the main matrix decompositions.
The LU decomposition, or more precisely, the PA = LDU decomposition (P: permutation
matrix; L, U: lower (or upper) triangular matrix, with 1’s on the diagonal) expresses the
result of Gauss’s Pivot Algorithm (L contains the operations on the lines; D contains the
pivots).
We do not really need it, because the Pivot Algorithm is already implemented in the “solve”
command.
The Choleski decomposition is a particular case of the LU decomposition: if A is real
symetric definite positive matrix, it can be written as B * B’ where B is upper triangular.
It is used to solve linear systems AX=Y where A is symetric positive – this is the case for
the equations defining least squares estimators.
We shall see later another application to the simulation of non independant normal variables,
with a given variance-covariance matrix.
When you look at them, matrices are rather complicated (there are a lot of coefficients).
However, if you look at the way they act on vectors, it looks rather simple: they often seem
to extend or shrink the vectors, depending on their direction. A matrix M of size n is said
to be diagonalizable if there exists a basis e 1,...,e n of Rˆn so that M e i = lambda i e i for
all i, for some (real or sometimes complex) numbers. Geometrically, it means that, in the
direction of each e i, the matrix acts like a homothety. The e i are said to be eigen vectors
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of the matrix M, the lambda i are said to be its eigen values. in matrix terms, this means
that there exists an invertible matrix P (whose columns will be the eigen vectors) and a
diagonal matrix D (whose elements will be the corresponding eigen values) such that
M = P D P^-1.


Diagonalizable matrices sound good, but there may still be a few problems. First, the eigen
values (and the eigen vectors) can be complex – if you want to interpret them as a real-
world quantity, it is a bad start. However, the matrices you will want to diagonalize are often
symetric real matrices: they are diagonalizable with real eigen values (and eigen vectors).
Second, not all matrices are diagonalizable. For instance,
1 1
0 1


is not diagonalizable. However, the set of non-diagonalizable matrices has zero measure: in
particular, if you take a matrix at random, in some “reasonable” way (“reasonable” means
“along a probability measure absolutely continuous with respect to the Lebesgue measure
on the set of square matrices of size n), the probability that it be diagonalizable (over the
complex numbers) is 1 – we say that matrices are almost surely diagonalizable.
Should you be interested in the rare cases when the matrices are not diagonalizable (for
instance, if you are interested in matrices with integer, bounded coefficients), you can look
into the Jordan decomposition, that generalizes the diagonalization and works with any
matrix.
There are also many decompositions based on the matrix t(A)*A.
The A=QR decomposition (R: upper triangular, Q: unitary) expresses the Gram-Schmidt
orthonormalization of the columns of A – we can compute it from the LU decomposition of
t(A)*A.
?qr


It may be used to do a regression:
Model: Y = b X + noise
X = QR
\hat Y = Q Q’ Y
b = R^-1 Q’ Y


The Singular Value Decomposition (SVD) A=Q1*S*Q2 (Q1, Q2: matrices containing the
eigenvectors of A*t(A) and t(A)*A; S: diagonal matrix containing the square roots of the
eigenvalues of A*t(A) or t(A)*A (they are the same)) which yields, when A is symetrix,
its diagonalization in an orthonormal basis; it also used in the computation of the pseudo
inverse. This decomposition may also be seen as a sum of matrices of rank 1, such that the
first matrices in this sum approximate “best” the initial matrix.
?svd


The polar decomposition, A=QR (Q: orthogonal, R: symetric positive definite) is an ana-
logue of the polar decomposition of a complex number: it decomposes the correspondiong
linear transformation into rotation and “stretching”. We can meet this decomposition in
Least Squares Estimates: when we try to minimize the absolute value of Ax-b, this amounts
to solve
t(A) A x = t(A) b


(Usually, t(A)*A is invertible, otherwise we would use pseudo-inverses.)
TODO: speak a bit more about pseudo-inverses.


2.2.8 Matrices and arrays


There is also an “array” type, that generalizes matrices in higher dimensions.
> d <- array(rnorm(3*3*2), dim=c(3,3,2))
> d
, , 1


[,1] [,2] [,3]
[1,] 0.97323599 -0.7319138 -0.7355852
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[2,] 0.06624588 -0.5732781 -0.4133584
[3,] 1.65808464 -1.3011671 -0.4556735


, , 2


[,1] [,2] [,3]
[1,] 0.6314685 0.6263645 1.2429024
[2,] -0.2562622 -1.5338054 0.9634999
[3,] 0.1652014 -0.9791350 -0.2040375


> str(d)
num [1:3, 1:3, 1:2] 0.9732 0.0662 1.6581 -0.7319 -0.5733 ...


Contigency tables are arrays (computed with the “table” function), when there are more
than two variables.
> data(HairEyeColor)
> HairEyeColor
, , Sex = Male


Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 38 50 25 15
Red 10 10 7 7
Blond 3 30 5 8


, , Sex = Female


Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 81 34 29 14
Red 16 7 7 7
Blond 4 64 5 8


> str(HairEyeColor)
table [1:4, 1:4, 1:2] 32 38 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"
- attr(*, "class")= chr "table"


It says “table”, but a “table” is an “array”:
> is.array(HairEyeColor)
[1] TRUE


2.2.9 Attributes


One may attach meta-data to an object: these are called “attributes”. For instance, names
of the elements of a list are in an attribute.
> l <- list(a=1, b=2, c=3)
> str(l)
List of 3
$ a: num 1
$ b: num 2
$ c: num 3
> attributes(l)
$names
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[1] "a" "b" "c"


Similarly, the row and columns names of a data.frame
> a <- data.frame(a=1:2, b=3:4)


> str(a)
‘data.frame’: 2 obs. of 2 variables:
$ a: int 1 2
$ b: int 3 4


> attributes(a)
$names
[1] "a" "b"
$row.names
[1] "1" "2"
$class
[1] "data.frame"


> a <- matrix(1:4, nr=2)
> rownames(a) <- letters[1:2]
> colnames(a) <- LETTERS[1:2]


> str(a)
int [1:2, 1:2] 1 2 3 4
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "a" "b"
..$ : chr [1:2] "A" "B"


> attributes(a)
$dim
[1] 2 2
$dimnames
$dimnames[[1]]
[1] "a" "b"
$dimnames[[2]]
[1] "A" "B"


> data(HairEyeColor)
> str(HairEyeColor)
table [1:4, 1:4, 1:2] 32 38 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"


- attr(*, "class")= chr "table"


It is also used to hold the code of a function if you want to keep the comments.
> f <- function (x) {
+ # Useless function
+ x + 1
+ }


> f
function (x) {
# Useless function
x + 1


}


> str(f)
function (x)
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- attr(*, "source")= chr [1:4] "function (x) {" ...


> attr(f, "source") <- NULL


> str(f)
function (x)


> f
function (x)
{


x + 1
}


Some people even suggest to use this to “hide” code – but choosing an interpreted language
is a very bad idea if you want to hide your code.
> attr(f, "source") <- "Forbidden"


> f
Forbidden


> attr(f, "source") <- "Remember to use brackets to call a function, e.g.,
f()"


> f
Remember to use brackets to call a function, e.g., f()


Typically, when the data has a complex structure, you use a list; but when the bulk of the
data has a very simple, table-like structure, you store it in an array or data frame and put
the rest in the attributes. For instance, here is a chunk of an “lm” object (the result of a
regression):
> str(r$model)
‘data.frame’: 100 obs. of 2 variables:
$ y: num 5.087 -1.587 -0.637 2.023 2.207 ...
$ x: num -1.359 0.993 0.587 -0.627 -0.853 ...
- attr(*, "terms")=Classes ’terms’, ’formula’ length 3 y ~ x
.. ..- attr(*, "variables")= language list(y, x)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "y" "x"
.. .. .. ..$ : chr "x"
.. ..- attr(*, "term.labels")= chr "x"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=length 149 <environment>
.. ..- attr(*, "predvars")= language list(y, x)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
.. .. ..- attr(*, "names")= chr [1:2] "y" "x"


We shall soon see another application of attributes: the notion of class – the class of an
object is just the value of its “class” attribute, if any.


2.2.10 The contents of those complex objects: str, unclass, deparse


If you want to use a complex object, obtained as the result of a certain command, by
extracting some of its elements, or if you want to browse through it, the printing command
is not enough: we need other means to peer inside an object.
The “unclass” command removes the class of an object: only remains the underlying type
(usually, “list”). As a result, it is printed by the “print.default” function that displays its
actual contents.
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> data(USArrests)
> r <- princomp(USArrests)$loadings


> r
Loadings:


Comp.1 Comp.2 Comp.3 Comp.4
Murder 0.995
Assault -0.995
UrbanPop -0.977 -0.201
Rape -0.201 0.974


Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00


> class(r)
[1] "loadings"


> unclass(r)
Comp.1 Comp.2 Comp.3 Comp.4


Murder -0.04170432 0.04482166 0.07989066 0.99492173
Assault -0.99522128 0.05876003 -0.06756974 -0.03893830
UrbanPop -0.04633575 -0.97685748 -0.20054629 0.05816914
Rape -0.07515550 -0.20071807 0.97408059 -0.07232502


You cound also directly use the “print.default” function.
> print.default(r)


Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.04170432 0.04482166 0.07989066 0.99492173
Assault -0.99522128 0.05876003 -0.06756974 -0.03893830
UrbanPop -0.04633575 -0.97685748 -0.20054629 0.05816914
Rape -0.07515550 -0.20071807 0.97408059 -0.07232502
attr(,"class")
[1] "loadings"


The “str” function prints the contents of an objects and truncates all the vectors it encoun-
ters: thus, you can peer into large objects.
> str(r)
loadings [1:4, 1:4] -0.0417 -0.9952 -0.0463 -0.0752 0.0448 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"
..$ : chr [1:4] "Comp.1" "Comp.2" "Comp.3" "Comp.4"


- attr(*, "class")= chr "loadings"


> str(USArrests)
‘data.frame’: 50 obs. of 4 variables:
$ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
$ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
$ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
$ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...


Finally, to get an idea of what you can do with an object, you can always look the code of
its “print” or “summary” methods.
> print.lm
function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
if (length(coef(x))) {
cat("Coefficients:\n")
print.default(format(coef(x), digits = digits), print.gap = 2,
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quote = FALSE)
}
else cat("No coefficients\n")
cat("\n")
invisible(x)


}
<environment: namespace:base>


> summary.lm
function (object, correlation = FALSE, symbolic.cor = FALSE,


...)
{
z <- object
p <- z$rank
if (p == 0) {
r <- z$residuals
n <- length(r)


etc.


> print.summary.lm
function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor,


signif.stars = getOption("show.signif.stars"), ...)
{
cat("\nCall:\n")
cat(paste(deparse(x$call), sep = "\n", collapse = "\n"),


"\n\n", sep = "")
resid <- x$residuals
df <- x$df
rdf <- df[2]
cat(if (!is.null(x$w) && diff(range(x$w)))


"Weighted ", "Residuals:\n", sep = "")
if (rdf > 5) {


etc.


The “deparse” command produces a character string whose evaluation will yield the initial
object (the resulting syntax is a bit strange: if you were to build such an object from scratch,
you would not proceed that way).
> deparse(r)
[1] "structure(c(-0.0417043206282872, -0.995221281426497, -0.0463357461197109,


"
[2] "-0.075155500585547, 0.0448216562696701, 0.058760027857223, -0.97685747990989,


"
[3] "-0.200718066450337, 0.0798906594208107, -0.0675697350838044, "
[4] "-0.200546287353865, 0.974080592182492, 0.994921731246978, -0.0389382976351601,


"
[5] "0.0581691430589318, -0.0723250196376096), .Dim = c(4, 4), .Dimnames =


list("
[6] " c(\"Murder\", \"Assault\", \"UrbanPop\", \"Rape\"), c(\"Comp.1\", \"Comp.2\",


"
[7] " \"Comp.3\", \"Comp.4\")), class = \"loadings\")"


> cat(deparse(r)); cat("\n")
structure(c(-0.0417043206282872, -0.995221281426497,
-0.0463357461197109, -0.075155500585547, 0.0448216562696701,
0.058760027857223, -0.97685747990989, -0.200718066450337,
0.0798906594208107, -0.0675697350838044, -0.200546287353865,
0.974080592182492, 0.994921731246978, -0.0389382976351601,
0.0581691430589318, -0.0723250196376096), .Dim = c(4, 4),
.Dimnames = list( c("Murder", "Assault", "UrbanPop", "Rape"),
c("Comp.1", "Comp.2", "Comp.3", "Comp.4")), class = "loadings")
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2.2.11 Operations on vectors or arrays


TODO: Check that I mention apply, sapply, lapply,
rapply (recursive apply), rollapply (zoo)


TODO: Mention the "reshape" package


There are several ways to code the results of an experiment.
First example: we have measured several qualitative variables on several (hundred) subjects.
The data may be written down as a table, one line per subject, one column per variable. We
can also use a contingency table (it is only a good idea of there are few variables, otherwise
the array would mainly contain zeroes; if there are k variables the array would hane k
dimensions).
How can we switch from one formulation to the next.
In one direction, the “table” function computes a contingency table.
n <- 1000
x1 <- factor( sample(1:3, n, replace=T), levels=1:3 )
x2 <- factor( sample(LETTERS[1:5], n, replace=T), levels=LETTERS[1:5] )
x3 <- factor( sample(c(F,T),n,replace=T), levels=c(F,T) )
d <- data.frame(x1,x2,x3)
r <- table(d)


This yields:
> r
, , x3 = FALSE


x2
x1 A B C D E
1 27 45 31 38 25
2 41 33 30 35 33
3 33 30 28 35 39


, , x3 = TRUE


x2
x1 A B C D E
1 26 30 28 42 29
2 35 33 22 37 40
3 42 31 31 36 35


The “ftable” command presents the result in a slightly different way (more readable if there
are more variables).
> ftable(d)


x3 FALSE TRUE
x1 x2
1 A 27 26


B 45 30
C 31 28
D 38 42
E 25 29


2 A 41 35
B 33 33
C 30 22
D 35 37
E 33 40


3 A 33 42
B 30 31
C 28 31
D 35 36
E 39 35


Let us now see how to turn a contingency table into a data.frame.







CHAPTER 2. PROGRAMMING IN R 54


Case 1: 1-dimensional table
n <- 100
k <- 10
x <- factor( sample(LETTERS[1:k], n, replace=T), levels=LETTERS[1:k] )
d <- table(x)
factor( rep(names(d),d), levels=names(d) )


Case 2: 2-dimensional table
n <- 100
k <- 4
x1 <- factor( sample(LETTERS[1:k], n, replace=T), levels=LETTERS[1:k] )
x2 <- factor( sample(c(’x’,’y’,’z’),n,replace=T), levels=c(’x’,’y’,’z’) )
d <- data.frame(x1,x2)
d <- table(d)
y2 <- rep(colnames(d)[col(d)], d)
y1 <- rep(rownames(d)[row(d)], d)
dd <- data.frame(y1,y2)


General case:
n <- 1000
x1 <- factor( sample(1:3, n, replace=T), levels=1:3 )
x2 <- factor( sample(LETTERS[1:5], n, replace=T), levels=LETTERS[1:5] )
x3 <- factor( sample(c(F,T),n,replace=T), levels=c(F,T) )
d <- data.frame(x1,x2,x3)
r <- table(d)


# A function generalizing "row" and "col" in higher dimensions
foo <- function (r,i) {
d <- dim(r)
rep(
rep(1:d[i], each=prod(d[0:(i-1)])),
prod(d[(i+1):(length(d)+1)], na.rm=T)


)
}
k <- length(dimnames(r))
y <- list()
for (i in 1:k) {
y[[i]] <- rep( dimnames(r)[[i]][foo(r,i)], r )


}
d <- data.frame(y)
colnames(d) <- LETTERS[1:k]


# Test
r - table(d)


2.2.12 Operations on vectors and arrays (continued)


Other example: we made the same experiment, with the same subject, three times. We can
represent the data with one row per subject, with several results for each


subject, result1, result2, result3


We can also use one row per experiment, with the number of the subject, the number of the
experiment (1, 2 or 3) and the result.


subject, retry, result


Exercice: Write function to turn one representation into the other. (Hint: you may use the
“split” command that separates data along a factor).
Other example: Same situation, but this time, the numner or experiments per subject is not
constant. The first representation can no longer be a data frame: it can be a list of vectors
(one vector for each subject). The second representation is unchanged.
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n <- 100
k <- 10
subject <- factor( sample(1:k,n,replace=T), levels=1:k )
x <- rnorm(n)
d1 <- data.frame(subject, x)


# Data.frame to vector list
d2 <- split(d1$x, d1$subject)


# vector list to data.frame
rep(names(d2), sapply(d2, length))


2.2.13 Aggregate functions: by, aggregate


(I never use those functions: fell free to skip to the next section that present more general
and powerful alternatives.)
In SQL (this is the language spoken by databases – to simplify things, you can consider that
a database is a (set of) data.frame(s)), we often want to apply a function (sum, mean, sd,
etc.) to groups of records (“record” is the database word for “line in a data.frame). For
instance, if you store you personnal accounting in a database, giving, for each expense, the
amount and the nature (rent, food, transortation, taxes, books, cinema, etc.),
amount nature
------------------
390 rent
4.90 cinema
6.61 food
10.67 food
6.40 books
14.07 food
73.12 books
4.90 cinema


you might want to compute the total expenses for each type of expense. In SQL, you would
say:
SELECT nature, SUM(amount)
FROM expenses
GROUP BY nature;


You can do the same in R:
nature <- c("rent", "cinema", "books", "food")
p <- length(nature):1
p <- sum(p)/p
n <- 10
d <- data.frame(
nature = sample( nature, n, replace=T, prob=p ),
amount = 10*round(rlnorm(n),2)


)
by(d$amount, d$nature, sum)


This yields:
> d


nature amount
1 books 59.9
2 rent 3.0
3 books 6.7
4 cinema 4.7
5 food 7.3
6 books 11.3
7 rent 12.2
8 cinema 6.5
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9 food 3.2
10 food 4.7


> by(d$amount, d$nature, sum)
INDICES: books
[1] 77.9
------------------------------------------------------------
INDICES: cinema
[1] 11.2
------------------------------------------------------------
INDICES: food
[1] 15.2
------------------------------------------------------------
INDICES: rent
[1] 15.2


The “by” function assumes that you have a vector, that you want to cut into pieces and on
whose pieces you want to apply a function. Sometimes, it is not a vector, but several: all
the columns in a data.frame. You can then replace the “by” function by “aggregate”.
> N <- 50
> k1 <- 4
> g1 <- sample(1:k1, N, replace=TRUE)
> k2 <- 3
> g2 <- sample(1:k2, N, replace=TRUE)
> d <- data.frame(x=rnorm(N), y=rnorm(N), z=rnorm(N))
> aggregate(d, list(g1, g2), mean)


Group.1 Group.2 x y z
1 1 1 -0.5765 0.07474 -0.01558
2 2 1 0.4246 0.12450 -0.05569
3 3 1 -0.3418 0.30908 -0.32289
4 4 1 0.7405 -0.79703 0.18489
5 1 2 -0.5855 -0.07166 -0.16581
6 2 2 -0.4230 -0.15215 0.24693
7 3 2 0.4329 0.32154 -0.82883
8 4 2 -1.0167 -0.18424 0.12709
9 1 3 0.3961 -0.86940 0.68552
10 2 3 -0.8808 0.62404 0.79728
11 3 3 -0.4884 -0.67295 0.03346
12 4 3 0.1605 -0.68522 -0.35144


TODO: Replace this example by real data...


These two functions, “by” and “aggregate”, are actually special cases of the apply/tapply/lapply/sapply/mapply
functions, that are more general and that we shall now present.
> by.data.frame
function (data, INDICES, FUN, ...) {
(...)
ans <- eval(substitute(tapply(1:nd, IND, FUNx)), data)
(...)


}


> aggregate.data.frame
function (x, by, FUN, ...) {
(...)
y <- lapply(x, tapply, by, FUN, ..., simplify = FALSE)
(...)


}
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2.2.14 Operations of vectors and arrays: useful commands


The “apply” function applies a function (mean, quartile, etc.) to each column or row of a
data.frame, matrix or array.
> options(digits=4)
> df <- data.frame(x=rnorm(20),y=rnorm(20),z=rnorm(20))
> apply(df,2,mean)


x y z
0.04937 -0.11279 -0.02171
> apply(df,2,range)


x y z
[1,] -1.564 -1.985 -1.721
[2,] 1.496 1.846 1.107


It also works in higher dimensions. The second argument indicates the indices along which
the program should loop, i.e., the dimensions used to slice the data, i.e., the dimensions
that will remain after the computation.
> options(digits=2)
> m <- array(rnorm(10^3), dim=c(10,10,10))
> a <- apply(m, 1, mean)
> a
[1] 0.060 -0.027 0.037 0.160 0.054 0.012 -0.039 -0.064 -0.013 0.061
> b <- apply(m, c(1,2), mean)
> b


[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] -0.083 -0.7297 0.547 0.283 0.182 -0.409 -0.0029 0.170 -0.131 0.7699
[2,] -0.044 0.3618 -0.206 -0.095 0.062 -0.568 -0.4841 0.334 0.362 0.0056
[3,] 0.255 0.2359 -0.331 0.040 0.213 -0.547 -0.1852 0.492 -0.257 0.4525
[4,] -0.028 0.7422 0.417 -0.088 0.205 -0.521 -0.1981 0.042 0.604 0.4244
[5,] -0.085 0.3461 0.047 0.683 -0.018 -0.173 0.1825 -0.826 -0.037 0.4153
[6,] -0.139 -0.4761 0.276 0.174 0.145 0.232 -0.1194 -0.010 0.176 -0.1414
[7,] -0.139 0.0054 -0.328 -0.264 0.078 0.496 0.2812 -0.336 0.124 -0.3110
[8,] -0.060 0.1291 0.313 -0.199 -0.325 0.338 -0.2703 0.166 -0.133 -0.5998
[9,] 0.091 0.2250 0.155 -0.277 0.075 -0.044 -0.4169 0.050 0.200 -0.1849
[10,] -0.157 -0.3316 -0.103 0.373 -0.034 0.116 0.0660 0.249 -0.040 0.4689
> apply(b, 1, mean)
[1] 0.060 -0.027 0.037 0.160 0.054 0.012 -0.039 -0.064 -0.013 0.061


The “tapply” function groups the observations along the value of one (or several) factors
and applies a function (mean, etc.) to the resulting groups. The “by” command is similar.
> tapply(1:20, gl(2,10,20), sum)
1 2


55 155


> by(1:20, gl(2,10,20), sum)
INDICES: 1
[1] 55
------------------------------------------------------------
INDICES: 2
[1] 155


The “sapply” function applies a function to each element of a list (or vector, etc.) and
returns, if possible, a vector. The “lapply” function is similar but returns a list.
> x <- list(a=rnorm(10), b=runif(100), c=rgamma(50,1))
> lapply(x,sd)
$a
[1] 1.041


$b
[1] 0.294







CHAPTER 2. PROGRAMMING IN R 58


$c
[1] 1.462
> sapply(x,sd)


a b c
1.041 0.294 1.462


In particular, the “sapply” function can apply a function to each column of a data.frame
without specifying the dimension numbers required by the “apply” command (at the be-
ginning, you never know if it sould be 1 or 2 and you end up trying both to retain the one
whose result has the expected dimension).
The “split” command cuts the data, as the “tapply” function, but does not apply any
function afterwards.
> str(InsectSprays)
‘data.frame’: 72 obs. of 2 variables:
$ count: num 10 7 20 14 14 12 10 23 17 20 ...
$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...


> str( split(InsectSprays$count, InsectSprays$spray) )
List of 6
$ A: num [1:12] 10 7 20 14 14 12 10 23 17 20 ...
$ B: num [1:12] 11 17 21 11 16 14 17 17 19 21 ...
$ C: num [1:12] 0 1 7 2 3 1 2 1 3 0 ...
$ D: num [1:12] 3 5 12 6 4 3 5 5 5 5 ...
$ E: num [1:12] 3 5 3 5 3 6 1 1 3 2 ...
$ F: num [1:12] 11 9 15 22 15 16 13 10 26 26 ...


> sapply( split(InsectSprays$count, InsectSprays$spray), mean )
A B C D E F


14.500 15.333 2.083 4.917 3.500 16.667


> tapply( InsectSprays$count, InsectSprays$spray, mean )
A B C D E F


14.500 15.333 2.083 4.917 3.500 16.667


2.2.15 “Unlooping” exercises


TODO: This is a VERY important section.
At the begining of this document, list the most important sections, list what the reader is
expected to be able to do after reading this document.
In R, many commands handle vectors or tables, allowing an (almost) loop-less programming
style – parallel programming. Thus, the computations are faster than with an explicitely
written loop (because R is an interpreted language). The resulting programming style is
very different from what you may be used to: here are a few exercises to warm you up. We
shall need the table functions we have just introduced, in particular “apply”.
Many people consider the “apply” function as a loop: in the current implementation of R, it
might be implemented as a loop, if if you run R on a parallel machine, it could be different
– all the operations could be run at once. This really is parallelization.
Exercice: Let x be a table. Compute the sum of its rows, the sum of each of its columns. If
x is the contingency table of two qualitative variables, compute the theoretical contingency
table under the hypothesis that the two variables are independant. If you already know
what it is, computhe the corresponding Chiˆ2.
# To avoid any row/column confusion, I choose a non-square table
n <- 4
m <- 5
x <- matrix( rpois(n*m,10), nr=n, nc=m )
rownames(x) <- 1:n
colnames(x) <- LETTERS[1:m]
x
apply(x,1,sum) # Actually, there is already a "rowSums" function
apply(x,2,sum) # Actually, there is already a "colSums" function
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# Theoretical contingency table
y <- matrix(apply(x,1,sum),nr=n,nc=m) * matrix(apply(x,2,sum),nr=n,nc=m,byrow=T)


/ sum(x)
# Theoretical contingency table
y <- apply(x,1,sum) %*% t(apply(x,2,sum)) / sum(x)
# Computing the Chi^2 by hand
sum((x-y)^2/y)
# Let us check...
chisq.test(x)$statistic


Exercice: Let x be a boolean vector. Count the number of sequences (“runs”) of zeros (for
instance, in 00101001010110, there are 6 runs: 00 0 00 0 0 0). Count the number of sequences
of 1. Counth the total number of sequences. Same question for a factor with more tham
two levels.
n <- 50
x <- sample(0:1, n, replace=T, p=c(.2,.8))
# Number of runs
sum(abs(diff(x)))+1
# Number of runs of 1’s.
f <- function (x, v=1) { # If someone has a simpler idea...
x <- diff(x==v)
x <- x[x!=0]
if(x[1]==1)
sum(x==1)


else
1+sum(x==1)


}
f(x,1)
# Number of runs of 0’s.
f(x,0)


n <- 50
k <- 4
x <- sample(1:k, n, replace=T)
# With a loop
s <- 0
for (i in 1:4) {
s <- s + f(x,i)


}
s
# With no loop (less readable)
a <- apply(matrix(1:k,nr=1,nc=k), 2, function (i) { f(x,i) } )
a
sum(a)


In a binary vector of length n, find the position of the runs of 1’s of length greater than k.
n <- 100
k <- 10
M <- sample(0:1, n, replace=T, p=c(.2,.8))
x <- c(0,M,0)
# Start of the runs of 1’s
deb <- which( diff(x) == 1 )
# End of the runs of 1’s
fin <- which( diff(x) == -1 ) -1
# Length of those runs
long <- fin - deb
# Location of those whose lengths exceed k
cbind(deb,fin)[ fin-deb > k, ]


Exercise: same question, but we are looking for runs of 1’s of length at least k in an n*m
matrix. Present the result as a table.
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foo <- function (M,k) {
x <- c(0,M,0)
deb <- which( diff(x) == 1 )
fin <- which( diff(x) == -1 ) -1
cbind(deb,fin)[ fin-deb >= k, ]


}
n <- 50
m <- 50
M <- matrix( sample(0:1, n*m, replace=T, prob=c(.2,.8)), nr=n, nc=m )
res <- apply(M, 1, foo, k=10)


# Add the line number (not very pretty -- if someone has a better idea)
i <- 0
res <- lapply(res, function (x) {
x <- matrix(x, nc=2)
i <<- i+1
#if (length(x)) {
cbind(ligne=rep(i,length(x)/2), deb=x[,1], fin=x[,2])


#} else {
# x
#}


})
# Present the result as a table
do.call(’rbind’, res) # The line numbers are still missing


TODO: check that I mention the “do.call” function somewhere in this document...
Let r be the return of a financial asset. The clustered return is the accumulated return for
a sequence of returns of the same sign. The trend number is the number of steps in such a
sequence. The average return is their ratio. Compute these quantities.
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Accumulated return
data(EuStockMarkets)
x <- EuStockMarkets
# We aren’t interested in the spot prices, but in the returns
# return[i] = ( price[i] - price[i-1] ) / price[i-1]
y <- apply(x, 2, function (x) { diff(x)/x[-length(x)] })
# We normalize the data
z <- apply(y, 2, function (x) { (x-mean(x))/sd(x) })
# A single time series
r <- z[,1]
# The runs
f <- factor(cumsum(abs(diff(sign(r))))/2)
r <- r[-1]
accumulated.return <- tapply(r, f, sum)
trend.number <- table(f)
boxplot(abs(accumulated.return) ~ trend.number, col=’pink’,


main="Accumulated return")
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Average return
boxplot(abs(accumulated.return)/trend.number ~ trend.number,


col=’pink’, main="Average return")
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op <- par(mfrow=c(2,2))
for (i in 1:4) {
r <- z[,i]
f <- factor(cumsum(abs(diff(sign(r))))/2)
r <- r[-1]
accumulated.return <- tapply(r, f, sum)
trend.number <- table(f)
boxplot(abs(accumulated.return) ~ trend.number, col=’pink’)


}
par(op)
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op <- par(mfrow=c(2,2))
for (i in 1:4) {
r <- z[,i]
f <- factor(cumsum(abs(diff(sign(r))))/2)
r <- r[-1]
accumulated.return <- tapply(r, f, sum)
trend.number <- table(f)
boxplot(abs(accumulated.return)/trend.number ~ trend.number, col=’pink’)


}
par(op)


Let M be an n*m matrix (representing a grayscale image); compute the mean value of each
quadripixel.
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data(volcano)
M <- volcano
n <- dim(M)[1]
m <- dim(M)[2]
M1 <- M [1:(n-1),] [,1:(m-1)]
M2 <- M [2:n,] [,1:(m-1)]
M3 <- M [1:(n-1),] [,2:m]
M4 <- M [2:n,] [,2:m]
# Overlapping quadripixels
M0 <- (M1+M2+M3+M4)/4


# Non-overlapping quadripixels
nn <- floor((n-1)/2)
mm <- floor((m-1)/2)
M00 <- M0 [2*(1:nn),] [,2*(1:mm)]


op <- par(mfrow=c(2,2))
image(M, main="Initial image")


image(M0, main="Overlapping Quadripixels")
image(M00, main="Non Overlapping Quadripixels")
par(op)


Construct a Van der Monde matrix.
outer(x, 0:n, ’^’)


Draw a graph from its indicence matrix.
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n <- 100
m <- matrix(runif(2*n),nc=2)
library(ape)
r <- mst(dist(m)) # The incidence matrix (of the minimum spanning


# tree of the points)
plot(m)
n <- dim(r)[1]
w <- which(r!=0)
i <- as.vector(row(r))[w]
j <- as.vector(col(r))[w]
segments( m[i,1], m[i,2], m[j,1], m[j,2], col=’red’ )


TODO: Find other exercises.


2.2.16 Strings


R is not the best tool to process strings, but you sometimes have to do it.
Strings are delimited by double or single quotes.
> "Hello" == ’Hello’
[1] TRUE


You do not print a string with the “print” function but with the “cat” function. The “print”
function only gives you the representation of the string.
> print("Hello\n")
[1] "Hello\n"


> cat("Hello\n")
Hello


> s <- "C:\\Program Files\\" # At work, I am compelled to use Windows...


> print(s)
[1] "C:\\Program Files\\"


> cat(s, "\n")
C:\Program Files\


You can concatenate strings with the “paste” function. To get the desired result, you may
have to play with the “sep” argument.
> paste("Hello", "World", "!")
[1] "Hello World !"
> paste("Hello", "World", "!", sep="")
[1] "HelloWorld!"
> paste("Hello", " World", "!", sep="")
[1] "Hello World!"


> x <- 5
> paste("x=", x)
[1] "x= 5"
> paste("x=", x, paste="")







CHAPTER 2. PROGRAMMING IN R 64


[1] "x= 5 "


The “cat” function also accepts a “sep” argument.
> cat("x=", x, "\n")
x= 5
> cat("x=", x, "\n", sep="")
x=5


Sometimes, you do not want to concatenate strings stored in different variables, but the
elements of a vector of strings. If you want the result to be a single string, and not a vector
of strings, you must add a “collapse” argument.
> s <- c("Hello", " ", "World", "!")
> paste(s)
[1] "Hello" " " "World" "!"
> paste(s, sep="")
[1] "Hello" " " "World" "!"
> paste(s, collapse="")
[1] "Hello World!"


In some circumstances, you can even need both (the “cat” function does not accept this
“collapse” argument).
> s <- c("Hello", "World!")


> paste(1:3, "Hello World!")
[1] "1 Hello World!" "2 Hello World!" "3 Hello World!"


> paste(1:3, "Hello World!", sep=":")
[1] "1:Hello World!" "2:Hello World!" "3:Hello World!"


> paste(1:3, "Hello World!", sep=":", collapse="\n")
[1] "1:Hello World!\n2:Hello World!\n3:Hello World!"


> cat(paste(1:3, "Hello World!", sep=":", collapse="\n"), "\n")
1:Hello World!
2:Hello World!
3:Hello World!


The “nchar” function gives the length of a string (I am often looking for a “strlen” function:
there it is).
> nchar("Hello World!")
[1] 12


The “substring” function extract part of a string (the second argument is the starting
position, the third argument is 1 + the end position).
> s <- "Hello World"
> substring(s, 4, 6)
[1] "lo "


The “strsplit” function splits a string into chunks, at each occurrence of a given “string”.
> s <- "foo, bar, baz"
> strsplit(s, ", ")
[[1]]
[1] "foo" "bar" "baz"


> s <- "foo-->bar-->baz"
> strsplit(s, "-->")
[[1]]
[1] "foo" "bar" "baz"


Actually, it is not a string, but a regular expression.
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> s <- "foo, bar, baz"
> strsplit(s, ", *")
[[1]]
[1] "foo" "bar" "baz"


You can also use it to get the individual characters of a string.
> strsplit(s, "")
[[1]]
[1] "f" "o" "o" "," " " "b" "a" "r" "," " " "b" "a" "z"


> str(strsplit(s, ""))
List of 1
$ : chr [1:13] "f" "o" "o" "," ...


The grep function looks for a “string” in a vector of strings.
> s <- apply(matrix(LETTERS[1:24], nr=4), 2, paste, collapse="")
> s
[1] "ABCD" "EFGH" "IJKL" "MNOP" "QRST" "UVWX"
> grep("O", s)
[1] 4
> grep("O", s, value=T)
[1] "MNOP"


Actually, it does not look for a string, but for a regular expression.
If Perl is installed on your machine, you can simply type (to the shell)
man perlretut


and read its Regular Expression TUTorial.
(It may seem out of place to speak of regular expressions in a document about statistics: it
is not. We shall see (well, not in the current version of this document, but soon – I hope)
that stochastic regular expressions are a generalization of Hidden Markov Models (HMM),
which are the analogue of State Space Models for qualitative time series. If you understood
the last sentence, you probably should not be reading this.)
The “regexpr” performs the same task as the “grep” function, but gives a different result:
the position and length of the first match (or -1 if there is none)
> regexpr("o", "Hello")
[1] 5
attr(,"match.length")
[1] 1
> regexpr("o", c("Hello", "World!"))
[1] 5 2
attr(,"match.length")
[1] 1 1


> s <- c("Hello", "World!")
> i <- regexpr("o", s)
> i
[1] 5 2
attr(,"match.length")
[1] 1 1
> attr(i, "match.length")
[1] 1 1


Sometimes, you want an “approximate” matches, not exact matches, accounting for potential
spelling or typing mistakes: the “agrep” function provides suc a “fuzzy” matching. It is used
by the “help.search” function.
> grep ("abc", c("abbc", "jdfja", "cba"))
numeric(0)
> agrep ("abc", c("abbc", "jdfja", "cba"))
[1] 1
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The “gsub” function replaces each occurrence of a string (a regular expression, actually) by
a strin.
> s <- "foo bar baz"
> gsub(" ", "", s) # Remove all the spaces
[1] "foobarbaz"


> s <- "foo bar baz"
> gsub(" ", "", s)
[1] "foobarbaz"
> gsub(" ", " ", s)
[1] "foo bar baz"
> gsub(" +", "", s)
[1] "foobarbaz"
> gsub(" +", " ", s) # Remove multiple spaces and replace them by single spaces
[1] "foo bar baz"


The “sub” is similar to “gsub” but only replaces the first occurrence.
> s <- "foo bar baz"
> sub(" ", "", s)
[1] "foobar baz"


2.2.17 Time and Date


When you read data from various sources, you often run into date format problem: different
people, different software use different formats, different conventions. For instance, 01/02/03
can mean the first of february 2003 for some and the second of january 2003 for others – and
perhaps even the third of february 2001 for some. The only unambiguous, universal format
is the ISO 8601 one, not really used by people but rather by programmers: dates are coded
as
2005-15-05


The main rationale for this format is that when you write a numeric quantity you start with
the largest units and end with the smallest; e.g., when you write “123”, everyone understands
“a hundred and twenty three”: you start with the hundreds, proceed with the tens, and end
with the units. Why should it be different for dates? We should start with the largest unit,
the years, procedd with the next largest the months, and end with the smallest, the days.
This format has an advantage: if you want to sort data according to the date, your program
just has to be able to sort strings, it need not be aware of dates.
You can extend the format with a time, but it becomes ambiguous:
2005-05-15 21:34:10.03


It does not look ambiguous (hours, minutes, seconds, hundredths of seconds – for some
applications, you may even need thousandths of seconds), but the time zone is missing.
Most of the problems you have with times comes from those time zones.
To convert a string into a Date object:
> as.Date("2005-05-15")
[1] "2005-05-15"


If you convert from an ambiguous format, you must specify the format:
> as.Date("15/05/2005", format="%d/%m/%Y")
[1] "2005-05-15"
> as.Date("15/05/05", format="%d/%m/%y")
[1] "2005-05-15"


> as.Date("01/02/03", format="%y/%m/%d")
[1] "2001-02-03"
> as.Date("01/02/03", format="%y/%d/%m")
[1] "2001-03-02"


You can compute the difference between two dates – it is a number of days.
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> a <- as.Date("01/02/03", format="%y/%m/%d")
> b <- as.Date("01/02/03", format="%y/%d/%m")
> a - b
Time difference of -27 days


Today’s date:
> Sys.Date()
[1] "2005-05-16"


You can add a Date and a number (a number of days).
> Sys.Date() + 21
[1] "2005-06-06"


You can format the date to produce one of those ambiguous formats your clients like.
> format(Sys.Date(), format="%d%m%y")
[1] "160505"


> format(Sys.Date(), format="%A, %d %B %Y")
[1] "Monday, 16 May 2005"


The format is described in the manpage of the “strftime” function.
If you want to extract part of a date, you can use the format” function. For instance, if I
want to aggregate my data by month, I can use
d$month <- format( d$date, format="%Y-%m" )


For looping purposes, you might need series of dates: you may want to use the “seq” function.
?seq.Date


> seq(as.Date("2005-01-01"), as.Date("2005-07-01"), by="month")
[1] "2005-01-01" "2005-02-01" "2005-03-01" "2005-04-01" "2005-05-01"
[6] "2005-06-01" "2005-07-01"


# A month is not always 31 days...
> seq(as.Date("2005-01-01"), as.Date("2005-07-01"), by=31)
[1] "2005-01-01" "2005-02-01" "2005-03-04" "2005-04-04" "2005-05-05"
[6] "2005-06-05"


> seq(as.Date("2005-01-01"), as.Date("2005-03-01"), by="2 weeks")
[1] "2005-01-01" "2005-01-15" "2005-01-29" "2005-02-12" "2005-02-26"


However, you should be aware that loops tend to turn Dates into numbers.
> a <- seq(as.Date("2005-01-01"), as.Date("2005-03-01"), by="2 weeks")
> str(a)
Class ’Date’ num [1:5] 12784 12798 12812 12826 12840
> for (i in a) {
+ str(i)
+ }
num 12784
num 12798
num 12812
num 12826
num 12840


Inside the loop, you may want to add
for (i in dates) {
i <- as.Date(i)
...


}


There is another caveat about the use of dates as indices to arrays: as a date is actually a
number, if you use it as an index, R will understand the number used to code the date (say
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12784 for 2005-01-01) as a row or column number, nor a row or column name. When using
dates as indices, always convert them into strings.
a <- matrix(NA, nr=10, nc=12)
rownames(a) <- LETTERS[1:10]
dates <- seq(as.Date("2004-01-01"), as.Date("2004-12-01"),


by="month"))
colnames(a) <- as.character( dates )
for (i in dates) {
i <- as.Date(i)
a[, as.character(i)] <- 1


}


There are other methods:
> methods(class="Date")
[1] as.character.Date as.data.frame.Date as.POSIXct.Date c.Date
[5] cut.Date -.Date [<-.Date [.Date
[9] [[.Date +.Date diff.Date format.Date
[13] hist.Date* julian.Date Math.Date mean.Date
[17] months.Date Ops.Date plot.Date* print.Date
[21] quarters.Date rep.Date round.Date seq.Date
[25] summary.Date Summary.Date trunc.Date weekdays.Date


For the time (up to the second, only):
> as.POSIXct("2005-05-15 21:45:17")
[1] "2005-05-15 21:45:17 BST"


> as.POSIXlt("2005-05-15 21:45:17")
[1] "2005-05-15 21:45:17"


The two classes are interchangeable, only the internal representation changes (use the first,
more compact, one in data.frames).
> unclass(as.POSIXct("2005-05-15 21:45:17"))
[1] 1116189917
attr(,"tzone")
[1] ""


> unclass(as.POSIXlt("2005-05-15 21:45:17"))
$sec
[1] 17
$min
[1] 45
$hour
[1] 21
$mday
[1] 15
$mon
[1] 4
$year
[1] 105
$wday
[1] 0
$yday
[1] 134
$isdst
[1] 1


You can also perform a few computations
> as.POSIXlt("2005-05-15 21:45:17") - Sys.time()
Time difference of -1.007523 days
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This is actually a call to the “difftime” function (the unit is automatically chose so that the
result be readable).
> difftime(as.POSIXlt("2005-05-15 21:45:17"), Sys.time(), units="secs")
Time difference of -87246 secs


Should you be unhappy with those date and time classes, there is host of packages that
provide replacements for them.
date (only dates, not times; rather limited, probably old,


ignores ISO 8601)
chron (no timezones or daylight saving times: this is a


limitation, but as many problems come from timezones, it
may be an advantage)


zoo (Important)


When reading a data.frame containing dates in a column, from a file, you can either read
the column as strings and convert it afterwards,
d <- read.table("foo.txt")
d$Date <- as.Date( as.character( d$Date ) )


or explicitely state it is a Date
read.table("foo.txt", colClasses=c("Date", "character", rep(10, "numeric")))


If the format is not the international one, it may be trickier. One solution is to create your
own class, that inherits from Date, but with a different method to convert from strings.
setClass("Date")
setClass("USDate", contains="Date")
setAs("character", "USDate",


function (from) { as.Date(from, format="%m/%d/%Y") })


read.table("foo.txt", colClasses=c("USDate", "character", rep(10, "numeric")))


TODO: and if we need hundredths or thousandths of seconds?
There is an R-News article about date anhd time handling in R:
http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf


Some of the intricacies of time and date handling are well known (some months are 30-day
long, others 31-day long, one 28-day long – or 29, every fourth year), others are not. But
actually, every hundredth year, the year that should be leap is not: 1700, 1800, 1900 were
not leap years. And this exception has exceptions: every fourth century, the would-be leap
year that should not be leap actually is – 2000 was a leap year, 2400 will be one.
But this was just for dates: there are similar problems with time. We have, from time to
time, to add a second to the day. This has already happened 18 times.
> .leap.seconds
[1] "1972-07-01 01:00:00 BST" "1973-01-01 00:00:00 GMT"
[3] "1974-01-01 00:00:00 GMT" "1975-01-01 00:00:00 GMT"
[5] "1976-01-01 00:00:00 GMT" "1977-01-01 00:00:00 GMT"
[7] "1978-01-01 00:00:00 GMT" "1979-01-01 00:00:00 GMT"
[9] "1980-01-01 00:00:00 GMT" "1981-07-01 01:00:00 BST"
[11] "1983-07-01 01:00:00 BST" "1985-07-01 01:00:00 BST"
[13] "1986-07-01 01:00:00 BST" "1988-01-01 00:00:00 GMT"
[15] "1990-01-01 00:00:00 GMT" "1991-01-01 00:00:00 GMT"
[17] "1992-07-01 01:00:00 BST" "1993-07-01 01:00:00 BST"
[19] "1994-07-01 01:00:00 BST" "1996-01-01 00:00:00 GMT"
[21] "1997-07-01 01:00:00 BST" "1999-01-01 00:00:00 GMT"


The next one will be in december 2005.
Leap years are due to the fact that there is not a whole number of days in a year; similarly,
leap secons are due to the fact that there is not a whole number of seconds in a day.
http://en.wikipedia.org/wiki/Leap_second
http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html



http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf

http://en.wikipedia.org/wiki/Leap_second

http://hpiers.obspm.fr/eop-pc/earthor/utc/leapsecond.html
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http://www.ucolick.org/~sla/leapsecs/onlinebib.html


2.2.18 Miscellanies: match


Actually, I have never used this function: let me just list a few uncommented examples.
?match
# Get the 2’s and 4’s
x[as.logical( match(x, c(2,4), nomatch=0) )]


There are a few function written with “match”:
> setdiff
function (x, y)
unique(if (length(x) || length(y)) x[match(x, y, 0) == 0] else x)
<environment: namespace:base>


> match.fun("%in%")
function (x, table)
match(x, table, nomatch = 0) > 0
<environment: namespace:base>


> intersect
function (x, y)
unique(y[match(x, y, 0)])
<environment: namespace:base>


> is.element
function (el, set)
match(el, set, 0) > 0
<environment: namespace:base>


> setequal
function (x, y)
all(c(match(x, y, 0) > 0, match(y, x, 0) > 0))
<environment: namespace:base>


Exercice: How would we find ALL the functions whose definition uses “match”?
TODO: simplify the following code and state its limitations (limited
to visible loaded functions)


a <- lapply(search(), ls)
names(a) <- search()
a <- unlist(a)
names(a) <- a
a <- a[ sapply(a,


function (x) {
try( x <- match.fun(x) )
is.function(x)
}) ]


a <- lapply(a, match.fun)
b <- lapply(a, deparse)
b <- lapply(b, length)
b <- order(unlist(b))
a <- a[b]
i <- lapply(a, function(x) { length(grep("match\\(", deparse(x)))>0 })
i <- unlist(i)
a[i]



http://www.ucolick.org/~sla/leapsecs/onlinebib.html





CHAPTER 2. PROGRAMMING IN R 71


2.3 Debugging


2.3.1 Warnings


If you know (or even simply if you suspect) problems in your code, you can ask the R
interpreter to be more rigorous, by saying
options(warn=1)


which prints the warning messages when they appear (and not at the end on the execution,
as usual), or even
options(warn=2)


which turns the warning messages into real errors, that stop the execution.


2.3.2 The printf way: print, cat, str


One of the simplest ways to find the location of a bug in a program (once we have witnessed
an abnormal behaviour) is to add “print” statement at the problematic locations, to see if
the code breaks before that point, or to have a look at the data the functions are playing
with (quite often, you have a number or NULL while you would expect a vector, or you have
a vector instead of a matrix, or you have a vector of strings instead of a vector of numbers,
or complex numbers have appeared, unnoticed, at some way in you code).
TODO: detail the functions
print
cat
str
unclass


TODO: log4R (no, it does not exist).


2.3.3 Step-by-step execution: debug


The “debug” command tags a function so that, when run, it be executed step by step.
> debug(f)
> f(3)
debugging in: f(3)
debug: {


x^2 + x + 1
}
Browse[1]>
debug: x^2 + x + 1
Browse[1]>
exiting from: f(3)
[1] 13
> undebug(f)


2.3.4 Breakpoints


The “browser” function adds a breakpoint in the code.
For instance, if we run the following function,
f <- function () {
x <- rnorm(10)
y <- rnorm(11)
browser()
x + y


}


R will stop when it encounters the “browser()” call.
> f()


Called from: f()
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Browse[1]>


You can then type in expressions, functions, to examine the environment where it stopped.
> f()
Called from: f()


Browse[1]> x
[1] -1.6684445 -1.4662686 -1.3792824 0.1103995 0.7431116 -1.9117947
[7] 0.5333812 -0.6695517 -1.2382940 -0.3560036


Browse[1]> str(x)
num [1:10] -1.668 -1.466 -1.379 0.110 0.743 ...


Browse[1]> str(y)
num [1:11] 0.247 -0.505 0.197 -0.468 1.446 ...


Browse[1]> x + y
[1] -1.42137599 -1.97117326 -1.18208672 -0.35809903 2.18871467 -2.16168749
[7] 0.88886591 -2.85428126 -0.85448640 0.37425241 -0.02050070
Warning message:
longer object length


is not a multiple of shorter object length in: x + y


You can type “n” to execute the next instruction (and stop again) or “c” to resume the
execution, until the next stop.


2.3.5 The calling stack: traceback, dump.frames, sys.call


The “traceback” command prints the callstack, i.e., the list of functions that were called
when the latest error occurred.
?traceback


The “dump.frames” command yields the equivalent of a “core” file (the state of the inter-
pretor at a given moment, typically, just after an error), we can then examine with the
“debugger” command.
?dump.frames


The “sys.calls” function gives the list of the functions that have been called, with all their
arguments.
f <- function () { g(1) }
g <- function (...) { h(17^2) }
h <- function (x) {
print( sqrt(x) )
sys.calls()


}


This yields:
> str( f() )
[1] 17
Dotted pair list of 4
$ : language str(f())
$ : language f()
$ : language g(1)
$ : language h(17^2)


Here is an application of this “sys.calls” function: when you write a new function, especially
a function that will be implicitely called (typically, a function of the form ”[.foo”, which
is the overloaded ”[” operator for an S3 class “foo”), you might want to know from where
it was called. To this end, you can call the following “function.print” at the start of your
function.
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function.print <- function () {
l <- sys.calls()
s <- lapply(l, function (x) { as.character(x[[1]]) })
s <- unlist(s)
s <- s[-length(s)]
cat("Stack: ", paste(s, collapse="/"), "(", sep="")
cat(paste(as.character(l[[ length(l)-1 ]][-1]), collapse=","))
cat(")\n")


}


f <- function (...) { g(17) }
g <- function (...) { function.print() }


This yields:
> f(2,11)
Stack: f/g(17)


2.3.6 Assertions


To check that your functions behave as expected (one could say, “to check that they respect
their contracts”), people sometimes add comments saying “this should be so and so”. This
is a bad practice, because the computer does not read the comments. Instead, you can
actually check that “this is so and so”. This is called an assertion.
Typically, assertions check thigs that should always be true: if they are broken, they reveal
there is problem in the code, that should be fixed. And the program stops, often violently.
As R is an interpreted environment, one often uses assertions to check both the internal
consistency of the code (the “things that should always be true”) and how the code is used
(if the arguments you give to a function are not those expected, the function should not
return anything, and the computations should be halted until the problem is corrected).
The “assert” function is not called “assert”, but “stopifnot”.
TODO: An example


If you want to be less violent when you check the arguments given to a function, you can
decide to return NULL or NA (as appropriate) a give a warning. For instance:
> mean.default
function (x, trim = 0, na.rm = FALSE, ...)
{
if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
warning("argument is not numeric or logical: returning NA")
return(as.numeric(NA))


}
...


I am not very happy with the “assert” function: it tells me something is wrong, it tells
me where, but neither does it tell me how we got there, nor offers me to examine what
happenned. This suggests to use the “sys.calls” and “browser” functions, to print the calling
stack and to insert a break point where the problem occurred.
assert <- function (condition, ...) {
mc <- match.call()
if (!is.logical(eval(condition)) || ! all(condition)) {
cat("Assertion failled:",


deparse(mc[[2]]), "is not TRUE\n")
ll <- list(...)
for (i in seq(along=ll)) {
cat(" ", deparse(mc[[i+2]]), ": ", ll[[i]], "\n", sep="")


}
ca <- sys.calls()
cat(paste(length(ca):1, ": ", rev(ca), sep="", collapse="\n"), "\n")
cat("BROWSER (type ’c’ to quit):\n")
browser()
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stop(paste(deparse(mc[[2]]), "is not TRUE"), call.=FALSE)
}


}


TODO: test this function TODO: is “browser” called in the right environment?


2.3.7 Test-Driven Development (TDD): RUnit


TODO


2.3.8 Profiling


“Profiling” means “finding where the program we have just written spends most of its time,
in order to rethink, rewrite or rewrite in C those time-consuming parts. It is very useful
when R is used for prototyping (i.e., to test algorithms, to see if they actually work, before
using them in real applications).
The “system.time” tells you how much time was spent inside a command.
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Matrix product computation time


Index


v


several.times <- function (n, f, ...) {
for (i in 1:n) {
f(...)


}
}
matrix.multiplication <- function (s) {
A <- matrix(1:(s*s), nr=s, nc=s)
B <- matrix(1:(s*s), nr=s, nc=s)
C <- A %*% B


}
v <- NULL
for (i in 2:10) {
v <- append(
v,
system.time(
several.times(
10000,
matrix.multiplication,


i
)


) [1]
)


}
plot(v, type = ’b’, pch = 15,


main = "Matrix product computation time")


But this is too coarse: we can compare the spped of two functions, but given a slow function,
we still need to find the parts of the functions responsible for this. Here comes the “Rprof”
command.
?Rprof


Example:
Rprof()
n <- 200
m <- matrix(rnorm(n*n), nr=n, nc=n)
eigen(m)$vectors[,c(1,2)]
Rprof(NULL)


We then look at the result (we are no longer under R; we call R from the shell, with other
options):
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% R CMD Rprof Rprof.out


Each sample represents 0.02 seconds.
Total run time: 0.9 seconds.


Total seconds: time spent in function and callees.
Self seconds: time spent in function alone.


% total % self
total seconds self seconds name
95.56 0.86 2.22 0.02 "eigen"
82.22 0.74 82.22 0.74 ".Fortran"
11.11 0.10 4.44 0.04 "all.equal.numeric"
4.44 0.04 0.00 0.00 "matrix"
4.44 0.04 0.00 0.00 "as.vector"
4.44 0.04 4.44 0.04 "rnorm"
2.22 0.02 2.22 0.02 "<Anonymous>"
2.22 0.02 2.22 0.02 "|"
2.22 0.02 2.22 0.02 "t.default"
2.22 0.02 0.00 0.00 "mean"
2.22 0.02 0.00 0.00 "t"


% self % total
self seconds total seconds name
82.22 0.74 82.22 0.74 ".Fortran"
4.44 0.04 11.11 0.10 "all.equal.numeric"
4.44 0.04 4.44 0.04 "rnorm"
2.22 0.02 2.22 0.02 "<Anonymous>"
2.22 0.02 2.22 0.02 "|"
2.22 0.02 2.22 0.02 "t.default"
2.22 0.02 95.56 0.86 "eigen"


2.4 Object Oriented Programming: S3 Classes


The easiest (not the cleanest) way of defining classes in R is simply to attach a “class”
attribute to an object and to define functions that look up this attribute and act accordingly.
TODO: rewrite this section, stressing the difference between those
two paradigms.


Introduction: the "print" method
Other common methods: print, str, summary, predict, plot,
List of all the methods of all classes
Writing your own classes and methods
More complex examples: Overloading [, [<-, etc. (a simple "panel data" class?)


2.4.1 Introduction: more complex types


When we print certain objects, they do not look like the simple types we have described
(vector, array, data.frame). This is the case for the results of a regression.
n <- 200
x <- rnorm(n)
y <- 1 - 2 * x + rnorm(n)
r1 <- lm(y~x)
r2 <- summary(r1)


This yields
> r1
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Call:
lm(formula = y ~ x)


Coefficients:
(Intercept) x


0.924 -2.042


> r2


Call:
lm(formula = y ~ x)


Residuals:
Min 1Q Median 3Q Max


-2.85364 -0.66754 -0.04169 0.61238 2.78004


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 0.92395 0.07345 12.58 <2e-16 ***
x -2.04152 0.07613 -26.82 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 1.038 on 198 degrees of freedom
Multiple R-Squared: 0.7841, Adjusted R-squared: 0.783
F-statistic: 719.1 on 1 and 198 DF, p-value: < 2.2e-16


Yet, the “str” command tells us this is truly one of the simple types we have already seen,
often, a list – here, I removed a part of it – it was too huge.
> str(r2)
List of 11
$ call : language lm(formula = y ~ x)
$ terms :Classes ’terms’, ’formula’ length 3 y ~ x
.. ..- attr(*, "variables")= language list(y, x)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "y" "x"
.. .. .. ..$ : chr "x"


(...)
- attr(*, "class")= chr "summary.lm"


There is one difference between the lists we created earlier: the “class” attribute. The “r1”
and “r2” objects we have just created belong the the “lm” and “summary.lm” classes. As
a result, certain “generic” functions we apply to these objects are changed: this is the case
for the “print”, “summary” and “plot” functions – let us focus on “print”.
> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>


> print.lm
function (x, digits = max(3, getOption("digits") - 3), ...)
{


cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
if (length(coef(x))) {


cat("Coefficients:\n")
print.default(format(coef(x), digits = digits), print.gap = 2,


quote = FALSE)
}
else cat("No coefficients\n")
cat("\n")
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invisible(x)
}
<environment: namespace:base>


The “print” function, in this case, is called a “generic method”: the function actually called
will depend on the class of the object we apply it to.
The “methods” command gives the list of all the implementations of this method.
> methods(plot)
[1] plot.acf* plot.ACF* plot.augPred*
[4] plot.compareFits* plot.data.frame plot.decomposed.ts*
[7] plot.default plot.dendrogram* plot.density
[10] plot.factor plot.formula plot.function
[13] plot.gls* plot.hclust* plot.histogram
[16] plot.HoltWinters* plot.intervals.lmList* plot.isoreg*
[19] plot.lm plot.lme plot.lme1*
[22] plot.lmList* plot.mlm plot.nffGroupedData*
[25] plot.nfnGroupedData* plot.nls* plot.nmGroupedData*
[28] plot.pdMat* plot.POSIXct plot.POSIXlt
[31] plot.ppr* plot.prcomp* plot.princomp*
[34] plot.profile.nls* plot.ranef.lme* plot.ranef.lmList*
[37] plot.shingle* plot.simulate.lme* plot.spec
[40] plot.spec1* plot.spec.coherency plot.spec.phase
[43] plot.stl* plot.table plot.ts
[46] plot.tskernel* plot.TukeyHSD plot.Variogram*


Non-visible functions are asterisked


If you want to see the code of one of the non-visible functions, you can use the “getAnywhere”
of the “getS3method” function.
> plot.Date
Error: Object "plot.Date" not found


> getAnywhere("plot.Date")
A single object matching ‘plot.Date’ was found
It was found in the following places
registered S3 method for plot from namespace graphics
namespace:graphics


with value


function (x, y, xlab = "", axes = TRUE, frame.plot = axes, xaxt = par("xaxt"),
...)


{
axisInt <- function(x, main, sub, xlab, ylab, col, lty, lwd,


xlim, ylim, bg, pch, log, asp, ...) axis.Date(1, x, ...)
plot.default(x, y, xaxt = "n", xlab = xlab, axes = axes,


frame.plot = frame.plot, ...)
if (axes && xaxt != "n")


axisInt(x, ...)
}
<environment: namespace:graphics>


> getS3method("plot", "Date")
function (x, y, xlab = "", axes = TRUE, frame.plot = axes, xaxt = par("xaxt"),


...)
{


axisInt <- function(x, main, sub, xlab, ylab, col, lty, lwd,
xlim, ylim, bg, pch, log, asp, ...) axis.Date(1, x, ...)


plot.default(x, y, xaxt = "n", xlab = xlab, axes = axes,
frame.plot = frame.plot, ...)


if (axes && xaxt != "n")
axisInt(x, ...)


}
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<environment: namespace:graphics>


Let us remark that an object may have several types: the “class” attribute may contain a
string or a vector of strings – when we call the function, the computer tries all the types
specified in this vector, until it finds a method. If it finds none, it uses the “default” class.
In object-oriented parlance, this is called “inheritance”.
For instance, the result of the “aov” command
n <- 500
x <- rnorm(n)
y <- 1 - x + rnorm(n)
r <- aov(y~x)


belongs to the classes “aov” and “lm” (in object-oriented programming, the “aov” class
inherits from “lm”, i.e., an “aov” object is an “lm” object – the relation is sometimes called
the “is a” (or “ISA”) relation).
> class(r)
[1] "aov" "lm"
> attr(r,"class")
[1] "aov" "lm"


2.4.2 Introduction: the “plot” method


There are many things one can want to do with an object that, from the user’s point of
view should work for any object – but that, from the programmer’s point of view, require
completely different implementations: for instance, displaying all the contents of an object
(with the “print” function – this function is automatically called when R prints a result –
for the Java programmers among you, this is the analogue of the toString method), plotting
an object (with the “plot”) function or displaying its structure (with the “str” function).
All this seems to be done from a single function.
But actually, the sole role of that function is to check the type of its argument and call the
(type-dependant) function that actually does the job.
> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>


> methods("print")
[1] print.Arima* print.AsIs
[3] print.Bibtex* print.DLLInfo
[5] print.DLLInfoList print.DLLRegisteredRoutines
[7] print.Date print.HoltWinters*
[9] print.Latex* print.MethodsFunction*


[11] print.MethodsList* print.NativeRoutineList
[13] print.POSIXct print.POSIXlt
[15] print.RGBcolorConverter* print.StructTS*
[17] print.TukeyHSD* print.acf*
[19] print.anova print.anova.gam
[21] print.aov* print.aovlist*
[23] print.ar* print.arima0*
[25] print.by print.checkDocFiles*
[27] print.checkDocStyle* print.checkFF*
[29] print.checkReplaceFuns* print.checkS3methods*
[31] print.checkTnF* print.checkVignettes*
[33] print.check Rd files in Rd db* print.check Rd xrefs*
[35] print.check code usage in package* print.check demo index*
[37] print.check make vars* print.check package depends*
[39] print.check package description* print.check vignette index*
[41] print.citation* print.citationList*
[43] print.classRepresentation* print.codoc*
[45] print.codocClasses* print.codocData*
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[47] print.colorConverter* print.condition
[49] print.connection print.data.frame
[51] print.default print.dendrogram*
[53] print.density print.difftime
[55] print.dist* print.dummy coef*
[57] print.dummy coef list* print.ecdf*
[59] print.factanal* print.factor
[61] print.family print.formula
[63] print.ftable print.gam
[65] print.getAnywhere* print.glm
[67] print.hclust* print.help files with topic*
[69] print.hexmode print.hsearch*
[71] print.htest* print.infl
[73] print.integrate print.isoreg*
[75] print.kmeans* print.libraryIQR
[77] print.listof print.lm
[79] print.loadings* print.loess*
[81] print.logLik print.ls str*
[83] print.medpolish* print.mtable*
[85] print.nls* print.noquote
[87] print.octmode print.packageDescription*
[89] print.packageIQR* print.packageInfo
[91] print.packageStatus* print.package version
[93] print.pairwise.htest* print.power.htest*
[95] print.ppr* print.prcomp*
[97] print.princomp* print.recordedplot*
[99] print.restart print.rle


[101] print.sessionInfo* print.simple.list
[103] print.smooth.spline* print.socket*
[105] print.stepfun* print.stl*
[107] print.subdir tests* print.summary.aov*
[109] print.summary.aovlist* print.summary.gam
[111] print.summary.glm* print.summary.lm*
[113] print.summary.loess* print.summary.manova*
[115] print.summary.nls* print.summary.ppr*
[117] print.summary.prcomp* print.summary.princomp*
[119] print.summary.table print.table
[121] print.tables aov* print.terms
[123] print.ts print.tskernel*
[125] print.tukeyline* print.tukeysmooth*
[127] print.undoc* print.vignette*
[129] print.xgettext* print.xngettext*
[131] print.xtabs*


Non-visible functions are asterisked


(The exact list you get will depend on the packages you have loaded: you can have much
more than that.)
To get the actual code, just type the name of the function (the method, dot, the type):
> print.lm
function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
if (length(coef(x))) {
cat("Coefficients:\n")
print.default(format(coef(x), digits = digits), print.gap = 2,
quote = FALSE)


}
else cat("No coefficients\n")
cat("\n")
invisible(x)
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}
<environment: namespace:stats>


For hidden objects, you can obtain the code with the getAnywhere function.
> print.acf
Error: object "print.acf" not found


> getAnywhere("print.acf")
A single object matching ’print.acf’ was found
It was found in the following places
registered S3 method for print from namespace stats
namespace:stats


with value


function (x, digits = 3, ...)
{
type <- match(x$type, c("correlation", "covariance", "partial"))
msg <- c("Autocorrelations", "Autocovariances", "Partial autocorrelations")
cat("\n", msg[type], " of series ", sQuote(x$series), ", by lag\n\n",


sep = "")
nser <- ncol(x$lag)
if (type != 2)
x$acf <- round(x$acf, digits)


if (nser == 1) {
acfs <- drop(x$acf)
names(acfs) <- format(drop(x$lag), digits = 3)
print(acfs, digits = digits, ...)


}
else {
acfs <- format(x$acf, ...)
lags <- format(x$lag, digits = 3)
acfs <- array(paste(acfs, " (", lags, ")", sep = ""),


dim = dim(x$acf))
dimnames(acfs) <- list(rep("", nrow(x$lag)), x$snames,


x$snames)
print(acfs, quote = FALSE, ...)


}
invisible(x)


}
<environment: namespace:stats>


If you know the namespace of your function, you can also obtain it with the ::: operator
(twice for non-hidden functions, thrice for hidden ones).
> stats:::print.acf
function (x, digits = 3, ...)
{
type <- match(x$type, c("correlation", "covariance", "partial"))


...


2.4.3 Class of an object


The class of an object is just a string attribute, attached to it – if you want to add information
to an object, typically metadata, just put it in the attributes.
> class(x)
[1] "numeric"
> mode(x) # The class the object would have were there no attribute
[1] "numeric"


> r <- lm(y ~ x)
> class(r)
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[1] "lm"
> mode(r)
[1] "list"


> attributes(r)
$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"


$class
[1] "lm"


> attr(r, "class")
[1] "lm"


2.4.4 Other methods


Here are a few examples of generic functions, that can be used with a large number of classes:
print
str
plot
predict
seq
anova


If you want more:
> methods(class="default")
[1] AIC.default* Axis.default* add1.default*
[4] aggregate.default all.equal.default ansari.test.default*
[7] ar.burg.default* ar.yw.default* as.Date.default


[10] as.POSIXct.default as.character.default as.complex.default
[13] as.data.frame.default as.dist.default* as.double.default
[16] as.expression.default as.function.default as.hclust.default*
[19] as.integer.default as.list.default as.logical.default
[22] as.matrix.default as.null.default as.person.default*
[25] as.personList.default* as.single.default as.stepfun.default*
[28] as.table.default as.ts.default* barplot.default
[31] bartlett.test.default* biplot.default* boxplot.default
[34] by.default case.names.default* cdplot.default*
[37] coef.default* confint.default contour.default
[40] cophenetic.default* cor.test.default* cut.default
[43] cycle.default* deltat.default* density.default
[46] deriv.default deriv3.default deviance.default*
[49] df.residual.default* diff.default diffinv.default*
[52] drop1.default* duplicated.default edit.default*
[55] end.default* fitted.default* fligner.test.default*
[58] format.default formula.default* frequency.default*
[61] friedman.test.default* ftable.default* getInitial.default*
[64] head.default* hist.default identify.default*
[67] image.default is.na<-.default kappa.default
[70] kernapply.default* kruskal.test.default* labels.default
[73] lag.default* levels<-.default lines.default
[76] makepredictcall.default* mean.default merge.default
[79] model.frame.default model.matrix.default monthplot.default*
[82] mood.test.default* mosaicplot.default* na.action.default*
[85] na.contiguous.default* na.exclude.default* na.fail.default*
[88] na.omit.default* names.default names<-.default
[91] napredict.default* naprint.default* naresid.default*
[94] pacf.default* pairs.default persp.default*
[97] plot.default points.default ppr.default*







CHAPTER 2. PROGRAMMING IN R 82


[100] prcomp.default* princomp.default* print.default
[103] proj.default* prompt.default* qqnorm.default
[106] quade.test.default* quantile.default range.default
[109] relevel.default* rep.default residuals.default
[112] rev.default row.names.default row.names<-.default
[115] rowsum.default scale.default selfStart.default*
[118] seq.default solve.default sortedXyData.default*
[121] spineplot.default* split.default split<-.default
[124] stack.default start.default* str.default*
[127] subset.default summary.default t.default
[130] t.test.default* tail.default* terms.default
[133] text.default time.default* toString.default
[136] transform.default unique.default unstack.default
[139] update.default var.test.default* variable.names.default*
[142] weights.default* wilcox.test.default* window.default*
[145] with.default


> methods(class="lm")
[1] add1.lm* alias.lm* anova.lm case.names.lm*
[5] confint.lm* cooks.distance.lm* deviance.lm* dfbeta.lm*
[9] dfbetas.lm* drop1.lm* dummy.coef.lm* effects.lm*


[13] extractAIC.lm* family.lm* formula.lm* hatvalues.lm
[17] influence.lm* kappa.lm labels.lm* logLik.lm*
[21] model.frame.lm model.matrix.lm plot.lm predict.lm
[25] print.lm proj.lm* residuals.lm rstandard.lm
[29] rstudent.lm simulate.lm* summary.lm variable.names.lm*
[33] vcov.lm*


Here is another way of getting all the methods (the functions in whose code the string
“UseMethod” appears, in any loaded namespace, whether they are visible or not).
res <- character(0)
env <- append(
lapply(search(), function (x) as.environment(x)),
lapply(loadedNamespaces(), function (x) asNamespace(x))


)
for (e in env) {
n <- ls(envir=e)
l <- lapply(n, function (x) {
x <- get(x, envir=e)
x <- deparse(x)
x <- paste(x, collapse="")
length(grep("UseMethod", x)) > 0


})
l <- unlist(l)
res <- c(res, n[l])


}
res <- unique(res)
res


Here are the most often used.
names(res) <- res
res <- lapply(res, function (x) try(length(methods(x))))
res <- res[unlist(lapply(res, is.numeric))]
res <- unlist(res)
head(sort(res, dec=TRUE), 40)


This yields:
> length(res)
[1] 211
> head(sort(res, dec=TRUE), 40)


print plot summary predict
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168 53 50 32
as.data.frame resid residuals format


26 13 13 12
coef coefficients vcov fitted
11 11 10 9


fitted.values anova formula all.equal
9 8 8 8


extractAIC head tail as.Date
7 7 7 7


Predict.matrix smooth.construct logLik image
6 6 6 6


lines as.POSIXct as.matrix mean
6 6 6 6


add1 confint deviance drop1
5 5 5 5


model.frame str diff duplicated
5 5 5 5


labels unique kurtosis skewness
5 5 4 4


2.4.5 Creating your own classes with the usual methods


You can define your own “classes” and overload the “plot”, “print” and “summary” func-
tions.
> print.foo <- function (x,...) {
print.default(x)
print.default(min(x))
print.default(median(x))
print.default(max(x))


}
> x <- matrix( rnorm(20), nrow=4 )
> print(x)


[,1] [,2] [,3] [,4] [,5]
[1,] 0.05858332 -0.3082483 1.08259617 -0.10539949 -0.3734017
[2,] 0.23264808 -0.4763760 -0.01989608 -0.07837898 2.3640196
[3,] 0.05239833 -0.6764430 -0.76649216 0.76078938 0.2715206
[4,] 0.27780672 -0.5458009 -0.96929622 0.90089157 1.7325063
> class(x)
[1] "matrix"
> class(x) <- c("foo", class(x))
> print(x)


[,1] [,2] [,3] [,4] [,5]
[1,] 0.05858332 -0.3082483 1.08259617 -0.10539949 -0.3734017
[2,] 0.23264808 -0.4763760 -0.01989608 -0.07837898 2.3640196
[3,] 0.05239833 -0.6764430 -0.76649216 0.76078938 0.2715206
[4,] 0.27780672 -0.5458009 -0.96929622 0.90089157 1.7325063
attr(,"class")
[1] "foo"
[1] -0.9692962
[1] 0.01625113
[1] 2.364020


Actually, you might want to use cat() instead of print().
print.foo <- function (x,...) {
cat("foo: ", length(x), " values between ",


min(x), " and ", max(x), "\n", sep="")
cat(" ", "mean: ", mean(x),


" median: ", median(x), "\n", sep="")
print(x)


}
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2.4.6 Overloadable function


You can define your own overloadable functions as:
print <- function (x, ...) UseMethod("print")


2.4.7 All the methods


The “getS3method” starts with
> getS3method
function (f, class, optional = FALSE)
{
knownGenerics <- c(tools:::.get internal S3 generics(), names(.knownS3Generics))


...


So we can get all the gemeric methods as follows (these are only the methods currently
loaded):
> tools:::.get internal S3 generics(); names(.knownS3Generics)
[1] "[" "[[" "$" "[<-"
[5] "[[<-" "$<-" "length" "dimnames<-"
[9] "dimnames" "dim<-" "dim" "c"


[13] "unlist" "as.character" "as.vector" "is.array"
[17] "is.atomic" "is.call" "is.character" "is.complex"
[21] "is.double" "is.environment" "is.function" "is.integer"
[25] "is.language" "is.logical" "is.list" "is.matrix"
[29] "is.na" "is.nan" "is.null" "is.numeric"
[33] "is.object" "is.pairlist" "is.recursive" "is.single"
[37] "is.symbol" "abs" "sign" "sqrt"
[41] "floor" "ceiling" "trunc" "round"
[45] "signif" "exp" "log" "cos"
[49] "sin" "tan" "acos" "asin"
[53] "atan" "cosh" "sinh" "tanh"
[57] "acosh" "asinh" "atanh" "lgamma"
[61] "gamma" "gammaCody" "digamma" "trigamma"
[65] "tetragamma" "pentagamma" "cumsum" "cumprod"
[69] "cummax" "cummin" "+" "-"
[73] "*" "/" "^" "%%"
[77] "%/%" "&" "|" "!"
[81] "==" "!=" "<" "<="
[85] ">=" ">" "all" "any"
[89] "sum" "prod" "max" "min"
[93] "range" "Arg" "Conj" "Im"
[97] "Mod" "Re"
[1] "Math" "Ops" "Summary" "Complex"
[5] "as.character" "as.data.frame" "as.matrix" "as.vector"
[9] "labels" "print" "solve" "summary"


[13] "t" "edit" "str" "contour"
[17] "hist" "identify" "image" "lines"
[21] "pairs" "plot" "points" "text"
[25] "add1" "AIC" "anova" "biplot"
[29] "coef" "confint" "deviance" "df.residual"
[33] "drop1" "extractAIC" "fitted" "formula"
[37] "logLik" "model.frame" "model.matrix" "predict"
[41] "profile" "qqnorm" "residuals" "se.contrast"
[45] "terms" "update" "vcov"
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2.4.8 All the classes


You can get all the classes (only those currently loaded, actually), as follows.
> g <- c(tools:::.get internal S3 generics(), names(.knownS3Generics))
> r <- sapply(g[1:3], methods)
> r[[ which.max(sapply(r, length)) ]] <- NULL # This was not a class
> r <- sort(unique(gsub("^[^\\.]+\\.", "", unlist(r))))
> r
[1] "acf" "anova"
[3] "aov" "aovlist"
[5] "ar" "Arima"
[7] "arima0" "AsIs"
[9] "Bibtex" "by"
[11] "character.condition" "character.Date"
[13] "character.default" "character.error"
[15] "character.factor" "character.octmode"
[17] "character.package version" "character.person"
[19] "character.personList" "character.POSIXt"
[21] "check demo index" "checkDocFiles"
[23] "checkDocStyle" "checkFF"
[25] "check make vars" "check package depends"
[27] "check package description" "check Rd files in Rd db"
[29] "checkReplaceFuns" "checkS3methods"
[31] "checkTnF" "check vignette index"
[33] "checkVignettes" "citation"
[35] "citationList" "classRepresentation"
[37] "codoc" "codocClasses"
[39] "codocData" "colorConverter"
[41] "condition" "connection"
[43] "contrast.aov" "contrast.aovlist"
[45] "coxph" "data.frame"
[47] "data.frame.array" "data.frame.AsIs"
[49] "data.frame.character" "data.frame.complex"
[51] "data.frame.data.frame" "data.frame.Date"
[53] "data.frame.default" "data.frame.factor"
[55] "data.frame.integer" "data.frame.list"
[57] "data.frame.logical" "data.frame.logLik"
[59] "data.frame.matrix" "data.frame.model.matrix"
[61] "data.frame.numeric" "data.frame.ordered"
[63] "data.frame.package version" "data.frame.POSIXct"
[65] "data.frame.POSIXlt" "data.frame.raw"
[67] "data.frame.table" "data.frame.ts"
[69] "data.frame.vector" "Date"
[71] "decomposed.ts" "default"
[73] "dendrogram" "density"
[75] "difftime" "dist"
[77] "DLLInfo" "DLLInfoList"
[79] "DLLRegisteredRoutines" "dummy coef"
[81] "dummy coef list" "ecdf"
[83] "factanal" "factor"
[85] "family" "formula"
[87] "frame.aovlist" "frame.default"
[89] "frame.glm" "frame.lm"
[91] "ftable" "getAnywhere"
[93] "glm" "glmlist"
[95] "gls" "hclust"
[97] "help files with topic" "histogram"
[99] "HoltWinters" "hsearch"


[101] "htest" "infl"
[103] "integer.factor" "integrate"
[105] "isoreg" "kmeans"
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[107] "Latex" "libraryIQR"
[109] "listof" "lm"
[111] "lme" "loadings"
[113] "loess" "logLik"
[115] "ls str" "manova"
[117] "matrix" "matrix.data.frame"
[119] "matrix.default" "matrix.dist"
[121] "matrix.lm" "matrix.noquote"
[123] "matrix.POSIXlt" "medpolish"
[125] "MethodsFunction" "MethodsList"
[127] "mlm" "mtable"
[129] "na.data.frame" "na.POSIXlt"
[131] "NativeRoutineList" "negbin"
[133] "nls" "noquote"
[135] "numeric.factor" "octmode"
[137] "ordered" "packageDescription"
[139] "packageInfo" "packageIQR"
[141] "packageStatus" "package version"
[143] "pairwise.htest" "poly"
[145] "POSIXct" "POSIXlt"
[147] "POSIXt" "power.htest"
[149] "ppr" "prcomp"
[151] "princomp" "profile.nls"
[153] "qr" "recordedplot"
[155] "residual.default" "residual.nls"
[157] "restart" "RGBcolorConverter"
[159] "rle" "sessionInfo"
[161] "simple.list" "smooth.spline"
[163] "smooth.spline.fit" "socket"
[165] "spec" "spec.coherency"
[167] "spec.phase" "stepfun"
[169] "stl" "StructTS"
[171] "summary.aov" "summary.aovlist"
[173] "summary.glm" "summary.lm"
[175] "summary.loess" "summary.manova"
[177] "summary.nls" "summary.ppr"
[179] "summary.prcomp" "summary.princomp"
[181] "summary.table" "survreg"
[183] "table" "tables aov"
[185] "terms" "ts"
[187] "tskernel" "TukeyHSD"
[189] "tukeyline" "tukeysmooth"
[191] "undoc" "vector.factor"
[193] "vignette" "xgettext"
[195] "xngettext" "xtabs"


2.4.9 Writing your own classes: toy example


One may write one’s own classes: it suffices to add a “class” attribute” to an object and to
define the corresponding method.
x <- pi
attr(x, ’class’) <- "number"
print.number <- function (x) {
cat("(number) ")
cat(signif(x))
cat("\n")s


}


This gives:
> x
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(number) 3.14159


We can also define our own methods.
affiche <- function (x,...) {
UseMethod("affiche")


}
affiche.default <- print
affiche.number <- function (x) {
cat("(number) ")
cat(signif(x))
cat("\n")


}


This gives:
> affiche(x)
(number) 3.14159
> affiche(pi)
[1] 3.141593


2.4.10 More complex example


Let us write a class to store panel data, i.e., something like a data.frame, but in which ecah
variable is an array, one row per subject, one column per data, instead of a vector.
TODO...


is.panel.data <- function (x) {
# A panel data object should be a (non-empty) list, all of whose
# elements are matrices of the same size and with the same row and
# column names.
# The attributes should be as follows:
# class: contains "panel.data"
# rownames (subjects)
# colnames (dates)
# names (variables)
if( is.null(x) ) return(FALSE)
if( ! is.list(x) ) return(FALSE)
if( ! inherits(x, "panel.data") ) return(FALSE)
# Here, the object claims to be a "panel.data" object.
# If one of the following conditions is not satisfied, it is
# corrupted -- this is a bug.
x <- unclass(x)
stopifnot(!is.null(attr(x, "names")))
stopifnot(!is.null(attr(x, "rownames")))
stopifnot(!is.null(attr(x, "colnames")))
d1 <- attr(x, "rownames")
d2 <- attr(x, "colnames")
for (k in 1:length(x)) {
stopifnot( is.array(x[[k]]) )
stopifnot( length(dim(x[[k]])) == 2 )
stopifnot( dimnames(x[[k]])[[1]] == d1 )
stopifnot( dimnames(x[[k]])[[2]] == d2 )


}
return(TRUE)


}


panel.data <- function(...) {
r <- list(...) ############ TODO: flatten this list and remove the NULL


elements
if (is.null(r)) return(NULL)
cat("Checking elements\n")







CHAPTER 2. PROGRAMMING IN R 88


for (i in seq(along=r)) {
stopifnot( is.matrix(r[[i]]) )
stopifnot( dim(r[[1]]) == dim(r[[i]]) )
stopifnot( dimnames(r[[1]])[[1]] == dimnames(r[[i]])[[1]] )
stopifnot( dimnames(r[[1]])[[2]] == dimnames(r[[i]])[[2]] )


}
cat("Checking attributes\n")
stopifnot(!is.null(dimnames(r[[1]])))
stopifnot(!is.null(names(r)))
cat("Setting attributes\n")
attr(r, "rownames") <- dimnames(r[[1]])[[1]]
attr(r, "colnames") <- dimnames(r[[1]])[[2]]
attr(r, "class") <- "panel.data"
r


}


dim.panel.data <- function (x) {
c( length(attr(r,"rownames")),


length(attr(r,"colnames")),
length(attr(r,"names")) )


}


n1 <- 2
n2 <- 3
n3 <- 4
x <- matrix(rnorm(n1*n2), nr=n1, nc=n2)
rownames(x) <- paste("Subject", 1:n1, sep="")
colnames(x) <- paste("Date", 1:n2, sep="")
r <- list(a=x, b=x, c=x, d=x)
is.panel.data(x)
is.panel.data(r)
r <- panel.data(a=x, b=1+x, c=2+x, d=3+x)
is.panel.data(r)
dim(r)


"[.panel.data" <- function (x, i=1:dim(x)[1], j=1:dim(x)[2], k=1:dim(x)[3],
drop=T) {


if (length(i) == 0 | length(j) == 0 | length(k) == 0) return(NULL)
a <- attributes(x)
x <- unclass(x) # It is now a list
x <- lapply(x, function (y) { y[i,j, drop=F] }) # The first two indices
if (is.logical(k)) k <- which(k)
if (is.numeric(k)) k <- a$names[k]
r <- NULL
for (ind in k) {
r[[ ind ]] <- x[[ ind ]]


}
if (drop) {
if (is.list(r) & length(r) == 1) r <- r[[1]]
r <- drop(r)


}
r


}


"[<-.panel.data" <- function(x,
i=rownames(x), j=colnames(x), k=names(x),
value) {


# Make sure that the arguments contain the names of the rows, columns, etc.
if (is.logical(i)) { stopifnot(length(i)==length(rownames(x))); i <- rownames(x)[i]


}
if (is.logical(j)) { stopifnot(length(j)==length(colnames(x))); j <- colnames(x)[i]
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}
if (is.logical(k)) { stopifnot(length(k)==length(names(x))); k <- names(x)[i]


}
if (is.numeric(i)) { i <- rownames(x)[i] }
if (is.numeric(j)) { i <- colnames(x)[i] }
if (is.numeric(k)) { i <- names(x)[i] }
if (!is.panel.data(value)) {
stop("Not implemented: non-panel.data argument") ##################


TODO
}
for (a in 1:length(k)) {
x[[ k[a] ]] <- value[[a]]


}
}


# "$.panel.data" <- ... # Unchanged


"$<-.panel.data" <- function (x, key, value) {
x[[key]] <- value


}


# "[[.panel.data" <- ... # Unchanged


"[[<-.panel.data" <- function (x, key, value) {
cl <- class(x)
d <- dim(x)
x <- unclass(x)
stopifnot(is.character(key), length(key) == 1)
stopifnot(is.array(value))
stopifnot(dim(value) == d[1:2])
if (!is.null(rownames(value))) {
stopifnot( rownames(value) == attr(x, "rownames") )


} else {
rownames(value) <- attr(x, "rownames") )


}
if (!is.null(colnames(value))) {
stopifnot( colnames(value) == attr(x, "colnames") )


} else {
colnames(value) <- attr(x, "colnames") )


}
x[[key]] <- value
class(x) <- cl
x


}


"dimnames.panel.data" <- function (x) {
list(subject = attr(x, "rownames"),


dates = attr(x, "colnames"),
variables = attr(x, "names") )


}


"dimnames<-.panel.data" <- function (x, l) {
stopifnot( is.list(l) )
stopifnot( length(l) == 3 )
stopifnot( is.character(l[[1]]) )
stopifnot( length(l[[1]]) == dim(x)[1] )
stopifnot( length(l[[2]]) == dim(x)[2] )
stopifnot( length(l[[3]]) == dim(x)[3] )
attr(x, "rownames") <- l[[1]]
attr(x, "colnames") <- l[[2]]
attr(x, "names") <- l[[3]]
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x
}


TODO


2.4.11 Problems with S4 classes


The central notion is that of method, not that of object...
There is no encapsulation...
But they are very easy to use...


2.5 Object Oriented Programming: S3 Classes


TODO: this section should be (re)written


2.5.1 Methods


Here is the new way of defining objects and function:
library(help=methods)
http://www.omegahat.org/RSMethods/Intro.ps


TODO: comment the following example (from BioConductor).
library(’methods’)
setClass(’microarray’, ## the class definition


representation( ## its slots
qua = ’matrix’,
samples = ’character’,
probes = ’vector’),


prototype = list( ## and default values
qua = matrix(nrow=0, ncol=0),
samples = character(0),
probes = character(0)))


dat = read.delim(’../data/alizadeh/lc7b017rex.DAT’)
z = cbind(dat$CH1I, dat$CH2I)
setMethod(’plot’, ## overload generic function ‘plot’
signature(x=’microarray’), ## for this new class
function(x, ...)
plot(x@qua, xlab=x@samples[1], ylab=x@samples[2], pch=’.’, log=’xy’))
ma = new(’microarray’, ## instantiate (construct)


qua = z,
samples = c(’brain’,’foot’))


plot(ma)


To understand object oriented programming in R, the easiest is probably to look at the
libraries that use it, such as “pixmap”.
less /usr/lib/R/library/pixmap/R/pixmap.R


Other examples (in 2003):
MASS/scripts/ch03.R
DBI
gpclib
pixmap
SparseM


Two years later (2005), I update this list:
arules
boolean
CoCo



http://www.omegahat.org/RSMethods/Intro.ps
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coin
colorspace
DBI
deal
distr
dynamicGraph
fBasics
flexmix
fSeries
gpclib
gRbase
its
kernlab
kinship
limma
lme4
matlab
Matrix
orientlib
pamr
pixmap
R2HTML
rgdal
rmetasim
RMySQL
ROCR
R.oo
ROracle
RSQLite
rstream
SciViews
SparseM
tuneR
urca
XML


For a larger example, check BioConductor or Rmetrics.
http://www.bioconductor.org/
http://www.itp.phys.ethz.ch/econophysics/R/


2.6 Data storage, Data import, Data export


For more details abour how to import or export data to and from sensible or less sensible
formats, check the R data import export manual:
http://cran.r-project.org/doc/manuals/R-data.pdf


2.6.1 read.table and co.


To import data from readable formats, you can use one of the following commands:
d <- read.table("foo.txt", header=T, sep=",")
d <- read.csv("txt.csv")
d <- read.csv2("txt.csv") # semicolon-separated file, with a


# comma instead of the decimal point.
d <- read.delim("foo.txt") # Tab-delimited file
d <- read.fwf("txt.fwf") # Fixed width fields


In case your file comes from Excel, this may be trickier: the missing values often appear as
”#N/A!” and are mistaken for the start of a comment... You can try



http://www.bioconductor.org/

http://www.itp.phys.ethz.ch/econophysics/R/

http://cran.r-project.org/doc/manuals/R-data.pdf
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d <- read.table("foo.csv", header = TRUE, sep = ",",
na.strings = c("#N/A!", "NA", "@NA"),
quote = ’"’,
comment.char = "")


2.6.2 Importing data


For simple and short examples, you can type in the data by hand. In this document, we
shall use a lot of simulated data: they are larger, but a couple of lines suffice to produce
them.
On the contrary, in real situations, the data are large and stored in files or data bases: how
to import them into R?
Personnaly, I often use the “source” command, even though it was not designed for that
purpose: it reads in code, not data – you have to process the data via external tools. In one
situation, the data I had to process had a rather non standard format (multiple alignment
of DNA sequences): thus, I wrote a small Perl program to convert this format into R code
(not “R data”, but actual code).
More precisely, the data looked like
CLUSTAL W (1.83) multiple sequence alignment


AB020905 ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGAC
AB020906 ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGAC
AB020907 ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCACTTATTGAC
AB020908 ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGAC
AB020909 ATGACCAACATCCGAAAAACCCACCCATTAGCTAAAATCATCAACAACTCATTTATTGAC


*************************************************** ********


AB020905 CTTCCAACACCATCAAACATCTCGGCATGATGAAACTTTGGATCCCTCCTTGGAGTATGT
AB020906 CTTCCAACACCATCAAACATCTCAGCATGATGAAACTTTGGATCCCTCCTTGGAGTATGT
AB020907 CTTCCAACACCATCAAACATCTCAGCATGATGAAACTTTGGATCCCTCCTTGGAGTATGT
AB020908 CTTCCAACACCATCAAACATCTCAGCATGATGAAACTTTGGATCCCTCCTCGGAGTATGT
AB020909 CTTCCAACACCATCAAACATCTCAGCATGATGAAACTTTGGATCCCTCCTCGGAGTATGT


*********************** ************************** *********


the program was
#! perl -w
use strict;


my @seq;
my @names;
my $i=0;


# Go just after the first empty line
while (<>) {
chomp;
print STDERR "Skipping $. ($ )\n";
last if m/^\s*$/;


}


while (<>) {
chomp;
if( m/^\s*$/ ){
$i=0;
print STDERR "Skipping $. ($ )\n";
next;


}
print STDERR "Reading $. ($i) ($ )\n";
if (m/^([^\s]+?)\s+(.*)/) {
print STDERR "Remembering $.\n";
$names[$i] = $1;
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$seq[$i] .= $2;
}
$i++;


}


# foreach my $s (@seq) { print "$s\n"; }
print "d <- matrix( c(\n";
foreach my $s (@seq) {
print ’"’. join(’", "’, split(’’, $s)) .’",’ ."\n";


}
print "), nr=". (scalar @seq) .", byrow=T)\n";
print "rownames(d) <- c(’". join("’, ’", @names) ."’)\n"


and the result looked like
d <- matrix( c( "A", "T", "G", "A", "C", "C", "A", "A", "C", "A",
"T", "C", "C", "G", "A", "A", "A", "A", "A", "C", "C", "C", "A",
...


), nr=5, byrow=T)
rownames(d) <- c(’AB020905’, ’AB020906’, ’AB020907’, ’AB020908’, ’AB020909’)


The problem, with this method (yes, it is a bad method), is that these are not data but code.
If you just want to use it with R and ignore all other software, that is fine, but otherwise, a
more portable format would be welcome.
The “read.table” can read data frames, i.e., (rectangular) tables, whose columns may have
different types (but the type of the data does not change inside a column – and all the
columns have the same length). With the preceeding example, the file could look like
AB020905 "T" "T" "A" "A" "A" "G" "T" "G" ...
AB020906 "T" "T" "A" "A" "A" "G" "T" "G" ...
AB020907 "T" "T" "A" "A" "A" "G" "T" "G" ...
AB020908 "T" "T" "A" "A" "A" "G" "T" "G" ...
AB020909 "T" "T" "A" "A" "T" "G" "T" "G" ...


(with very, very long lines).
Often, the “read.table” command works fine, but sometimes, problems occur (usually be-
cause one has not read the manual of the “read.table” function).
Let us consider first the simple case of a file containing only numeric data, with no row or
column name. It could look like
2 7 3 9 2
8 7 3 2 2
6 2 8 8 1


We try:
> d <- read.table(’A.txt’)
> d
V1 V2 V3 V4 V5


1 2 7 3 9 2
2 8 7 3 2 2
3 6 2 8 8 1


R has give names to the columns. If we do not like them, we may change them.
> names(d)
[1] "V1" "V2" "V3" "V4" "V5"
> length(d)
[1] 5
> names(d) <- 1:length(d)
> d
1 2 3 4 5


1 2 7 3 9 2
2 8 7 3 2 2
3 6 2 8 8 1
> names(d) <- LETTERS[1:length(d)]
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> d
A B C D E


1 2 7 3 9 2
2 8 7 3 2 2
3 6 2 8 8 1


The file could be more complex and contain row names.
x1 2 7 3 9 2
x2 8 7 3 2 2
x3 6 2 8 8 1


Here, it does not work as well, because the computer has no way of knowing that the first
column contains the name of the rows and not a qualitative variable.
> read.table(’A.txt’)
V1 V2 V3 V4 V5 V6


1 x1 2 7 3 9 2
2 x2 8 7 3 2 2
3 x3 6 2 8 8 1


We can ask it to remove the first column an use it as row names (this is a good exercise:
try to do it yourself).
> d <- read.table(’A.txt’)
> row.names(d) <- d[,1]
> d <- d[,-1]
> d


V2 V3 V4 V5 V6
x1 2 7 3 9 2
x2 8 7 3 2 2
x3 6 2 8 8 1
> names(d) <- LETTERS[1:length(d)]
> d


A B C D E
x1 2 7 3 9 2
x2 8 7 3 2 2
x3 6 2 8 8 1


Other situation: we have both column and row names. The file looks like:
A B C D E


x1 2 7 3 9 2
x2 8 7 3 2 2
x3 6 2 8 8 1


Now, R understands that the first row contains the variable names and that the first column
contains the observation names, because the first line in the file has one fewer element that
the others.
> read.table(’A’)


A B C D E
x1 2 7 3 9 2
x2 8 7 3 2 2
x3 6 2 8 8 1


Last situation: The columns have names, but not the rows. The file looks like
A B C D E
2 7 3 9 2
8 7 3 2 2
6 2 8 8 1


If we try, naively:
> d <- read.table(’A.txt’)
> d
V1 V2 V3 V4 V5
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1 A B C D E
2 2 7 3 9 2
3 8 7 3 2 2
4 6 2 8 8 1
> str(d)
‘data.frame’: 4 obs. of 5 variables:
$ V1: Factor w/ 4 levels "2","6","8","A": 4 1 3 2
$ V2: Factor w/ 3 levels "2","7","B": 3 2 2 1
$ V3: Factor w/ 3 levels "3","8","C": 3 1 1 2
$ V4: Factor w/ 4 levels "2","8","9","D": 4 3 1 2
$ V5: Factor w/ 3 levels "1","2","E": 3 2 2 1


First, the computer had no way of guessing that the first line contained the column names,
Second, it thought that each column containes character strings (before of the first element)...
We can avoid the problem by adding an argument to the “read.table” command.
> read.table(’A.txt’, header=T)
A B C D E


1 2 7 3 9 2
2 8 7 3 2 2
3 6 2 8 8 1


Have weexhausted the problems one may encounter while using the “read.table” command?
Well, not quite. Let us look again at our first example, the file containing our nucleis
sequences.
> read.table(’A.txt’)


V1 V2 V3 V4 V5 V6 V7 V8 V9
1 AB020905 TRUE TRUE A A A G TRUE G
2 AB020906 TRUE TRUE A A A G TRUE G
3 AB020907 TRUE TRUE A A A G TRUE G
4 AB020908 TRUE TRUE A A A G TRUE G
5 AB020909 TRUE TRUE A A T G TRUE G


Each column contained characters (the four letters A, C, G, T), but the computer misun-
derstood the “T” as a boolean value. To avoid the problem, it suffices to state the column
types (here, it is always the same, we just give it once).
> read.table(’A’, colClasses=c(’character’))


V1 V2 V3 V4 V5 V6 V7 V8 V9
1 AB020905 T T A A A G T G
2 AB020906 T T A A A G T G
3 AB020907 T T A A A G T G
4 AB020908 T T A A A G T G
5 AB020909 T T A A T G T G


TODO: What if the file is not on the local disc but given by its URL?
TODO: What if the file comes from a well-known spreadsheet program?
TODO: ?scan
To know more about all this, you might want to reaf the man page of the “read.table”
command and the “Data Import-Export manual”.
http://cran.r-project.org/doc/manuals/R-data.pdf


2.6.3 Large CSV files


For large files, it might be faster to explicitely give the type of each column: otherwise, R
would have to read the whole file to check that the numeric columns are indeed numeric –
the begining of the file could contain numbers and later rows strings...
# All the columns contain strings
read.table("foo.txt", colClasses = "character")


# the fist column is numeric, the others contain strings
read.table("foo.txt",



http://cran.r-project.org/doc/manuals/R-data.pdf





CHAPTER 2. PROGRAMMING IN R 96


colClasses = c("numeric", rep("character", 10)))


If your file only contains number, or only strings, it is wiser to store it in a matrix, not a
data.frame. This is what the “scan” function does.
# A numeric matrix
x <- scan("foo.txt", sep=",") # Gives a numeric vector
n <- scan("foo.txt", sep=",", nlines=1)
x <- matrix(x, nc=n)


# A vector of strings
x <- scan("foo.txt", what=character(0))


If you file is really large, you should consider storing your data in a database (MySQL,
PostgreSQL, or even simply SQLite, that requires no configuration whatsoever), as explained
in a few pages.


2.6.4 Excel files


This is a big problem: only Microsoft knows what is inside those files – all we can do is
try to guess from the outside, what they contain. The easiest solution is to ask the person
providing you with the files to save them (with Excel) as “text files” or as “CSV files”
(Comma-Separated Values).
If this is impossible, you can try to convert the files yourself, either with Excel (if you have
it) or with any software that tries to recognize this format, e.g., Open Office.
http://www.openoffice.org/


If this is also impossible, for instance if you want to automate this process, you can turn to
the Spreadsheet::ParseExcel Perl module.
http://www-106.ibm.com/developerworks/linux/library/l-pexcel/


Actually, you do not have to know about Perl (it is an eclectic language, designed to process
text, used by computer hackers in the early 1990s for its network capabilities and its tight
interaction with the operating system, in the mid-1990s for the first web-based applications,
later as a scripting language for games
http://www.frozen-bubble.org/


scientific computations
http://pdl.perl.org/index_en.html


more ambitious web-based applications thanks to its tight interaction with the Apache web-
server
http://perl.apache.org/
http://www.modperl.com/
http://modperlbook.org/
http://www.perl.com/pub/a/2002/02/26/whatismodperl.html
http://www.perl.com/pub/a/2002/03/22/modperl.html
...


etc.): there there is an R function to call this Perl module to convert an Excel file to a CSV
file and read it into R.
library(gdata)
?read.xls


(there is a bug in the current version: they use "dquote" instead of
"shQuote", which has a disastrous effect if your string contains
symbols such as $ or " -- it also crashes in an UTF8 locale).



http://www.openoffice.org/

http://www-106.ibm.com/developerworks/linux/library/l-pexcel/

http://www.frozen-bubble.org/

http://pdl.perl.org/index_en.html

http://perl.apache.org/

http://www.modperl.com/

http://modperlbook.org/

http://www.perl.com/pub/a/2002/02/26/whatismodperl.html

http://www.perl.com/pub/a/2002/03/22/modperl.html
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2.6.5 Diverting the output


The sink() function diverts the output to a file: all the messages that would normally end
up on the screen are instead written to the file. To have them back on the screen, call sink()
once again, with no arguments.
The caputure.output() function does the same thing, but takes the code whole result is to
be retrieved as an argument. Instead of a file, it can return a string – for instance, you may
want to escape some characters that would otherwise be interpreted further down in the
pipeline, or you can add formatting information (colours, fonts, etc.).


2.6.6 .Data


At the end of each session, R asks if you want to save the the environment to continue to
work with the same data and functions next time: he saves functions and variables in a file
in the current directory; if you work on several R projects at the same time, simply use
several directories.
It might be a good idea to clean the variables of the current directory from time to time,
with the “ls” and “rm” commands.
ls()
rm(x, y, z)


2.6.7 source


You can also store code in a file (especially if the code is rather long: you will prefer typing
it with a decent text editor, such as Emacs) and call it back with the “source” command.
source("MyCode.R")


Sometimes, you also want to see the code being executed (inparticular if some parts of it
are time-consuming):
source("MyCode.R", echo=TRUE)


2.6.8 Out-of-memory computations


One of the differences between R and other statistical systems, such as SAS, is that R stores
all the data in memory: this prevents it from dealing with datasets that do not fit in memory.
This is less ans less true. One way around that problem is to check wheter you need the
whole dataset or if you can split your computations into chunks that each deal with a slice
of it (for instance, just a couple of variables at a time insteal of hundreds of them) and store
and retrieve the data in a database (see below). Depending on the algorithms you are using,
this may not be straightforward: your problem may require a new implementation of the
algorithm that does not take memory allocation for granted and that sparinggly, explicitely
uses the disk – these are called out-of-memory algorithms.
Should you want it, there is already an out-of-memory linear regression function, in the
biglm package.


2.6.9 Databases


When dealing with large amounts of data, you do not really need all the data at once in
memory: quite often, your computations only require one chunk of it at a time. It makes
sens to store the data in a database and only extract what you need.
R can talk to most databases (SQLite, MySQL, PostgreSQL, Oracle), either through a
generic API, such as ODBC, or through database-specific interfaces).
And it works both ways: you can fetch data in a database from R, but you can also use R
as a language for stored procedures in some of them (e.g., PostgreSQL).
http://linuxfr.org/2003/02/20/11415.html
http://archives.postgresql.org/pgsql-general/2003-02/msg00989.php
http://www.joeconway.com/plr/



http://linuxfr.org/2003/02/20/11415.html

http://archives.postgresql.org/pgsql-general/2003-02/msg00989.php

http://www.joeconway.com/plr/
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2.6.10 SQLite


Installing a DataBase Management System (DBMS) is often daunting: you must start the
server, create a new user and create a new database. If you plan to use this database in a
networked environment, from a different machine, if you plan to access the same data from
different applications or machines at the same time, if you want to prevent inconsistencies
when two different people try to modify the same data at the same time, a real DBMS is
worth the trouble.
But if you just want to play with the data, from a single application, from a single machine,
this is a overkill.
Instead, you can use SQLite: you do not have to install anything, you do not have to
configure anything. It is just a library that stores data in a file, and allows you to access
and modify it with SQL commands. It is just an elaborated binary file format.
http://www.sqlite.org/


It is becoming more and more popular: when you write an application that has to store
some data, in some structured way (for instance, the configuration, the logs, etc.), when you
want to be able to search through those data – SQLite is a light and efficient choice.
http://www.linuxjournal.com/print.php?sid=7803
http://linuxgazette.net/109/chirico1.html
http://conferences.oreillynet.com/cs/os2004/view/e_sess/5701


Back to R. As I said, there is nothing to install. More precisely, if you tried to install all the
packages from CRAN, it is already there.
TODO: a better example...


library(RSQLite)


# First, connect to to the database.
con <- dbConnect(dbDriver("SQLite"), dbname="tmp.dbms")


# As we currently have no data, we create a new table (poetically
# named "foo") and put a data.frame in it.
r <- data.frame(...)
dbWriteTable(con, "Foo", r)


# We can retrieve the whole data frame
r2 <- dbReadTable(con, "foo")


# We can also perform a few queries on the table
x <- dbGetQuery(con, "SELECT ...")


# When you are finished, you MUST close the connection.
dbDisconnect(con)


Other tasks you might want to do:
# List all the tables in this database
dbListTables(con)


# List the fields of a table
dbListFields(con, "Foo")


# Delete a table
dbSendQuery("DROP TABLE Foo")


Remember to close your connections once you no longer need them. Otherwise:
> for (i in 1:200) {
+ con <- dbConnect(dbDriver("SQLite"), dbname="tmp.dbms")
+ }
Error in sqliteNewConnection(drv, ...) : RS-DBI driver: (1cannot
allocate a new connection -- maximum of 16 connections already



http://www.sqlite.org/

http://www.linuxjournal.com/print.php?sid=7803

http://linuxgazette.net/109/chirico1.html

http://conferences.oreillynet.com/cs/os2004/view/e_sess/5701
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opened)


Let us check how fast it is:
TODO...


Actually, we can speed this up. Up to now, we have just used SQLite as a binary file – but
it is actually a real data base, so we can define the tables in the usual SQL way, in particular
stating which columns should be UNIQUE, we can use indices, we can use transactions, etc.
http://web.utk.edu/~jplyon/sqlite/SQLite_optimization_FAQ.html


TODO


Caveat: If you are still using version 2, the data are not typed: everything is stored as
strings. But version 3 is out.
Caveat: All the data are stored in the same file (if your file system has a 2Gb limit, beware)...
Caveat: I am very suspicious of the efficiency when the data becomes very large – but when
I think “very large”, I am probably not very reasonnable.


2.6.11 SQLite – TODO: merge this section with the previous...


When you handle a lot of data, you do not really need all the data all the time: quote often,
each step in your computations only requires a slice of the data. In those situations in can
be helpful to only keep in memory the data you need: to rest being stored in a database for
later use.
You might object that doing so requires a DataBase Management System (DBMS), which is
very cumbersome to install and administer. This is not the case: if your needs are reasonable
(a few GB of data, a single user and process accessing the data), SQLite might be a good
solution: it is not a client-server DBMS, but merely a library to access, with SQL commands
a file containing the data.
It is as if you were retrieving data from a CSV file with SQL commands – only faster.
library(RSQLite)
con <- dbConnect(dbDriver("SQLite"), "myData.dbms")
x <- dbGetQuery(con, "SELECT * FROM Foo WHERE date > ’2005-01-01’;")
...
dbDisconnect(con)


Actually, I use it as follows.
# Parameters: the name of the database (this is actually
# the name of the file containing the data) and the name
# of the database driver (here, SQLite, but the same code
# would work with other, more robust DBMS).
global dbDriver <<- "SQLite"
global dbname <<- "myData.dbms"


# Connect to the database
try(
library(RSQLite)


)
if (exists("global SQL con")) {
try( dbDisconnect(global SQL con) )


}
global SQL con <- dbConnect(
dbDriver(global dbDriver),
dbname = global dbname


)


# The function I use to retrieve the data


# I use a single database connection, so I do not want to
# give the connection argument each time.
# Furthermore, when the result has a single column, I want



http://web.utk.edu/~jplyon/sqlite/SQLite_optimization_FAQ.html
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# a vector, not a data.frame.
sql <- function (s) {
res <- dbGetQuery(global SQL con, s)
if (!is.null(res)) {
if (is.data.frame(res) & ncol(res) == 1) {
res <- res[,1]


}
}
drop(res)


}


# Function to quote strings
as.sql.character <- function (x) {
x <- as.character(x)
x <- gsub("’", " ", x) # DANGER: you probably do not


# want to do that!
x <- ifelse(is.na(x), "NULL", paste("’", x, "’", sep=""))
x


}


# This should speed things up a bit
sql("PRAGMA cache size = 500000;")
TODO: sync?


cat(sprintf("Price table
%d rows
%d stocks
%d dates from %s to %s


",
sql("SELECT COUNT(*) FROM Price;"),
sql("SELECT COUNT(DISTINCT sedol) FROM Price;"),
sql("SELECT COUNT(DISTINCT date) FROM Price;"),
sql("SELECT MIN(date) FROM Price;"),
sql("SELECT MAX(date) FROM Price;")


))


There are a few problems, though.
First, the SQL understood by SQLite is a bit limited; for instance, you have LEFT OUTER
JOINs but no FULL OUTER JOINs – SQLite does understand the syntax of the latter, but
replaces it by the former, which can lead to surprising and incorrect results.
Second, the query optimizer is also very limited. You do have indices, but all the joins are
nested loop joins (TODO: EXPLAIN).
Third, it is a 1-user, 1-process DBMS. It may look fine at first, but you might end up willing
to have a process write the data and another read it, or you might want to give read access
to the database to your colleagues – this is not possible.
Fourth, it is unreliable. I sometimes end up with a database that contains duplicated data,
in spite of the UNIQUE constraints I added. I routinely end up with a corrupted and/or
locked database, when I violently kill SQLite.
Worse, when dealing with large amounts of data with SQLite, R crashes: the cause of the
problem is unclear (it does not necessarily crash inside the SQLite functions: I first suspected
R, then some of the packages I was using, but the problems only stopped when I removed
SQLite – the problem seems to be due to large numbers of large INSERTs in a large (5GB)
database: if you only read from the database, if you only write data once or twice per
session, if your database is small (say, under 2GB), you might be fine).
As a conclusion, SQLite is a very good replacement for CSV files, especially if you have many
CSV files, but if you start using it, you will get more ambitious and will end up needing
a full-fledge DBMS, such as PostgreSQL, MySQL or Firebird (there are also commercial
alternatives, such as Oracle or Microsoft SQL Server – but even commercial software pro-
ponents do not view MS SQL Server as a serious product and suggest MySQL as a better
alternative).
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2.6.12 SQL


If you are new to SQL, here are a few sample queries. The syntax is often that of SQLite,
but not always: if in doubt, check the documentation of your DBMS.
Extractting information from a table:
-- Get all the contents of a table
SELECT * FROM JPE3 ret;


-- Only the first 10 rows of a table
SELECT * FROM JPE3 ret LIMIT 10;


-- Only a few columns
SELECT date, jcode, return
FROM JPE3 ret
LIMIT 10;


-- Create a new column
SELECT date, sed cus, loc price / loc capt * usd capt
FROM GEMF rsk
LIMIT 10;


-- Create a new column, with a new name
SELECT date, sed cus, loc price / loc capt * usd capt AS usd price
FROM GEMF rsk
LIMIT 10;


Extracting information from a table:
-- Select a given row (or set of rows)
SELECT * FROM JPE3 ret
WHERE name = "TOYOTA MOTOR" AND date = "2005-12";


-- Order the results
SELECT * FROM JPE3 ret
WHERE name = "TOYOTA MOTOR" AND date >= "2000-01"
ORDER BY date;


-- Idem, descending order
SELECT * FROM JPE3 ret
WHERE name = "TOYOTA MOTOR"
ORDER BY date DESC;


-- Rows for which a given column is NULL
SELECT * FROM GEMF rsk WHERE sed cus ISNULL;


-- Remove duplicates
SELECT DISTINCT isocurr FROM GEMF rsk;


-- The values of a columns are in a given set
SELECT DISTINCT barrid, sed cus, isocurr, name
FROM GEMF rsk
WHERE isocurr IN ("JPY", "THB","HKD", "SGD", "KRW")
ORDER BY isocurr, name;


Extracting information from several tables (“joining” several tables):
-- Inner join
SELECT * FROM JPE3 ret, JPE3 rsk
WHERE JPE3 ret.date = JPE3 rsk.date
AND JPE3 ret.barrid = JPE3 rsk.barrid


LIMIT 10;
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-- Inner join (query equivalent to the previous one)
SELECT * FROM JPE3 ret JOIN JPE3 rsk USING (date, barrid)
LIMIT 10;


-- Inner join (query equivalent to the previous ones)
SELECT * FROM JPE3 ret JOIN JPE3 rsk


ON JPE3 ret.date = JPE3 rsk.date
AND JPE3 ret.barrid = JPE3 rsk.barrid


LIMIT 10;


-- Outer join (if there are rows in the first table with no
-- corresponding row in the second, they are discarded in an inner
-- join; with an outer join, they are preserved and paired with
-- empty ("NULL") rows)
SELECT * FROM JPE3 ret OUTER JOIN JPE3 rsk USING (date, barrid)
LIMIT 10;


Aggregate operations:
-- Count the number of rows in a table
SELECT COUNT(*) FROM JPE3 ret;


-- Partition the rows of a table and count the number of rows in
-- each group
SELECT date, COUNT(*) FROM JPE3 ret GROUP BY date;


-- Minimum
SELECT MIN(return ) FROM JPE3 ret;


-- Minumum, maximum, mean, median, etc.
SELECT date,


COUNT(*) AS number,
MIN(return ) AS minimum,
AVG(return ) AS mean,
MAX(return ) AS maximum


FROM JPE3 ret
GROUP BY date
ORDER BY date;


-- Add a condition to be evaluated after the groups are formed
SELECT COUNT(*) AS number, isocurr
FROM GEMF rsk
WHERE date = "2006-01"
GROUP BY isocurr
HAVING number < 100
ORDER BY number;


-- Embedded queries
-- (You can probably reformulate this one with DISTINCT and
-- GROUP BY, but combining those two usually leads to hard-to-find
-- bugs.)
SELECT date, COUNT(*) AS number of currencies
FROM (SELECT date, isocurr, COUNT(*) AS number


FROM GEMF rsk
GROUP BY date, isocurr
)


GROUP BY date
ORDER BY date;


For performance reasons, it is pivotal to index the columns (or groups of columns) you will
use in your queries – otherwise, the DBMS would have to scan the whole table for the rows
you want.
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CREATE INDEX idx foo id date ON Foo (id, date);
CREATE INDEX idx foo id date ON Foo (id);
CREATE INDEX idx foo id date ON Foo (date);


For performance reasons (and data integrity), you should group related changes to the
database into a single transaction (e.g., updating several tables at the same time; inserting
interconnected data at the same time and make sure the database is never in an incoherent
state; or inserting a lot of data at once).
BEGIN TRANSACTION;
INSERT INTO Foo (id, date, value) VALUES (1, "2006-01-02", 1.4);
INSERT INTO Foo (id, date, value) VALUES (2, "2006-01-05", 1.1);
INSERT INTO Foo (id, date, value) VALUES (3, "2006-01-09", 0.7);
...
END TRANSACTION;


Creating your own tables
-- Remember two data types: NUMERIC and VARCHAR(255)
DROP TABLE Foo;
CREATE TABLE Foo (
date VARCHAR(255),
id NUMERIC,
value NUMERIC


);


-- When values are supposed to be non missing (typically,
-- identifiers), explicitely state them.
DROP TABLE Foo;
CREATE TABLE Foo (
date VARCHAR(255) NOT NULL,
id NUMERIC NOT NULL,
value NUMERIC


);


-- When values or tuples are supposed to be unique,
-- explicitely state that constraint
DROP TABLE Foo;
CREATE TABLE Foo (
date VARCHAR(255) NOT NULL,
id NUMERIC NOT NULL,
value NUMERIC,
UNIQUE (date, id)


);


-- Some DBMS allow you to specify a polocy to follow when someone
-- tries to breach this constraint.
DROP TABLE Foo;
CREATE TABLE Foo (
date VARCHAR(255) NOT NULL,
id NUMERIC NOT NULL,
value NUMERIC,
UNIQUE (date, id) ON CONFLICT REPLACE


);


-- When a column of a table references a key of another table,
-- explicitely state it. This is called a "foreign key constraint".
-- SQLite does not enfore foreign key constraints
DROP TABLE Foo;
DROP TABLE Bar;
CREATE TABLE Bar (
id NUMERIC NOT NULL,
name VARCHAR(255),
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UNIQUE (id) ON CONFLICT REPLACE
);
CREATE TABLE Foo (
date VARCHAR(255) NOT NULL,
id NUMERIC NOT NULL REFERENCES Bar(id),
value NUMERIC,
UNIQUE (date, id) ON CONFLICT REPLACE


);


-- It is possible to add or remove columns to an already-created
-- table.
ALTER TABLE Foo ADD COLUMN other value NUMERIC;


Populating your tables:
-- Inserting a row
INSERT INTO Foo (id, date, value)
VALUES (17, "2006-04-05", 3.14);


-- Changing one (or several) row(s)
UPDATE Foo
WHERE id=17 AND date="2006-04-05"
SET value = 6.28;


-- Deleting one (or several) rows
DELETE FROM Foo
WHERE id=17 AND date="2006-04-05";


NULL:
-- Missing values are coded as NULL in SQL
INSERT INTO Foo (id, date, value) VALUES (19, "2006-12-25", NULL);


-- Beware: in some contexts, NULL has other meanings...
-- This is due to the fact that most DBMS (PostgreSQL is a notable
-- exception) do not allow for user-defined types.


Unsorted code samples:
-- Set operations
SELECT DISTINCT sedol FROM Price WHERE date="2004-01-19"
EXCEPT
SELECT DISTINCT sedol FROM Price WHERE date="2004-01-20";


-- Merging two tables and putting the result in one of them
UPDATE Alpha Europe
SET forward returns 1W 7 = (
SELECT forward returns 1W 7
FROM Foo
WHERE Foo.sedol = Alpha Europe.sedol
AND Foo.date = Alpha Europe.date7d


) WHERE EXISTS (
-- I do not like that syntax: we have to repeat
-- the same query twice...
SELECT forward returns 1W 7
FROM Foo
WHERE Foo.sedol = Alpha Europe.sedol
AND Foo.date = Alpha Europe.date7d


);


-- Merging two tables
CREATE TABLE Result AS
SELECT * FROM A LEFT OUTER JOIN B USING (id, date);
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-- Merging two tables
INSERT INTO Result
SELECT * FROM A LEFT OUTER JOIN B USING (id, date);


-- Negations and double negations
-- select the elements that are not in category 1, 2 or 3
-- (each element can be in several categories)
SELECT DISTINCT id FROM A WHERE id NOT IN (
SELECT id FROM A WHERE category IN (1, 2, 3)


); -- not tested
-- Other solution
SELECT DISTINCT id FROM A
EXCEPT
SELECT id FROM A WHERE category IN (1, 2, 3); -- not tested


TODO:
--
-- More specialized SQL notions
-- Embedded SELECTs, EXISTS(SELECT...)
-- LIKE, REGEXP
-- String operations
-- Functions
-- Triggers
-- Views
-- Temporary tables
-- Optimization (EXPLAIN)
--
-- A few words on database design and normalization could be useful.
--
-- Other SQL details
-- ANALYZE (computes statistics on tables and indices, used to
-- find the "best" way of running a query)
-- VACUUM (defragmentation)
-- COPY (to read data from a file)
-- DEFAULT
-- AUTOINCREMENT
-- PRIMARY KEY (UNIQUE and NOT NULL)
-- CHECK (for more complicated constraints)
-- COLLATE (and other locale problems)
-- UNION, UNION ALL, INTERSECT, EXCEPT
--


For more information, check the manual of the DBMS you chose.
http://www.sqlite.org/lang.html
http://dev.mysql.com/doc/
http://www.postgresql.org/docs/
http://otn.oracle.com/pls/db10g/portal.portal_demo3?selected=1


2.6.13 ETL (Extraction, Transformation, Loading)


There is one more pivotal detail: getting the data in the database in the first place. This is
called ETL (Extraction, Transformation, Loading) and most DBMS provide at least a crude
form if it.
With PostgreSQL, this would be the COPY command or psql’s \copy (psql is the command-
line client to PostgreSQL and its non-SQL command all start with a backslash).
I once needed something along those lines, but a litte more complicated: I wanted the table
to be created if it did not exist, I wanted the column types to be automatically inferred
(either VARCHAR or NUMERIC), I wanted new columns to be added if they were missing,
I wanted column types to be converted if they were wrong. Here is what I was using – use
at your own risk, but bug reports are welcome.



http://www.sqlite.org/lang.html

http://dev.mysql.com/doc/

http://www.postgresql.org/docs/

http://otn.oracle.com/pls/db10g/portal.portal_demo3?selected=1
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#! perl -w


##
## (c) 2006 Vincent Zoonekynd <zoonek@gmail.com>
##
## Load a CSV file into a database, creating or extening the
## table schema if needed.
## You should be aware that the result will not be very
## clean, in particular, the database will usually not be in
## third normal form and referencial integrity will not be
## enforced.
##
## It should not replace a database with a schema upon which
## you would have pondered for a long time, but it allows
## the schema to be altered automatically when new columns
## are added -- and the data will be more accessible than in
## a bunch of CSV files.
##
## (Incomplete) bug list
## - Missing trailing commas are not handled
## - problem while inferring the type of bps.csv
##


############################################################
##
## Modules
##
############################################################


use strict;
use warnings;
use Getopt::Simple qw/$switch/;
use Text::CSV XS;
use Data::Dumper;
use IO::File; # Needed to use Text::CSV XS
use POSIX; # For strtod(), to infer the type of the columns


use constant TRUE => 0==0;
use constant FALSE => 0==1;


############################################################
##
## A few functions
##
############################################################


##
## In case two columns have the same name (this can be due
## to them genuinely having the same name, or having the
## same name up to capitalization, or the same name up to
## non-alphanumeric characters), we change the name of the
## second by adding " X1", " X2", etc. to it.
## This function creates those new names.
##


sub alter duplicate column names {
my %a = ();
my @result = ();
foreach (@ ) {
if (exists $a{$ }) {
my $i=0;
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$i++ while exists $a{ $ . " X" . $i };
$ .= " X" . $i;


}
$a{$ } = 1;
push @result, $ ;


}
@result;


}


##
## The values to be inserted into the database have to be
## slightly modified:
## - They are quoted
## - Missing values (as described by the --NA command line
## option) are replaced by NULL
## - To avoid other problems, dangerous characters (double
## quote (") and backslash (\)) are replaced by a space.
##
## There are two versions of this function: one that
## produces unquoted results, useful to infer the type of
## the columns, and a quoted one, for the actual generation
## of SQL code.
##


sub process values unquoted {
my @a = map { $a = $ ; # Do not modify $ : it would


# change the elements of
# @extra values...


$a =~ s/\’/ /g;
$a = "" if $a =~ m/$$switch{"NA"}/o;
$a;


} @ ;
return @a;


}


sub process values quoted {
my @a = map { $a = $ ; # Do not modify $ : it would


# change the elements of
# @extra values...


$a =~ s/\’/ /g;
if ($a =~ m/$$switch{"NA"}/o) {
$a = "NULL";


} else {
$a = "\’$a\’";


}
$a;


} @ ;
return @a;


}


##
## Some command line options expect comma-seperated lists of
## column names or numbers: this function transforms them
## into lists of column names.
##


sub get column names ($@) {
my ($col, @column names) = @ ;
my @col = split(",", $col);
# Convert the column numbers to column names
for (my $i=0; $i<=$#col; $i++) {
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if ( (POSIX::strtod($col[$i])) [1] == 0 ){
$col[$i] = $column names[ $col[$i] - 1 ];


}
}
return @col;


}


############################################################
##
## Parameters: how does the CSV file(s) look like?
##
############################################################


my $option = Getopt::Simple -> new();
$option -> getOptions({
quote char => { type => "=s",


default => q/"/, # Usually NOT ’, because it
# appears in some French names...


verbose => "quote character" },
sep char => { type => "=s",


default => q/,/, # Could also be | or \t
verbose => "field separator" },


header => { type => "=i",
default => 1,
verbose => "number of the line containing the headers" },


data => { type => "=i",
default => 2,
verbose => "number of the first line after the headers" },


table name => { type => "=s",
default => "Foo",
verbose => "Name of the SQL table to create and populate"


},
NA => { type => "=s",


default => ’^\s*(|\.|NA|NULL|Null|Default|-999(.0*)?|[#@]?N/?A\!?)\s*$’,
verbose => ’Regular expression to match missing values, e.g.,


^NA$’ },
"add-column" => { type => "=s@",


default => [],
verbose => "Columns missing in the CSV file, usually because


they are constant and can be inferred from the file name; e.g., date=2006-03-27"
},


"index" => { type => "=s@",
default => [],
verbose => "Columns on which to create an INDEX, e.g. ’1,2,3’


or ’id,date’"
},


"unique" => { type => "=s@",
default => [],
verbose => "UNIQUE constraints to impose"


},
"not-null" => { type => "=s@",


default => [],
verbose => "NOT NULL constraints to impose"


},
"no-column-type-check" => { type => "",


default => "",
verbose => "Should we try to guess the type of


all the columns or set them all to VARCHAR(255)?"
},


"wide" => { type => "=i",
default => -1,
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verbose => "If the file contains wide data, number of the
column where these data start; e.g., if the columns are factor1,factor2,2000,2001,2002,etc.,
this would be 3"


},
"wide-name" => { type => "=s",


default => "Wide column name",
verbose => "If the file contains wide data, name of the (SQL)


column that will identify those data, e.g., if the file header is factor1,factor2,2000,2001,2002,etc.,
this could be ’date’"


},
"wide-value" => { type => "=s",


default => "Wide value",
verbose => "If the file contains wide data, name of the (SQL)


column that will contain those data, e.g., if the file header is factor1,factor2,2000,2001,2002,etc.,
this could be ’date’"


}
}, "usage: $0 [options] file.csv");


my @extra headers = map { $a = $ ; $a =~ s/=.*//; $a; }
@{ $$switch{"add-column"} };


my @extra values = map { $a = $ ; $a =~ s/^.*?=//; $a; }
@{ $$switch{"add-column"} };


if ($$switch{"data"} <= $$switch{"header"}) {
$$switch{"data"} = $$switch{"header"} + 1;


}


#print STDERR "Options:\n";
#print STDERR Dumper($switch);


if (@extra headers) {
print STDERR "Extra headers: " . join(", ", @extra headers) . "\n";
print STDERR " values: " . join(", ", @extra values) . "\n";


}


if ($$switch{"sep char"} eq "TAB") {
$$switch{"sep char"} = "\t";


}
my $csv = new Text::CSV XS({
quote char => $$switch{"quote char"},
sep char => $$switch{"sep char"},
binary => TRUE


});


my $file = shift @ARGV or die "usage: $0 file.csv";
my $fh = new IO::File;


############################################################
##
## Trying to infer the type of the columns
##
############################################################


my @types;
{
print STDERR "Reading file $file to get the number of columns and their types\n";
open($fh, "<", $file) || die "Cannot open $file for reading: $!";
my $line = 0;
while(1) {
my $fields = $csv->getline($fh);
last unless $fields;
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last unless @$fields;
next if $#$fields == 0 and $$fields[0] =~ m/^\s*$/; # Skip blank lines
$line++;
if ($line == $$switch{"header"}) {
if ($$switch{"no-column-type-check"}) {
@types = map { FALSE } (@extra headers, @$fields);
last;


} else {
@types = map { TRUE } (@extra headers, @$fields);


}
} elsif ($line >= $$switch{"data"}) {
#print STDERR $line . " " . join(", ", @$fields) . "\n";
my @values = process values unquoted(@extra values, @$fields);
#print STDERR $line . " " . join(", ", @values) . "\n";
#print STDERR $line . " " . join(", ", map { (POSIX::strtod($ ))[1] >


0 ? "VARCHAR(255)" : "NUMERIC" } @values) . "\n";
@values = map { (POSIX::strtod($ ))[1] == 0 } @values;
for (my $i=0; $i<=$#values; $i++) {
$types[$i] &&= $values[$i];


}
#print STDERR $line . " " . join(", ", map { $ ? "NUMERIC" : "VARCHAR(255)"


} @types) . "\n";
}


}
close($fh);
if ($$switch{"wide"} > 0) {
for (my $i = $#extra headers + 1 + $$switch{"wide"}; $i <= $#types; $i++)


{
$types[ $#extra headers + 1 + $$switch{"wide"} ] =
$types[ $#extra headers + 1 + $$switch{"wide"} ] && $types[$i];


}
$types[ $#extra headers + 1 + $$switch{"wide"} - 1 ] = FALSE;
@types = @types[0..($#extra headers + 1 + $$switch{"wide"})];


}
@types = map { $ ? "NUMERIC" : "VARCHAR(255)" } @types;
print STDERR "Column types: ";
print STDERR join(", ", @types) . "\n";


}


############################################################


print STDERR "Reading file $file\n";
open($fh, "<", $file) || die "Cannot open $file for reading: $!";
my @column names;
my @wide values;
my $line = 0;
while(1) {
my $fields = $csv->getline($fh);
last unless $fields;
last unless @$fields;
next if $#$fields == 0 and $$fields[0] =~ m/^\s*$/; # Skip blank lines
$line++;
if ($line == $$switch{"header"}) {
@column names = @$fields;
if ($$switch{"wide"} > 0) {
@wide values = @column names[ ($$switch{"wide"}-1) .. ($#column names)


];
map { s/^\s+//; s/\s+$//; } @wide values;
@column names = @column names[ 0 .. ($$switch{"wide"}-1) ];
$column names[ $$switch{"wide"} - 1 ] = $$switch{"wide-name"};
$column names[ $$switch{"wide"} ] = $$switch{"wide-value"};
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}
@column names = (@extra headers, @column names);
@column names = map { y/A-Z/a-z/; # Only lower case


s/\s+$//; # No trailing spaces
s/^\s+//; # No leading spaces
s/[^a-z0-9]/ /g; # Only alphanumeric characters
s/^([0-9])/x$1/; # First character is a letter
s/^$/nameless column/; # At least one character
$ ; } @column names;


@column names = alter duplicate column names(@column names);
@column names = map { "\"$ \"" } @column names;
my %not null = ();
foreach my $i (@{$$switch{"not-null"}}) {
foreach my $j (get column names($i, @column names)) {
$not null{$j} = 1;


}
}
print "-- Table schema\n";
print "CREATE TABLE " . $$switch{"table name"} . " (\n";
for (my $i=0; $i <= $#column names; $i++) {
print " " . $column names[$i] . " " . $types[$i];
print " NOT NULL" if exists $not null{ $column names[$i] };
print "," if $i < $#column names or @{$$switch{"unique"}};
print "\n";


}
foreach (my $j=0; $j <= $#{ $$switch{"unique"} }; $j++) {
my $col = ${ $$switch{"unique"} }[$j];
my @col = get column names($col, @column names);
print " UNIQUE (" . join(", ", @col) . ")";
# ." ON CONFLICT REPLACE";
print "," unless $j == $#{ $$switch{"unique"} };
print "\n";


}
print ");\n";
print "-- In case the table already exists, we make sure it has enough


columns...\n";
for (my $i=0; $i<=$#column names; $i++) {
print "ALTER TABLE " . $$switch{"table name"} .


" ADD COLUMN " . $column names[$i] . " " .
$types[$i] . ";\n";


}
if (@{ $$switch{"index"} }) {
print "-- Indices\n";
foreach my $col (@{ $$switch{"index"} }) {
my @col = get column names($col, @column names);
print "CREATE INDEX " .


"idx " . $$switch{"table name"} . " " .
join(" ", @col) .
" ON " .
$$switch{"table name"} .
" (".
join(", ", @col) .
");\n";


}
}
print "-- The data from $file\n";
print "BEGIN TRANSACTION;\n";
print "PRAGMA cache size = 500000;\n";


} elsif ($line >= $$switch{"data"}) {
map { s/^\s+//; s/\s+$//; } @$fields;
if ($$switch{"wide"} > 0) {
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for (my $i=0; $i <= $#wide values; $i++) {
print "INSERT INTO " . $$switch{"table name"} . " (" .


join(", ", @column names) .
")\n";


print " VALUES (" .
join(",", process values quoted(


@extra values,
@$fields[ 0 .. ($$switch{"wide"}-2) ],


$wide values[$i],
$$fields[$$switch{"wide"} - 1 + $i]) ) .


");\n";
}


} else {
print "INSERT INTO " . $$switch{"table name"} . " (" .


join(", ", @column names) .
")\n";


print " VALUES (" .
join(",", process values quoted(@extra values, @$fields)) .
");\n";


}
}


}
print "COMMIT TRANSACTION;\n";
close($fh);


2.6.14 Uses of databases: OLTP, OLAP, Data Warehouse (DW)


Database specialists often distinguish between two uses of databases.
In OLTP (On-Line Transaction Processes) applications, very small amounts of data (usually
one record at a time) are read and written to the database: this is the case for most web
applications (e-commerce, forums, etc.).
At the other end of the spectrum, OLAP (On-Line Analytical Processing) applications or
Decision Support Systems (DSS) or Business Intelligence (BI) applications, only use the
database as a data repository, as a data warehouse (DW) or as an operational datastore
(ODS) (to be read from, not written to), extract large amounts of data (several gigabytes)
and try to summarize them, in as interactive a way as possible.
The main example is sales data: you know the value of each transaction, what item it was,
which customer it was, which sales clerk it was. You can summarize all the transactions
in a large 3-dimensional cube: one dimension for the customers, one for the items, one for
the sales clerk. But that cube is too large to be presented to the end user. To get a more
amenable data cube, the elements in each dimension can be grouped: customers grouped
by city, state, age, value of past purchases, number of past purchases, gender, etc.; items by
category, price, etc.; sales clerks by gender, religion, shop, city, state, proximity of public
transportations, etc. Typically, OLAP applications are interactive: they first present the
user with the coarsest grouping (all the customers, all the items, all the sales clerks – the
corresponding cube has a single element) and then allow to “drill-down”, i.e., to chose finer
and finer groupings. But three dimensions may be too much: you may prefer to select a
2-dimensional slice of the data (e.g., “only a given sales clerk”) or project the data cube
onto one dimension (i.e., consider “all the sales clerks”).
Building a Data Warehouse (DW) is often a prerequisite to OLAP operations: it refers to the
nightmare of combining several databases into one – the problem being that the databases
may contain incoherencies, may use different identifiers, may use different naming schemes,
may lack some of the data needed.
If you need a free OLAP tool, have a look at Mondrian.
http://mondrian.pentaho.org/



http://mondrian.pentaho.org/
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2.6.15 Types of database management systems


Most Database Management Systems (DBMS) are relational DBMS: they store relations,
usually represented as SQL tables.
Some databases are not relational but simply store associations or hash tables, i.e., key-value
pairs: they are mere presistence engines, that provide a random access to the data (in this
context, the word “random” loses its statistical meaning: it means that to access a data
item, we do not have to scan the whole database, we just go directly where it is supposed
to be). They are often used to store directories and are optimized for fast read access (e.g.,
the information associated to an employee (name, social security number, phone, address,
login, password, email address, etc.; the information associated to computers in a network
(name, IP address, etc. – those directories are called DNS)). BerkelyDB is such a DBMS.
Some databases are targeted at large applications and implement a client-server architecture
(the DBMS is a program (the server), the applications using the database (the clients) are
other programs, that run at the same time, on the same machine or on a different machine,
and they all talk to each other). Most databases fall into this category: MySQL, PostgreSQL,
Interbase, Oracle, DB2, Microsoft SQL Server, etc.
At the other end of the spectrum, some databases are designed for small (“embedded”)
applications: they require very few ressources, but lack some features, such as concurrency.
You can find some of them, for instance, in mobile phones. SQLite is designed for embedded
applications. Some client-server DBMS have a light, embeddable version – most notably
MySQL – I think it is their main source of revenue.
Some databases advertise their ability to store complex datatypes (e.g., time series) as
easily as basic, “atomic” types and to provide enhanced performance when accessing them.
Those products are called “multi-value databases” or “post-relational databases” or “non-
1NF DBMS” and are usually commercial: Vision, Cache (formerly known as Mumps or
M), KSQL. Unkess you really know what you are doing, you should stay away from those:
from my experience in the domain, it is very hard to find expertise with these products, the
schema of the database is rarely documented, there are no established best practices (such
as “put your data in third normalized form” with relational databases – here, the followed
rule is to ignore those best practives), the promised performance is rarely there (unless you
manage to find an expert on this product), the syntaxe is arcane and does not allow end
users to actually use the product.


2.6.16 Hot topics in databases


The algorithms used in conventional databases do not always scale well; furthermore, the
principles underlying conventional databases often fail for Very Large DataBases (VLDB).
For instance, one cannot be sure that large databases contain “the truth” – large databases
do contain mistakes – the algorithms used must be “robust”, in some sense, to those mistakes.
Furthermore, computing the exact result to a query can be very time-consuming while
an approximate result would be as useful: approximate joining algorithms are starting to
emerge. Another desirable feature of VLDB systems is to provide “the best result so far”, and
to update that result as time passes – when the user is bored, she can stop the computations.
http://www.vldb.org/
http://www.acm.org/sigs/sigkdd/explorations/issue.php?issue=current


TODO: URLs
approximate matching


Real-time databases (RTDB), flow-programming langages, streaming data are closely-related
subjects.
TODO: URL?


Databases often contain personal information (e.g., medical information about patients in
a hospital, bank details, etc.) and mining those databases, let alone combining them, poses
confidentiality problems. To this end, privacy-enhanced data-mining techniques are starting
to emerge.
http://www.wired.com/news/wireservice/0,71184-0.html
Mentionned in Cryptogram 2006-07:



http://www.vldb.org/

http://www.acm.org/sigs/sigkdd/explorations/issue.php?issue=current

http://www.wired.com/news/wireservice/0,71184-0.html
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http://www.schneier.com/crypto-gram-0607.html


TODO:
Temporal databases


2.6.17 TODO


Other types of databases:
relational (SQL: MySQL, PostgreSQL, Interbase, Oracle, DB2, MSSQL, Derby,


HSQL)
persistence (berkeleyDB)
embedded (SQLite, MySQL, berkeleyDB)
ORM
post-relational = non-1NF = multi-value


Vocabulary:
DDL (Data Definition Language)
DML (Data Manipulation Language)
MDX: a Microsoft language for OLAP
ACID


bitemporality


TODO:
OLTP; OLAP, Data cube, OLAP system, drill-down
Other types:
Temporal data and the relational model (C. Date et al.)
Time series databases (Vision, Cache (Mumps))


VLDB, Approximate querying
JOIN, approximate join and statistical matching


2.6.18 MySQL


Last time I used MySQL from R, I proceeded as follows (after installing what was needed):
library(RMySQL)
con <- dbConnect(dbDriver("MySQL"), dbname = "MySQL Test 1")
dbListTables(con)
d <- dbGetQuery(con, "SELECT * FROM Foo")
d
dbDisconnect(con)


2.6.19 ODBC


TODO: Some explanations
# Not tested
library(RODBC)
?ODBC
DSN <- "foobar"
channel <- odbcConnect(DSN, "zoonek", "azerty", believeNRows=FALSE)
sqlQuery(channel, "SELECT foo, bar, baz FROM FooBar WHERE foo > bar")
close(channel)


2.6.20 PostgreSQL


First, install PostgreSQL and configure it. If you are using Gentoo/Linux, just type (the
first command actually asks you to type the second).



http://www.schneier.com/crypto-gram-0607.html
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emerge postgresql
emerge --config =postgresql-8.0.4


If not, you can install it by hand and type
# Choose a directory to put the data
DB=$HOME/Data
initdb -D $DB


# Launch the server
postmaster -D $DB >logfile 2>&1 &


# Create an empty "database" (you can think of a
# "database" as a "namespace": it will be a set of tables,
# isolated from the rest of the data, so as to avoid name
# clashes).
createdb test


# Use it! (This is the command-line interface, you might
# prefer a more graphical application.)
psql test


But we want to use it from R.
Install Rdbi and RdbiPgSQL, from Bioconductor.
source("http://www.bioconductor.org/biocLite.R")
biocLite("RdbiPgSQL")
biocLite()
biocLite(c("graph", "Rgraphviz"))
I had to alter the .FirstLib function in RdbiPgSQL
and remove the autoloading of the chron.


library(Rdbi)
# We connect via a UNIX socket (in the default PostgreSQL
# installation, there are no INET sockets) and there is
# no password.
pcon <- dbConnect(PgSQL(), dbname="zoonek", user="zoonek")
res <- dbGetQuery(pcon, "SELECT * FROM TickData LIMIT 10")
dbDisconnect(pcon)


2.7 Packages


2.7.1 More Packages


Look on CRAN (Complete R Archive Network)
http://cran.r-project.org/


You can install them as:
R CMD INSTALL vcd 0.1-3.tar.gz


It you realize they do not work (it could happen a couple of years ago, but it should now be
exceptionnal), you can remove them with:
R CMD REMOVE vcd


2.7.2 Writing your own packages


You have written some nifty functions and would like to share them with your colleagues,
with the world, you would like to see them on CRAN. For this, you have to put all your
functions in a “package”.



http://www.bioconductor.org/biocLite.R"

http://cran.r-project.org/
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2.7.3 Vocabulary: package, library, bundle


There is often a confusion between “package” and “library”. A “library” is a directory,
usually containing one or several packages. A “package” is a set of functions, data sets and
manual pages, contained in a directory (“library”) or a *.tar.gz file (for Windows users, it
can also be a *.zip file, but you must find the one corresponding to your version of R). A
“bundle” is a set of packages contained in the same ”*.tar.gz” file. To increase the confusion,
the function to load a package is called “library”...


2.7.4 Example: package.skeleton()


Let us assume you have written three functions, “foo”, “bar” and “baz”, one data.frame,
“fbz”, and that you have put their definitions in a file “foobar.R”. You can create a package
as follows.
source("foobar.R")
package.skeleton("foobar", c("foo", "bar", "baz", "fbz"))


This creates the files
foobar
foobar/man
foobar/man/README
foobar/man/foo.Rd
foobar/man/bar.Rd
foobar/man/baz.Rd
foobar/src
foobar/src/README
foobar/R
foobar/R/foo.R
foobar/R/bar.R
foobar/R/baz.R
foobar/data
foobar/data/fbz.rda
foobar/DESCRIPTION
foobar/README


We can leave the *.R files untouched – they contain the code of our functions. We need to
modify the DESCRIPTION file. It currently contains
Package: foobarType: Package
Title: What the package does (short line)
Version: 1.0
Date: 2005-05-04
Author: Who wrote it
Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?


We change this to
Package: foobar
Type: Package
Title: Almost empty package
Version: 1.0
Date: 2005-05-04
Author: Vincent Zoonekynd <zoonek@example.com>
Maintainer: Vincent Zoonekynd <zoonek@example.com>
Description: Example package, containing silly functions,
such as addition or multiplication.


License: GPL


We also have to read and alter the documentation files *.Rd. They look like this:
\name{foo}
\alias{foo}
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%- Also NEED an ’\alias’ for EACH other topic documented here.
\title{ ~~function to do ... ~~ }
\description{
~~ A concise (1-5 lines) description of what the function does. ~~


}
\usage{
foo(x)
}
%- maybe also ’usage’ for other objects documented here.
\arguments{
\item{x}{ ~~Describe \code{x} here~~ }


}
\details{
~~ If necessary, more details than the description above ~~


}
\value{
~Describe the value returned
If it is a LIST, use
\item{comp1 }{Description of ’comp1’}
\item{comp2 }{Description of ’comp2’}
...


}
\references{ ~put references to the literature/web site here ~ }
\author{ ~~who you are~~ }
\note{ ~~further notes~~ }


~Make other sections like Warning with \section{Warning }{....} ~


\seealso{ ~~objects to See Also as \code{\link{~~fun~~}}, ~~~ }
\examples{
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.


## The function is currently defined as
function (x) { x + 1 }
}
\keyword{ ~kwd1 }% at least one, from doc/KEYWORDS
\keyword{ ~kwd2 }% ONLY ONE keyword per line


It is not really a LATEX file. Let us read this file line by line. First is the name of the manual
page – usually the name of the function currently described.
\name{foo}


Then, all the functions that will be described in this manual page. If you have several
functions that perform a similar task, it is wise to “refactor” them into a single function –
the user will only have to remember a single function name, you will have a single manual
page to write, a single set of tests. If it is not possible, you can still document the functions
together, in the same manual page. Here, let us document the three functions in the same
page.
\alias{foo}
\alias{bar}
\alias{baz}


Then, a short (less than one line) description of the function.
\title{Arithmetic operations}


Then, a longer (but still short) description.
\description{
Very simple functions that perform elementary arithmetic
operations such as adding one, multiplying by two or squaring.
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}


Then the “usage” of the function, i.e., how we should call it, with all the arguments, with
their default values, if any.
\usage{
foo(x)
}
\usage{
bar(x)
}
\usage{
baz(x)
}


Then, a description of the arguments, one by one (there can be many arguments and the
description can, of course, be much longer than that).
\arguments{
\item{x}{A number}


}


Then, a more detailed description of the functions, of the algorithms involved, of the common
mistakes, etc.
\details{
The \code{foo} function returns its argument incremented by 1.


The \code{bar} function returns its argument multiplied by 2.


The \code{baz} function returns its argument squared.
}


Then, the description of the value of the functions, especially if the value is a list.
\value{
Result of the operation.


}


A reference to articles, books, web sites that present the algorithms or ideas behind the
package.
\references{The four operations for dummies}


Your name and email address.
\author{Vincent Zoonekynd <zoonek@math.jussieu.fr>}


Links to other manual pages of interest: functions the user may want to use in conjunction
with your code – or instead of your code.
\seealso{\code{\link{sum}}, \code{\link{prod}}}


The most important part: the examples. The code must run without any problem, and
must not take too long: it will be run to check that everything went fine when downloading
and installing the package – it will also serve as regression tests: do use “stopifnot”.
\examples{
foo(1) + bar(2) + baz(3)
(1+1) + (2*2) + (3*3)


stopifnot( foo(5) == 6 }
stopifnot( bar(5) == 10 }
stopifnot( baz(5) == 25 }
}


You should also include keywords (one at a time).
\keyword{arith}% at least one, from doc/KEYWORDS
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\keyword{increment}
\keyword{double}
\keyword{square}


That is all for this first manual page. As we have documented the three functions, we can
remove the (empty) manual pages of “bar” and “baz”.
rm foobar/man/bar.Rd
rm foobar/man/baz.Rd


I let you document the data set, man/fbz.Rd.
We can now build the package (we are still in the shell):
R CMD build foobar


If there are no errors (in particular in the DESCRIPTION file), this yields
* checking for file ’foobar/DESCRIPTION’ ... OK
* preparing ’foobar’:
* checking DESCRIPTION meta-information ... OK
* cleaning src
* removing junk files
* checking for LF line-endings in source files
* checking for empty directories
* building ’foobar 1.0.tar.gz’


We can check it (this runs the examples of the manual pages),
R CMD check foobar


This yields
* checking for working latex ... OK
* using log directory ’/tmp/foobar.Rcheck’
* using R version 2.1.0, 2005-04-18
* checking for file ’foobar/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ’foobar’ version ’1.0’
* checking if this is a source package ... OK


* Installing *source* package ’foobar’ ...
** libs
WARNING: no source files found
chmod: cannot access ‘/tmp/foobar.Rcheck/foobar/libs/*’: No such file or directory
** R
** data
** help
>>> Building/Updating help pages for package ’foobar’


Formats: text html latex example
fbz text html latex example
foo text html latex example


missing link(s): ~~fun~~
** building package indices ...
* DONE (foobar)


* checking package directory ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking DESCRIPTION meta-information ... OK
* checking package dependencies ... OK
* checking index information ... OK
* checking package subdirectories ... WARNING
Subdirectory ’src’ contains no source files.
* checking R files for syntax errors ... OK
* checking R files for library.dynam ... OK
* checking S3 generic/method consistency ... OK
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* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking Rd files ... WARNING
Rd files with likely Rd problems:
Unaccounted top-level text in file "/tmp/foobar/man/foo.Rd":
Following section "note":
"\n\n ~Make other sections like Warning with \\section{Warning }{....} ~\n\n"


Rd files with duplicate "usage":
/tmp/foobar/man/foo.Rd


These entries must be unique in an Rd file.


Rd files with non-standard keywords:
/tmp/foobar/man/foo.Rd: ~kwd1 ~kwd2


Each "\keyword" entry should specify one of the standard keywords (as
listed in file "KEYWORDS.db" in the "doc" subdirectory of the R home
directory).


See chapter ’Writing R documentation files’ in manual ’Writing R
Extensions’.
* checking for missing documentation entries ... WARNING
Undocumented code objects:
baz


All user-level objects in a package should have documentation entries.
See chapter ’Writing R documentation files’ in manual ’Writing R
Extensions’.
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... WARNING
Objects in \usage without \alias in documentation object "foo":
baz


Functions with \usage entries need to have the appropriate \alias entries,
and all their arguments documented.
See chapter ’Writing R documentation files’ in manual ’Writing R
Extensions’.
* checking for CRLF line endings in C/C++/Fortran sources/headers ... OK
* creating foobar-Ex.R ... OK
* checking examples ... OK
* creating foobar-manual.tex ... OK
* checking foobar-manual.tex ... ERROR
LaTeX errors when creating DVI version.
This typically indicates Rd problems.


Then, you can start the bug squashing: typically, you have forgotten to document a function,
to delete a file, to delete an unwanted line in a manual page (the LATEX errors above are due
to this) or you have deleted too much, etc..
Then, when there are no bugs left, you can install the package and distribute the *.tar.gz
file to the world.
R CMD build foobar
R CMD check foobar
R CMD install foobar


Windows people are usually very inhappy with source packages (they lack the appropriate
tools to install everything – some people even say it is easier and faster to install Linux that
to install all the missing software) so you can provide them with a “binary” package – this
will not work if your package contains C code or if they have a different version of R – and
I have not tested it either – I do not have Windows.
cd /usr/local/R/library/
zip -r /tmp/foobar foobar/


TODO:
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Understand the problems with the keywords.
Read the documentation for all the bells and whistles I am not aware of...


2.7.5 example, demo


TODO


2.7.6 Namespaces


TODO
Namespaces (there can be a "NAMESPACE" file in the root directory of
the package)


2.7.7 R, Sweave and Lyx


Lyx is a user-friendly WYSIWYM (What You See Is What You Mean) interface to LATEX.
http://www.troubleshooters.com/lpm/200210/200210.htm


It can be made Sweave-aware.
http://www.mail-archive.com/r-help%40stat.math.ethz.ch/msg46946.html
http://www.ci.tuwien.ac.at/~leisch/Sweave/LyX


2.7.8 Vignettes


TODO


2.8 Other languages


2.8.1 C


For efficientcy reasons, all the code in a package will not be written in R: the parts of the
program that require the most time or the most memory will be written in a faster language
(often C, but I think there are still some people using Fortran – in this 21st century...).
The procedure is detailes in “Writing R extensions”. I simply reproduce their example:
In a "foobar.c" file:


void convolve(double *a, int *na, double *b, int *nb, double *ab)
{
int i, j, nab = *na + *nb - 1;
for(i = 0; i < nab; i++)
ab[i] = 0.0;


for(i = 0; i < *na; i++)
for(j = 0; j < *nb; j++)
ab[i + j] += a[i] * b[j];


}


Build a shared library (if it is for a package, it is automatic):


R CMD SHLIBS foobar.c


Load the shared library: for a package, you would use


.First.lib <- function(lib, pkg) {
library.dynam("foobar",pkg,lib)
cat("...")



http://www.troubleshooters.com/lpm/200210/200210.htm

http://www.mail-archive.com/r-help%40stat.math.ethz.ch/msg46946.html

http://www.ci.tuwien.ac.at/~leisch/Sweave/LyX
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}


but for an isolated use:


dyn.load("foobar")


You can then use it as:


conv <- function(a, b)
.C("convolve",


as.double(a),
as.integer(length(a)),
as.double(b),
as.integer(length(b)),
ab = double(length(a) + length(b) - 1))$ab


Let us also mention the ”.Call” function that allows you to use more complex data types (the
code would use R.h and Rinternals.h or Rdefines.h; the C function expects SEXP objects
as arguments and returns a SEXP object) and the ”.External” function (with a simgle
argument, that contains the list of arguments – useful if the function has a variable number
of arguments).
I do not give any more details: do read “Writing R extensions”, do check how libraries are
implemented.


2.8.2 C


I almost forgot: you may also call R code from C.


2.8.3 Perl


Here, it also works both ways: you can call Perl from R (for instance, to use the network or
regular expressions) or call R from Perl.
TODO: give an example where one calls R from Perl.
R::initR("--silent", "--vanilla");
my @x = 1..100;
R::callWithNames("plot", { x => \@x, ylab => ’foo bar’ });
R::eval("plot(1:10)");


But it might be easier, instead of calling Perl from R, to write a small perl script you would
call with the “system” command.
> library(gdata)


> read.xls
function (xls, sheet = 1, verbose = FALSE, ...)
{
package.dir <- .path.package("gregmisc")
perl.dir <- file.path(package.dir, "perl")
xls <- shQuote(xls)
xls2csv <- file.path(perl.dir, "xls2csv.pl")
csv <- paste(tempfile(), "csv", sep = ".")
cmd <- paste("perl", xls2csv, xls, dQuote(csv), sheet, sep = " ")
if (verbose)


cat("Executing ", cmd, "... \n")
results <- system(cmd, intern = !verbose)
if (verbose)


cat("done.\n")
out <- read.csv(csv, ...)
file.remove(csv)
return(out)


}
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2.8.4 PostgreSQL


When you play with very large data (R becomes less efficient when the data sizes grows
unwieldy), you can store them in a database: then, you just have to fetch the data you need
at a given moment (typically, a small part of the whole data).
TODO: give a more complete example...


2.8.5 Java


TODO
See also iPlots:
http://rosuda.org/iPlots/


2.9 (Graphical) User Interface


2.9.1 Tcl/Tk


I first heard about Tcl (pronounce “tickle”) in the early 1990s: it was used to build GUI on
Unix systems: at the time, it was quite a feat, and as Tcl was an interpreted language, as
easy to learn as a shell, all it required was a couple of lines of code. Later, Tk, the library
used to build those GUI, has been incorporated into other scripting languages, such as Perl
or Python – and now, R.
TODO: URLs
http://www.math.jussieu.fr/~zoonek/UNIX/10_ptk/1.html


Tcl is still used now:
http://www.macdevcenter.com/pub/a/mac/2005/08/12/tcl.html
http://www.macdevcenter.com/pub/a/mac/2005/01/28/tcl.html
http://www.macdevcenter.com/pub/a/mac/2004/11/09/weblog.html
http://www.macdevcenter.com/pub/a/mac/2004/08/27/blitting.html
http://www.vhayu.com/faq.html


2.9.2 Why do we need a GUI?


As R is a real programming language, it is already very powerful as is, but there are two
situations where you will need a GUI.
The first one is when you want some interactive graphics, while exploring the data. When
you want to see what happens when you change a parameter, you can write a loop and
display a plot for each iteration, but it is a bit clumsy: you would probably prefer
The second situation is when you want other people to use the software, without knowing
R (yet): either scientists, statistics users, or students, learning statistics. They will prefer a
menu-driven application.


2.9.3 Documentation


One may easily build graphical interfaces under R with Tcl/Tk.
library(tcltk)
library(help=tcltk)


The widgets are not documented – but they are the standard Tk widgets, that have been
used from Tcl, Perl, Python for ages.
http://www.math.jussieu.fr/~zoonek/UNIX/10_ptk/1.html


2.9.4 Idiosyncrasies of the link between R and Tcl


TODO: The problem with variables...



http://rosuda.org/iPlots/

http://www.math.jussieu.fr/~zoonek/UNIX/10_ptk/1.html

http://www.macdevcenter.com/pub/a/mac/2005/08/12/tcl.html

http://www.macdevcenter.com/pub/a/mac/2005/01/28/tcl.html

http://www.macdevcenter.com/pub/a/mac/2004/11/09/weblog.html

http://www.macdevcenter.com/pub/a/mac/2004/08/27/blitting.html

http://www.vhayu.com/faq.html

http://www.math.jussieu.fr/~zoonek/UNIX/10_ptk/1.html
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2.9.5 Examples


A small calculator.
tkdestroy(wtop)
wtop <- tktoplevel()
w.titre <- tklabel(wtop, text="Additions")
w.un <- tkentry(wtop)
w.deux <- tkentry(wtop)
w.resultat <- tklabel(wtop, text=0)
tkpack(w.titre, w.un, w.deux, w.resultat)
on.key.press <- function () {
# How complicated it os!
a <- tclvalue(tkget(w.un))
a <- eval(parse(text=a))
if(!is.numeric(a)) a <- 0
b <- eval(parse(text=b))
b <- tclvalue(tkget(w.deux))
if(!is.numeric(b)) b <- 0
tkconfigure(w.resultat, text=a+b)


}
tkbind(wtop, "<KeyPress>", on.key.press)


Here is an example from the manual.
tkdestroy(tt)
tt <- tktoplevel()
tkpack(txt.w <- tktext(tt))
tkinsert(txt.w, "0.0", "plot(1:10)")
eval.txt <- function()


eval(parse(text=tclvalue(tkget(txt.w, "0.0", "end"))))
tkpack(but.w <- tkbutton(tt,text="Submit", command=eval.txt))


The interested reader will especially look into the “tkrplot” package, to include an R graphic
inside a widget. The example from the manual shows a curve, depending on a parameter
that you can fix with a slider.
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Here is a more general function whose arguments are: a function that draws a picture
depending on a real parameter; the limits of this parameter.
library(tkrplot)
animate <- function (plot.function, limits) {
bb <- mean(limits)
tt <- tktoplevel()
img <-tkrplot(tt, function () { plot.function(bb) } )
f <- function (...) {
b <- as.numeric(tclvalue("bb"))
if (b != bb) {
bb <<- b
tkrreplot(img)


}
}
s <- tkscale(tt, command=f, from=limits[1], to=limits[2],


variable="bb", showvalue=TRUE,
resolution=diff(range(limits))/100, orient="horiz")


tkpack(img,s)
}


animate( function (a) { hist(abs(rnorm(200))^a) }, c(.1,2) )


Example: find the transformation to apply to a variable so that it looks normal.
n <- 200
k <- runif(1, 0,2)
x <- (5+rnorm(n))^k
animate( function (a) { x <- x^(1/a); qqnorm(x); qqline(x,col=’red’) },


c(.01,2) )


Example: watch the effects of bin width in a histogram.
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n <- 200
x <- rnorm(n)
animate( function (a) {


a <- ceiling(a)
print(a)
hist(x, breaks=a, col=’light blue’, probability=T);
lines(density(x), col=’red’, lwd=3)


},
c(2,102) )


Example: the central limit theorem, presented with an interactive animation.
N <- 1000
n <- 102
m <- .5
s <- 1/sqrt(12)
x <- matrix(runif(n*N), nc=n)
animate( function (a) {


x <- (apply(x[,1:a],1,sum) - a*m)/(sqrt(a)*s)
hist(x, col=’light blue’, probability=T,


main=paste("n =",a), ylim=c(0,.4),
xlim=c(-4,4))


lines(density(x), col=’red’, lwd=3)
curve(dnorm(x), col=’blue’, lwd=3, lty=3, add=T)
if( N>100 ) {
rug(sample(x,100))


} else {
rug(x)


}
},
c(2,102)


)


# Idem, with a bimodal distribution
N <- 1000
n <- 101
m <- 0
s <- sqrt(10)
x <- rnorm(n*N, sample(c(-3,3),n*N,replace=T))
x <- matrix(x, nc=n)
animate( function (a) {


x <- (apply(x[,1:a],1,sum) - a*m)/(sqrt(a)*s)
hist(x, col=’light blue’, probability=T,


main=paste("n =",a), ylim=c(0,.4),
xlim=c(-4,4))


lines(density(x), col=’red’, lwd=3)
curve(dnorm(x), col=’blue’, lwd=3, lty=3, add=T)
if( N>100 ) {
rug(sample(x,100))


} else {
rug(x)


}
},
c(1,101)


)


# Idem, with an asymetric distribution
N <- 1000
n <- 102
m <- 1
s <- 1
x <- rexp(n*N)
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x <- matrix(x, nc=n)
animate( function (a) {


x <- (apply(x[,1:a],1,sum) - a*m)/(sqrt(a)*s)
hist(x, col=’light blue’, probability=T,


main=paste("n =",a), ylim=c(0,.4),
xlim=c(-4,4))


lines(density(x), col=’red’, lwd=3)
curve(dnorm(x), col=’blue’, lwd=3, lty=3, add=T)
if( N>100 ) {
rug(sample(x,100))


} else {
rug(x)


}
},
c(1,101)


)


Exercice: draw the density function of a distribution depending on a parameter.
TODO: other examples (to be written...)
Write a generic function to modify a graphic depending on
one or several parameters.


Application:
- density of a distribution depending on several parameters.
- qqnorm and variable transformations
- histogram: interactively change "bw" and "offset"


Do the same with several graphics that simultaneously
change. Example: density + repartition function + qqnorm
+ boxplot for a probability distribution depending on
several parameters. or a sample to which you apply a
transformation depending on one parameter.


2.9.6 RCommander: a complete R GUI in Tk


TODO: Screenshots


2.9.7 Other examples


library(fBasics)
symstbSlider()
TODO: screenshot...


2.9.8 Rgl: interactive 3D graphics


TODO: screenshots, examples


2.9.9 Other widget libraries: RGtk2


2.10 Web interface: Rpad


2.10.1 Installation


First, install it (check the latest version number):
wget http://www.rpad.org/downloads/Rpad_0.9.2.tar.gz
R CMD INSTALL Rpad 0.9.2.tar.gz



http://www.rpad.org/downloads/Rpad_0.9.2.tar.gz
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2.10.2 Use


If the pages are already written, if a server is already running, it works as follows: you fill
in the forms, you click on the “Calculate” button


and you get the result, that contains both numeric results and plots.


2.10.3 Overview


So we have to see several things: how do we create the pages? How do we run the server?
There are two ways of creating the pages: either with the “wysiwyg” editor (some Javascript
can turn a web browser into an HTML editor) or with a normal text editor that will not
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hide the HTML. There are also two ways of running the server: either a tiny HTTP server
(in Tcl) run from within R, or a full-fledged HTTP server (typically, Apache with php and
mod perl).
For the moment, let us simply run the tiny HTTP server
library(Rpad)
Rpad()


(this should launch your default web browser – it works with firefox but not with Konqueror)
and have a look at the contents of the pages. They are normal XHTML pages, with some
R code in the middle.
Let us quickly list some of the idiosyncrasies of this HTML.
The calculate button, that runs the computations:
<span contentEditable="false">
<input onClick="javascript:top.Rpad calculate()"


value="Calculate"
type="button"


/>
</span>


You can also run the computations when the user clicks on link:
href=javascript:R run commands(’source("foo.bar")’, ’Rpad calculate()’)


Some computations (yes, you have to add ”<br/>” to indicate the end of the lines and to
replace the ”<” by ”&gt;”:
<div class="Rpad input"


rpad type="R">
source("myMacros.R") <br/>
x &gt;- foo.bar() <br/>


</div>


Sometimes, you want the computations to be performed when the page is loaded:
<div class="Rpad input" rpad type="R" Rpad run="init">
...


</div>


A plot:
plot(...)
...
HTMLon()
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showgraph()


Another plot:
graphoptions(width=4, height=4)
newgraph()
plot(...)
...
HTMLon()
showgraph()


Displaying a data frame in HTML:
HTMLon()
d <- data.frame(...)
HTML(d)


Forms to fill in:
<span contentEditable="false">
<input class="Rpad input"


name="foo"
rpad type="Rvariable"
value="2*pi"


/>
</span>


The “Rvariable” type corresponds to numbers or any R expression. If you want a string
(and do not want the user to enter the quotes), use “Rstring” instead.
For larger data (say, copy-pasted from another application), you can use a <textarea>.
<textarea class="Rpad input"


rpad type="file"
name="data.csv"
rows=10 cols="60">


</textarea>
...
<div class="Rpad input" rpad type="R">
x = read.csv("data.csv")
...


</div>


For choices from a dropdown menu:
HTMLon()
HTMLselect("foo", myList)
...
cat("You have chosen ", foo, ".\n", sep="")
plot(get(foo))
...


You can ask the browser to colour the R code:
<style>
.Rpad input {
behavior: url(js/R highlight.htc)
-moz-bindings: url(js/moz-behaviors.xml#R-highlight.htc)


}
</style>


Sometimes, you want to hide parts of the code (uninteresting code, such as loading your
functions, your data, or creating the HTML buttons or menus):
(not tested)
<div contentEditable="false">
<span class="Rpad input" rpad type="R"


style="display:none">
...
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</span>
</div>


2.10.4 Conlusions


I have really tried hard to use Rpad, but the results were unsatisfactory. There are speed
and stability problems, and we never know where they come from: is it a browser-related
problem (if the server seems dead and if you are using Internet Explorer, just restart IE
– the problem does not come from the server), is it a network problem, a server problem,
an R problem, an HTML problem (the documentation examples contain incorrect HTML
(<div> inside of <span>) and suggests to use browsers known not to respect the standards
(IE)), a javascript problem? There are simply too many software components – and they
interact in too many ways.
If you just want a “speciallized calculator”, with which you would perform a single simple
task, Rpad may be a good choice. If you want anything more complex, in particular if you
want several pages linked together, it is not a good solution.
TODO:
The Mozille extension
How to use a "true" web server
Give an example.


2.11 Web programming: RZope


TODO


2.12 Web services


A web service is like a web page with a form on it, for the user to fill in, except that it is
not designed to be used by a human user, but by another machine. As a result, the various
fields to fill in and the results are not hidden in the HTML but presented in a more directly
accessible way – if you want to extract the information from the result, you do not have to
trim down the HTML response.
Here are a few examples. You can access Google as a web service: you send the search terms
and you get an XML file that contains the first 10 results with, for each of them, the URL,
the tile, the date and an extract containing the serach terms.
TODO: an example of the actual XML received


Amazon.com also provides a web service: you send an ISBN (this is the reference number,
on the back of every book) and you get all the book details (author, title, publisher, date,
price, availability, etc.) in an XML file.
TODO: other examples
Amazon


Some data centers also provide API: for instrance, in Finance, you can imagine a web service
to which you send a list of company names or identifiers, a list of dates, a list of items of
interest about the company (say, price, volume, book value, earnings, sales, cash flow, etc.
– well, numbers hopefully describing the company) and that gives you the corresponding
items, for the corresponding companies and the corresponding dates. It would be as simple
as retrieving a URL
http://.../getData.pl?ids=IBM,RHAT&dates=2005-06-01,2005-07-01&items=price,


volume


With more spaces:
http://.../getData.pl ? ids = IBM, RHAT


& dates = 2005-06-01, 2005-07-01
& items = price, volume



http://.../getData.pl?ids=IBM,RHAT&dates=2005-06-01,2005-07-01&items=price,volume

http://.../getData.pl?ids=IBM,RHAT&dates=2005-06-01,2005-07-01&items=price,volume

http://.../getData.pl
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The result could be, say, a CSV file such as
TODO: give an example.


The technologies used range from the utterly obvious (a URL that ends in foo.cgi?search=bar)
to the very complex (SOAP: the request is an XML file, send via HTTP POST, the answer,
in XML, is contained in an XML “enveloppe”).
TODO


http://www.google.com/apis/


2.13 Clusters, parallel programming


Actually, I have never used a cluster, so the following lines might not be the most reliable
source of information.


2.13.1 Vocabulary


SIMD (Simple Instruction Multiple Data): this is an architecture in which we have several
processors, that process different data, according to the same program. This is the ideal
architecture if you want to parallelize the operations that, in R, already appear parallelized,
such as vector addition or multiplication.
MIMD (Multiple Instruction Multiple Data): this is another kind of architecture, in which
different data are processed in different ways. You can think of it as several machines (or
several processors in the same machine) that perform different tasks, independantly.
A problem is said to be “embarassingly parallel” if it is easy to solve, provided we have a lot
of machines: we can cut it into many small pieces, write a program to solve a single piece
of the problem, send those pieces to our different machines, and finally gather and combine
the results. In particular, if the problem is data-intensive, in order to solve a part of the
problem, you only need a part of the data.
There is often a distinction between parallel programming (everything is done on the same
processor, that can do several things at the same time, in a SIMD or MIMD fashion –
but the different tasks are perfectly timed) and distributed programming. With distributed
programming, the processors are often on different machines, communication between those
machines takes time, the machines do not run at the same speed – so that we do not know
if all the computations will end at the same time, nor even which one will end first –, there
can be network problems (one or several machines can become inaccessible), the machines
can break (so that if we do not receive the results from a machine, we have to send the
data again, to another machine) and even the main machine (the “master”), that controls
the others, may break (so that the other machines have to choose, themselves, someone to
replace it).
A cluster is a set of machines used for parallel programming. Typically, the operating
system provides the distributed programming layer, so that the programmer (or user) sees
the cluster as a parallel programming (or computing) environment.
A node is a machine (or a processor) in a cluster.
The use of clusters is sometimes refered to as High Performance Computing (HPC) or, nore
recently, Grid Computing.


2.13.2 BLAS (Basic Linear Algebra System)


A lot of parallel (or non-parallel, actually) computations require vector or matrix computa-
tions: processor vendors (Intel, IBM, Sun, etc.) can provide libraries that take advantage
of the peculiarities of their processors to speed up those operations. For the most trivial
operations, such as adding or multiplying two vectors, the libraries ask the processor to
do several operations at the same time (with very old processors, it was not possible, but
recent processors can do that, to a certain extent); for more complicated operations, such as
multiplying two matrices, the libraries can, on top of that, use non-trivial algorithms that
have a lower complexity.
If you do not have a BLAS library (usually, you have to pay extra for it), you can use ATLAS
(Automatically Tuned Linear Algebra Software).



http://www.google.com/apis/
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http://math-atlas.sourceforge.net/


When you search the internet about BLAS, you will run into LinPack (an old linear algebra
library, whose function names are as readable as the 2-letter basic Unix commands – but
with five letters), LaPack (a more recent replacement for LinPack – BLAS is a part of
LaPack) and the LinPack benchmark (a series of computations used to gauge the speed of
a computer for numeric computations). ScaLaPack is a parallel implementation of LaPack.
http://en.wikipedia.org/wiki/LAPACK


2.13.3 PVM (Parallel Virtual Machine), MPI (Message Passing
Interface)


These are protocols for parallel programming. You will use them if you want to program
yourself the parallelization of your application, if this paralelization is not trivial. It is used,
internally, by the user-level alternatives such as OpenMosix.
LAM/MPI and MPICH are different implementations of MPI.


2.13.4 Beowulf


This is a first kind of cluster, that uses MPI or PVM. The programs running on a Beowulf
cluster have to be specifically written (or modified) for this architecture: the programmer
has to know about PVM and/or MPI.


2.13.5 SSI (Single System Image)


This is another type of cluster that turns a bunch of machines into a single SMP machine
(i.e., a multi-processor machine).
You can use normal programs on an SSI cluster: each program will run on a single machine
(but you do not know which one: the cluster will choose an idle machine and, if the load
increases, it may even move the process to another machine). You can take advantage of
such an architecture by either forking your program (if you write it yourself) or by running
several programs at the same time – in Perl, I would use the Parallel::ForkManager module.
#!perl -w
use strict;
my $MAX PROCESSES = shift || 10; # Number of processes to run simultaneously
use Parallel::ForkManager;
my $pm = new Parallel::ForkManager($MAX PROCESSES);
while(<>){ # The processes (shell commands) are read from stdin
my $pid = $pm->start and next;
system($ );
$pm->finish; # Terminates the child process


}


2.13.6 OpenMosix


This is a free (GPL) SSI implementation.


2.13.7 pR


An R package for parallel computations. It can be used as follows.
library(pR)
StartPE(2) # Either 2 processors on the same machine


# or 2 nodes in an MPI cluster
PE( a <- some.function(some.argument) )
PE( b <- some.function(some.other.argument) )
PE( y <- f(a, b) )



http://math-atlas.sourceforge.net/

http://en.wikipedia.org/wiki/LAPACK
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2.13.8 RScaLaPack


An R package to use ScaLaPack, a parallel implementation of LaPack – if you have really
large matrices: the computations must take longer than the time required to send and receive
the data.


2.13.9 Snow


An R package that provides a parallelized version of the “lapply” function – but, if I under-
stand correctly, there must be at least as many machines as elements in the list.


2.13.10 nws


A new package, that provides seamless parallelism.
TODO


2.13.11 Rmpi, Rpvm


R packages if you want to use MPI or PVM yourself, i.e., if you want to control very finely
how your algorithm is parallelized.


2.13.12 RSprng (Scalable Parallel Random Number Generator)


R package that provides a parallelized random number generator – otherwise, random num-
bers generated on different machines may fail to look independant (indeed, they are gener-
ated by the same algorithm...).


2.13.13 Aspect


http://www.aspect-sdm.org/


2.14 Miscellaneous


2.14.1 Functions: numerical integration and derivation


TODO
?D
Explain where those derivatives could be used (optimization
algorithms)


?integrate
library(help=adpat)
library(help=odesolve)


2.14.2 Formulas


Some functions (lm, prcomp, plot, xyplot, lme) accept a formula as argument. You might
want to do the same with your own functions.
TODO


# To turn a formula into a data.frame
model.frame(y ~ x1 + x2)


# If you have several variables on the left hand-side of the ~
# operator, you get a data.frame whose first component is not a
# vector but a matrix -- yes, this is possible.
model.frame( cbind(y1, y2) ~ x1 + x2 )



http://www.aspect-sdm.org/
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# For formulas that contain the | operator
TODO


Exercise: Take the code of a function using the “model.frame” function and understand it.
getAnywhere("plot.formula")


2.14.3 Sparse matrices


When computing with large matrices, you tend to keep the whole matrices in memory. But
this is not always needed: in particular, if the matrix contains a lot of zeros, it can be a
waste of memory – and a waste of time when you multiply with it. A sparse matrix is such
a matrix, with a lot of zeros – and we can ask the computer to efficiently deal with it.
TODO
library(help=Matrix)
library(help=SparseM)


2.14.4 IEEE arithmetics


Sometimes, to check if a new computation software works well, people give it a few simple
computations, such as
> 1 + 1
[1] 2


or
> .3 - .2 - .1
[1] -2.775558e-17


> 0.3 / 0.1
[1] 3
> 0.3 / 0.1 == 3
[1] FALSE
> 0.3 / 0.1 - 3
[1] -4.440892e-16


Er...
This might not be the result you were expecting, but it should not be surprising. Most
computers and numerical software use the so-called “floating point numbers”. Broadly
speaking, it means that numbers like 121 are not stored as “121”, but rather as “1.21 * 10
ˆ2”. The first number, “1.21”, is called the mantissa (or significand), the second, “2”, the
exponent.
Well, you easily guess, from the result above, that this is not the whole story: computers
do not like decimal arithmetics – they prefer binary arithmetics. As a result, the mantissa
is written as a binary number, and we do not use a power of 10 but a power of 2.
1.21 = 1 * 2^0 +


0 * 2^-1 +
0 * 2^-2 +
1 * 2^-3 +
1 * 2^-4 +
0 * 2^-5 +
1 * 2^-6 +
0 * 2^-7 +
1 * 2^-8 +
1 * 2^-9 +
1 * 2^-10 +
0 * 2^-11 +
0 * 2^-12 +
0 * 2^-13 +
...
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In other words,
1.21 (decimal) = 1.00110101110000101... (binary)


You can compute this as follows:
x <- 1.21
for (i in 1:20) {
cat(floor(x))
x <- x - floor(x)
x <- x * 2


}; cat("\n")


The problem is that this decimal number is not a round number in binary arithmetics: it
has to be rounded, it cannot be represented exactly in base 2.
This was the case with the numbers at the begining of this note (I add spaces to underline
the periodicity of the binary expansion):
.1 (decimal) = 0.0 0011 0011 0011 0011... (binary)
.2 (decimal) = 0.0011 0011 0011 0011 0011... (binary)
.3 (decimal) = 0.01 0011 0011 0011 0011... (binary)


(You may notice that the binary expansion of .2 is the same as that of .1, shifted by one
digit – it simply means that .2 is the double of .1.)
As none of those numbers are whole binary numbers, they have to be rounded. When you
compute, some of those rounding errors cancel, but others accumulate.
To know more about IEEE 754 arithmetics:
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html
http://grouper.ieee.org/groups/754/
http://stevehollasch.com/cgindex/coding/ieeefloat.html


If you want those unequal numbers to be equal (one usually needs this to write tests for
one’s code), use the “all.equal” function.
> all.equal(0.3 / 0.1, 3)
[1] TRUE


> all.equal(0.3 - 0.2 - 0.1, 0)
[1] TRUE


In actual regression tests, it should be
> stopifnot( all.equal(0.3 / 0.1, 3) )
> stopifnot( all.equal(0.3 - 0.2 - 0.1, 0) )


2.15 Numerical optimization


Many numerical statistical problems can be phrased as “find the values of the parameters
that minimize some quantity – some error term”. We now present a few algorithms to
numerically solve such problems.


2.15.1 Newton-Raphson


TODO


2.15.2 Nelder-Mead


TODO


2.15.3 Linear programming: Simplex


Some of those optimization problems can be stated as “minimize some linear function of x1,
x2, ..., xn, subject to a few linear constraints”. For historical reasons, such an optimization



http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html

http://grouper.ieee.org/groups/754/

http://stevehollasch.com/cgindex/coding/ieeefloat.html
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problem is called a “program” – this dates back to the pre-computer era. As the constraints
are linear, they define a “simplex”, i.e., a higher-dimensional analogue of a (convex) polygon
or polyhedron. It can be shown that, as the function to be minimized is linear, the solution
is on a vertex of this simplex.
The simplex algorithm starts at one vertex and hops to a nearby vertex where the function
to be minimized is lower – when we have nowhere to hop, we are done.
TODO: give more details about the algorithm


TODO: in R?
library(help=lpSolve)
library(help=linprog)
library(help=glpk)


2.15.4 MIP (Mixed Integer Programming) and Branch and Bound


Sometimes, the constraints state that some of the variables have to be integral or binary.
TODO: explain the algorithm in the case of binary constraints.
TODO: give an example (the Travelling Salesman Problem)
TODO: In R?


2.15.5 Interior Point (IP) Methods


TODO


2.15.6 Quadratic programming


One sometimes stumbles upon a generalization of a linear program: the constraints are still
linear, but the function to optimize is a degree-2 polynomial. This is called a quadratic
program.
TODO: Give an example (portfolio optimization)
TODO: In R
library(help=quadprog)


2.15.7 Sequential Quadratic Programming (SQP)


In the same way as Newton’s method solves f(x) = 0 by approximating the function f with
its first-order Taylor expansion, one can minimize a function f, iteratively, by apploximating
it by its second-order Taylor expansion.
One can even add linear constraints (equalities and inequalities): the problem to solve at each
iteration is then a Quadratic Program (QP). In high dimensions, that way of solving non-
linear (and even non-convex) optimization problems is actually faster than other methods
(e.g., interior-point (IP) methods).
SQP also applies to non-linear constraints: replace the constraints by their first-order Tay-
lor expansion and use the second-order derivative of those constraints as a penalty to the
function to optimize.


2.15.8 Interior Point (IP) methods


TODO: understand
Replace the inequalities in
Min f(x)
g(x) = 0
h(x) >= 0


by a penalty
Min f(x) - mu sum log(s i)
g(x) = 0
h(x) = s
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2.15.9 EM (Expectation Maximization)


TODO


2.15.10 Optimizing noisy functions


Tricky, but check the genalg and DEoptim packages.


2.15.11 Dynamic programming


TODO (I am not sure it really belongs here)
Examples:
- matrix multiplication
- order of the JOINs
- portfolio optimization (?)


2.16 Miscellaneous


2.16.1 Memory woes


The most common memory problem strikes Windows users with a 2Gb machine: their
operating software does not allow them to use more than 1Gb of memory. If you are in this
situation, the R windows FAQ details all the new problems that appear if you are stuck on
this platform. In particular, it explains how to increase this memory limit – but Windows
specialists tell me that this operating system becomes unstable when a process uses more
than 1Gb: you might reach 1.5Gb without any problem, but do not hope to access those
2Gb...
http://cran.r-project.org/bin/windows/base/rw-FAQ.html


But you should really consider installing Linux instead: you can use those 2Gb (problems
may appear when a process uses more that 2Gb if the machine only has 2Gb, though).
> library(fortunes)
> fortune("install")


Benjamin Lloyd-Hughes: Has anyone had any joy getting the
rgdal package to compile under windows?


Roger Bivand: The closest anyone has got so far is Hisaji
Ono, who used MSYS (http://www.mingw.org/) to build
PROJ.4 and GDAL (GDAL depends on PROJ.4, PROJ.4 needs a
PATH to metadata files for projection and
transformation), and then hand-pasted the paths to the
GDAL headers and library into src/Makevars, running Rcmd
INSTALL rgdal at the Windows command prompt as
usual. All of this can be repeated, but is not portable,
and does not suit the very valuable standard binary
package build system for Windows. Roughly: [points 1 to
5 etc omitted]


Barry Rowlingson: At some point the complexity of
installing things like this for Windows will cross the
complexity of installing Linux... (PS excepting
live-Linux installs like Knoppix)


-- Benjamin Lloyd-Hughes, Roger Bivand and Barry Rowlingson
R-help (August 2004)


Actually, even on Linux, you can run into memory problems: when R needs more memory,
it asks the operating system for more and, from time to time, redeems the memory it no
longer needs to the operating system (this is called “garbage collection”). The problem is
that (when you get near the maximum physically available memory) the memory can become
fragmented. A simple solution, if it only happens once (not in the middle of a huge loop), is



http://cran.r-project.org/bin/windows/base/rw-FAQ.html

http://www.mingw.org/
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to save the current, fragmented session (it is fragmented in memory, but the fragmentation
will be lost when it is written to disc), quit R, launch it again and read in the previous
session.
?save.image


If it happens in the middle of a loop, you can try to explicitely delete the large objects (with
the “rm” function) when you no longer need them and explicitely call the garbage collector
(with the “gc” function).
for (...) {
r1 <- lmer(...)
...
rm(r1)
gc()
...
rm(r2)
gc()


}


If you do not know where the memory is used, the “object.size” function is your friend.
all.object.sizes <- function () {
res <- unlist(lapply( ls(1), function (x) { object.size(get(x)) } ))
names(res) <- ls(1)
sort(res)


}


all.object.sizes.everywhere <- function () {
res <- NULL
for (a in search()) {
r <- unlist(lapply( ls(a), function (x) { object.size(get(x)) } ))
if (!is.null(r)) {
names(r) <- paste(a, ls(a), sep="::")
res <- c(res, r)


}
}
sort(res)


}


But these are just workarounds: a better solution is to look if you really need all this data
at once. Usually, you do not: if this is your case, you can store your data in a database and
only retrieve the chunks you need. The word “database” may sound daunting, but for simple
data, SQLite (discussed somewhere in this document) requires no server, no configuration,
no installation – it stores the data in a conventionnal file and provides an SQL interface to
it.
If you really need more memory, you should know that: 32-bit machines are limited to
4Gb per processor; the Windows operating system cannot reliably grant more that 1Gb to
a single process; on Linux, problems may appear if a simgle process requires more than
3Gb (if you have that much memory). You can turn to 64-bit machines, but then again,
you should know that: on these machines, the Windows operating system runs in 32-bit
emulation mode, so you are still limited to 4Gb per processor; most Unix-like operating
systems (MacOS X.4, Linux, FreeBSD, etc.) are available for 64-bit machines and can take
advantage of them.


2.16.2 Displaying numbers


It is usually meaningless to express the result of a statistical computation with a lot of
significant digits. For instance, if you compute the average height of 10 people, you need
not be as precise as “1.718937283m”: “1.72m” will do.
You can round numbers with the “floor” (round below), “ceiling” (round above), “round”
(round to the nearest), “signif” (round to the nearest, not with a prespecified number of
decimal places, as with the previous function, but with a prespecified number of significant
digits).
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> f <- function (x) {
+ c(x=x, floor=floor(x), ceiling=ceiling(x), round=round(x,2), signif=signif(x,2))
+ }
> t(apply(t(rt(10,4)),2,f))


x floor ceiling round signif
[1,] 0.3209408 0 1 0.32 0.32
[2,] -3.2453803 -4 -3 -3.25 -3.20
[3,] -0.8474375 -1 0 -0.85 -0.85
[4,] 1.7481940 1 2 1.75 1.70
[5,] -1.1009298 -2 -1 -1.10 -1.10
[6,] 0.5767945 0 1 0.58 0.58
[7,] 0.9479906 0 1 0.95 0.95
[8,] 0.6373905 0 1 0.64 0.64
[9,] -2.1388324 -3 -2 -2.14 -2.10
[10,] -0.5720559 -1 0 -0.57 -0.57


Sometimes, you do not want to round the numbers but merely control the way they are
printed. The “digits” option specifies the number of digits to be displayed (but, in memory,
for the computations, the numbers retain all their digits).
> pi
[1] 3.141593


> options()$digits
[1] 7


> options(digits=4)
> pi
[1] 3.142


> options(digits=7)


Sometimes, the numbers get printed in scientific notation, while you would prefer a more
classical notation.
> x <- as.data.frame(t(t(rcauchy(10)^2)))
> x


V1
1 1.869630e+00
2 5.909726e-01
3 6.114153e-01
4 5.320118e-01
5 5.699883e+00
6 2.616534e+04
7 2.019110e-02
8 1.910365e-01
9 2.384527e-03
10 7.097835e-02


The computer tries to choose between the standard notation and the scientific one by com-
paring the length of the various numbers. In this example, we want at least 7 significant
digits (the “digits” option): for this, because one value is around 2e-3, we need 10 decimal
places. But as we also 2e+4, we end up using as much as 16 characters to display some of the
numbers. On the contrary, in scientific notation, we only use 12 characters: by parsimony,
the computer chooses the scientific notation.
But we can alter this by adding a penalty to the scientific notation, with the “scipen” option:
here, we add a 5-character penalty to the scientific notation; as 16 <= 12 + 5, we keep the
standard notation.
> options(scipen=5)
> x


V1
1 1.869630292
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2 0.590972584
3 0.611415260
4 0.532011822
5 5.699882601
6 26165.335966629
7 0.020191104
8 0.191036531
9 0.002384527
10 0.070978346


Sometimes, when we want a greater control on the way the numbers are printed (typically
when you are writing the “print” method of an object you have just defined), you can
resort to the lower-level “formatC” function, that transforms numbers into strings, allows
you to choose between integer, standard or scientific notation, that allows you to add marks
between thousands, millions, etc., that allows you to change the symbol used as decimal
point, that allows you to align the numbers on the left or on the right.
> formatC(pi, digits=2, width=8, format="f")
[1] " 3.14"


> formatC(pi, digits=4, width=8, format="f")
[1] " 3.1416"


> formatC(pi, digits=4, width=8, format="f", flag="-") # Flush left
[1] "3.1416 "


> formatC(1e6, digits=4, width=20, format="f", big.mark=",")
[1] " 1,000,000.0000"


> formatC(1e6, digits=0, width=20, format="f", big.mark=",")
[1] " 1,000,000"


> formatC(pi * 1e6, digits=9, width=20, format="f", big.mark=",", small.mark="
")
[1] " 3,141,592.65358 9793"


> formatC(pi * 1e6, digits=9, width=20, format="f", big.mark=" ",
+ small.mark=" ", small.interval=3, decimal.mark=",") # in France...
[1] " 3 141 592,653 589 793 "


There is also a “format” function (slightly less powerful), a “prettyNum” function (a variant
of “format”), a “format.pval” function (for p-values).


2.17 Dirty Tricks


2.17.1 Catching errors


There is a “try” command, to run functions that might crash.
try(...)


We shall use it later in this document, usually on the form
x <- NA
try( x <- ... )
if( is.na(x) ) {
...


} else {
...


}


or even, sometimes,
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done <- FALSE
while (!done) {
r <- try( ... )
done <- !inherits(r, "try-error")


}


Actually, the manual tells us that we are not supposed to use “try” (I use it a lot) but
“tryCatch” (which I have never used).
?tryCatch


2.17.2 Exceptions


TODO
?on.exit
?reg.finalizer # When I speak about memory and garbage collection
?setHook # AOP...


2.17.3 Global variables


As functions have NO side effect, we should not be able to change global variables from
within a function. However,
x <<- 1+2+3+4+5


modifies the “x” variable where it lives or, if it does not exist yet, defines it as a global
variable.
Other way of doing it:
set.global <- function (x, value) {
x <- deparse(substitute(x))
assign(x, value, pos=.GlobalEnv)


}


And it works:
> set.global(a,3)
> a
[1] 3
> set.global(a,1:10)
> a
[1] 1 2 3 4 5 6 7 8 9 10


This can be generalized to write methods that modify the object to which they are atteched.
Instead of using pos=.GlobalEnv, you can try -2: a variable local to the environment that
called the function (I think).


2.17.4 Environments


You can explicitely create “environments” and use them as hash tables.
> x <- new.env(hash=T)
> assign(’foo’, 3, env=x)
> assign(’bar’, list(’a’=3, ’b’=list(’c’=1, d=’foo’)), env=x)
> assign(’baz’, data.frame(rnorm(10),rnorm(10)), env=x)
> x
<environment: 0x8bb97bc>
> ls(env=x)
[1] "bar" "baz" "foo"
> get(’foo’, env=x)
[1] 3
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2.17.5 Launching R


We can ask R to perform certain actions when it is launched (for instance, load a certain
library) or when we close it (for instance, save some of the data under a certain format) by
redefining the ”.First” and ”.Last” functions.
> ?Startup
> .First
function() {


require("ctest", quietly = TRUE)
}


2.17.6 #!


TODO


2.17.7 Other external programs


The “system” command can launch any Unix command.
system("top")


If you want to launch the command in the background, you just add an ”&” at the end,
as usual. If the command expects arguments (in particular the name of a file containing
the data to process), it might be useful to print the command that will be used (R is not
good/intuitive at string processing). For instance, in xgobi’s code (xgobi or ggobi is an
external program to visualize data in dimension 3 of higher), we find


...
args <- paste("-title", paste("’", title, "’", sep = ""),
args)


command <- paste("xgobi", args, dfile, "&")
cat(command, "\n")
s <- system(command, FALSE)
invisible(s)


}


This is mainly used to transfer the data we are working with to another program, often to
visualize them. We shall see how to call xgobi/ggobi (to visualize high-dimensional data,
dynamically and interactively) from R. We can also use it to produce “pretty” pictures, for
instance to add a background to a graphic (with ImageMagick) or to ask PoVRay to produce
a picture (such as the one used as title of this document) or an animation.
TODO: URL of the Linux Journal article about data visualization with
PoVRay.


You can also use it to automatically launch LATEX (them xdvi, dvips, lpr) on a file, previously
created (with SWeave, that allows one to add R code, results of computations made with
R, graphics made with R, in a LATEX document).


2.17.8 deparse() and substitute()


The “deparse” command shows the contents of an object, as a string (you can then play
with the string – you would want to do that, for instance, if you wanted to create a LATEX
file by hand, from R) – if you just want to see it, just give the object name to the interpreter
or use the “print.defaut” function.
> print
function (x, ...)
UseMethod("print")


> deparse(print)
[1] "function (x, ...) " "UseMethod(\"print\")"
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The “substitute” command performs substitutions in an expression (the result is an uneval-
uated expression).
> substitute(x+1, list(x=3))
3 + 1


We have also seen that the “substitute” command (often together with the “deparse” com-
mand) could allow a function to see where its arguments came from.
my.arg <- function (x, ...) {
cat("My first argument was: ")
cat(deparse(substitute(x)))
cat("\n")


}


> my.arg(3)
My first argument was: 3


> my.arg(x)
My first argument was: x


> my.arg(x+1)
My first argument was: x + 1


2.17.9 get()


The “get” command turns a string containing the name of a variable into the contents of
the variable.
> get("plot")
function (x, ...)
{
if (is.null(attr(x, "class")) && is.function(x)) {
if ("ylab" %in% names(list(...)))
plot.function(x, ...)


else plot.function(x, ylab = paste(deparse(substitute(x)),
"(x)"), ...)


}
else UseMethod("plot")


}


2.17.10 Environments: ls(), rm(), search()


The “ls” command gives the list of the variables currently defined. You can specify in which
environment to look (as a result, you can browse through the global variables, even if they
are masked by the local variables). You can also search a variable name from a regural
expression.
> ls()
[1] "a" "my.arg" "set.global" "x" "y"


> ls(pos=.GlobalEnv)
[1] "a" "my.arg" "set.global" "x" "y"


In a Unix fashion, variables whose name start with a dot are “hidden”: you must explicitely
ask to see them.
> ls(all=T)
[1] "a" "my.arg" ".Random.seed" "set.global"
[5] ".Traceback" "x" "y"


The “rm” command deletes variables.
The “search” command shows the “path” (i.e., the list of environments) in which R looks
for the variables.
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> library(MASS)
> search()
[1] ".GlobalEnv" "package:MASS" "package:ctest" "Autoloads"
[5] "package:base"
> ls(pos="package:MASS")
[1] "addterm" "addterm.default" "addterm.glm"
[4] "addterm.lm" "addterm.mlm" "addterm.negbin"
[7] "addterm.survreg" "anova.loglm" "anova.negbin"
...


[175] "update.loglm" "vcov" "vcov.glm"
[178] "vcov.lm" "vcov.nls" "vcov.polr"
[181] "width.SJ" "write.matrix"


The “apropos” (or “find”) command helps us find a variable (or function) name.
> apropos(’exp’)
[1] "negexp.SSival" "as.expression" "as.expression.default"
[4] "char.expand" "dexp" "exp"
[7] "expand.grid" "expand.model.frame" "expm1"
[10] "expression" "is.expression" "path.expand"
[13] "pexp" "qexp" "regexpr"
[16] "rexp"


> apropos(’.’)
[1] "x" "boxcox"
[3] "boxcox.default" "boxcox.formula"
[5] "boxcox.lm" "corresp.matrix"
...


[1767] "xyinch" "xyz.coords"
[1769] "yinch" "zapsmall"
[1771] "zip.file.extract"


2.17.11 stop(), warning()


The “stop” function stops a function when a problem is spotted (for example, when there
is a type problem with its arguments).
do.it <- function (x) {
if( !is.numeric(x) )
stop("Expecting a NUMERIC vector!")


if( !is.vector(x) )
stop("Expecting a numeric VECTOR!")


if( length(x)<2 )
stop("Expecting a numeric vector of length at least 2")


return("Well done.")
}


> do.it("abc")
Error in do.it("abc") : Expecting a NUMERIC vector!


> do.it(3)
Error in do.it(3) : Expecting a numeric vector of length at least 2


> do.it(data.frame(a=1:3,b=3:1))
Error in do.it(data.frame(a = 1:3, b = 3:1)) :


Expecting a NUMERIC vector!


> do.it(matrix(1:4,nc=2,nr=2))
Error in do.it(matrix(1:4, nc = 2, nr = 2)) :


Expecting a numeric VECTOR!
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> do.it(1:26)
[1] "Well done."


The “stopifnot” function is similar – it is an assertion mechanism, as the “assert” mechanism
in C – is is a VERY good idea to use a lot of assertions in your code: it helps you spot bugs
before they appear.
The warning() function is similar but emits a (usually non-fatal) warning.
TODO: Example


You can control whether a warning is fatal or not with
options(warn=-1) # Do not print warnings
options(warn=0) # Print warnings at the end of the function, not when


# they are emitted; if there are too many of them,
# just say there are too many


options(warn=1) # Print the warnings when they occur
options(warn=2) # Make the warnings fatal


2.17.12 parse(), expression()


The “parse” command transforms a string into an unevaluated expression. You can then
evaluate the expression with the “eval” command.
> parse(text="0==1")
expression(0 == 1)


> eval(parse(text="0==1"))
[1] FALSE


Expressions may also be used as labels, in graphics.


0 1 2 3 4


0.
0


0.
5


1.
0


1.
5


2.
0


y == x


x


y


x <- seq(0,4, length=100)
y <- sqrt(x)
plot(y~x, type=’l’, lwd=3, main=expression(y == sqrt(x)) )


There are more details in the manual:
?plotmath







Chapter 3


From Data to Graphics


In this chapter, we explain how to turn data (heaps of numbers) into graphics, be they
simple graphics for uni- or bi-variate data, or less straightforward ones, involving some
linear algebra or non trivial algorithms.


3.1 Sample data


Where does the data come from, in the first place? If you are being asked or are asking
yourself, genuine questions, about real-world problems, you probably already have your
data. On the other hand, if you want to teach you R, you will need some data to play with.
Luckily, R comes with a wealth of data sets.


3.1.1 An example


Here is one – the data used in the cover art of this book: eruption time and time between
eruptions for a Geyser.
> ?faithful
> data(faithful)
> faithful


eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
...
270 4.417 90
271 1.817 46
272 4.467 74


> str(faithful)
‘data.frame’: 272 obs. of 2 variables:
$ eruptions: num 3.60 1.80 3.33 2.28 4.53 ...
$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...


3.1.2 Other examples


Each package usually comes with a few datasets, used in its examples. The “data” function
lists (or loads) those datasets.
data(package=’ts’)


Data sets in package ‘ts’:


AirPassengers Monthly Airline Passenger Numbers 1949-1960
austres Quarterly Time Series of the Number of


Australian Residents
beavers Body Temperature Series of Two Beavers
BJsales Sales Data with Leading Indicator.


147
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EuStockMarkets Daily Closing Prices of Major European Stock
Indices, 1991-1998.


JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share
LakeHuron Level of Lake Huron 1875--1972
lh Luteinizing Hormone in Blood Samples
lynx Annual Canadian Lynx trappings 1821--1934
Nile Flow of the River Nile
nottem Average Monthly Temperatures at Nottingham,


1920--1939
sunspot Yearly Sunspot Data, 1700--1988. Monthly


Sunspot Data, 1749--1997.
treering Yearly Treering Data, -6000--1979.
UKDriverDeaths Road Casualties in Great Britain 1969--84
UKLungDeaths Monthly Deaths from Lung Diseases in the UK
UKgas UK Quarterly Gas Consumption
USAccDeaths Accidental Deaths in the US 1973--1978
WWWusage Internet Usage per Minute


Here are the datasets from the “base” package:
Data sets in package ‘base’:


Formaldehyde Determination of Formaldehyde concentration
HairEyeColor Hair and eye color of statistics students
InsectSprays Effectiveness of insect sprays
LifeCycleSavings Intercountry life-cycle savings data
OrchardSprays Potency of orchard sprays
PlantGrowth Results from an experiment on plant growth
Titanic Survival of passengers on the Titanic
ToothGrowth The effect of vitamin C on tooth growth in


guinea pigs
UCBAdmissions Student admissions at UC Berkeley
USArrests Violent crime statistics for the USA
USJudgeRatings Lawyers’ ratings of state judges in the US


Superior Court
USPersonalExpenditure Personal expenditure data
VADeaths Death rates in Virginia (1940)
airmiles Passenger miles on US airlines 1937-1960
airquality New York Air Quality Measurements
anscombe Anscombe’s quartet of regression data
attenu Joiner-Boore Attenuation Data
attitude Chatterjee-Price Attitude Data
cars Speed and Stopping Distances for Cars
chickwts The Effect of Dietary Supplements on Chick


Weights
co2 Moana Loa Atmospheric CO2 Concentrations
discoveries Yearly Numbers of ‘Important’ Discoveries
esoph (O)esophageal Cancer Case-control study
euro Conversion rates of Euro currencies
eurodist Distances between European Cities
faithful Old Faithful Geyser Data
freeny Freeny’s Revenue Data
infert Secondary infertility matched case-control


study
iris Edgar Anderson’s Iris Data as data.frame
iris3 Edgar Anderson’s Iris Data as 3-d array
islands World Landmass Areas
longley Longley’s Economic Regression Data
morley Michaelson-Morley Speed of Light Data
mtcars Motor Trend Car Data
nhtemp Yearly Average Temperatures in New Haven CT
phones The Numbers of Telephones
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precip Average Precipitation amounts for US Cities
presidents Quarterly Approval Ratings for US Presidents
pressure Vapour Pressure of Mercury as a Function of


Temperature
quakes Earthquake Locations and Magnitudes in the


Tonga Trench
randu Random Numbers produced by RANDU
rivers Lengths of Major Rivers in North America
sleep Student’s Sleep Data
stackloss Brownlee’s Stack Loss Plant Data
state US State Facts and Figures
sunspots Monthly Mean Relative Sunspot Numbers
swiss Swiss Demographic Data
trees Girth, Height and Volume for Black Cherry


Trees
uspop Populations Recorded by the US Census
volcano Topographic Information on Auckland’s Maunga


Whau Volcano
warpbreaks Breaks in Yarn during Weaving
women Heights and Weights of Women


There are also many in the “MASS” package (that illustrates the book “Modern Applied
Statistics with S” – which I have never read).
data(package=’MASS’)


R even says:
Use ‘data(package = .packages(all.available = TRUE))’
to list the data sets in all *available* packages.


3.1.3 All the examples


It is “a bit” violent, but you can take ALL the example datasets and have them undergo
some statistical operation. I did use such manipulations while writing those notes, in order
to find an example satisfying some properties.
#!/bin/sh # This is not R code but (Bourne) shell code
cd /usr/lib/R/library/
for lib in *(/)
do
if [ -d $lib/data ]
then
(
cd $lib/data
echo ’library(’$lib’)’
ls


) | grep -vi 00Index | perl -p -e ’s#(.*)\..*?$#data($1); doit($1)#’
fi


done > /tmp/ALL.R


The list of all the datasets:
doit <- function (...) {}
source("/tmp/ALL.R")
sink("str data")
ls.str()
q()


All the datasets with outliers:
doit <- function (d) {
name <- as.character(substitute(d))
cat(paste("Processing", name, "\n"))
if (!exists(name)) {
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cat(paste(" Skipping (does not exist!)", name, "\n"))
} else if (is.vector(d)) {
doit2(d, name)


} else if (is.data.frame(d)) {
for (x in names(d)) {
cat(paste("Processing", name, "/", x, "\n"))
doit2(d[[x]], paste(name,"/",x))


}
} else
cat(paste(" Skipping (unknown reason)", substitute(d), "\n"))


}
doit2 <- function (x,n) {
if( is.numeric(x) )
really.do.it(x,n)


else
cat(" Skipping (non numeric)\n")


}
really.do.it <- function (x,name) {
x <- x[!is.na(x)]
m <- median(x)
i <- IQR(x)
n1 <- sum(x>m+1.5*i)
n2 <- sum(x<m-1.5*i)
n <- length(x)
p1 <- round(100*n1/n, digits=0)
p2 <- round(100*n2/n, digits=0)
if( n1+n2>0 ) {
boxplot(x, main=name)
cat(paste(" OK ", n1+n2, "/", n, " (",p1,"%, ",p2,"%)\n", sep=’’))


}
}


source("ALL.R", echo=F)


You can also use this to TEST your code – more about tests and test-driven development
(TDD) in the “Programing in R” chapter.


3.1.4 Vocabulary


Statistical data is typically represented by a table, one row per observation, one column
per variable. For instance, if you measure squirrels, you will have one row per squirrel, one
column for the weight, another for the tail length, another for the height, another for the
fur colour, etc.
Data are said to be univariate when there is only one variable (one column), bivariate when
there are two, multivariate when there are more.
A variable is said to be quantitative (or numeric) when it contains numbers with which one
can do arithmetic: for instance temperature (multiplication or addition of temperatures is
not meaningful, but difference or mean is), but not flat number.
Otherwise, the variable is said to be qualitative: for instance, a yes/no answer, colors or
postcodes.
There are sonetimes ordered qualitative variables, for instance, a variable whose values would
be “never”, “seldom”, “sometimes”, “often”, “always”. These data are sometimes obtained
by binning quantitative data.


3.2 Quantitative univariate data


Here, we consider a single, numeric, statistical variable (typically some quantity (height,
length, weight, etc.) measured on each subject of some experiment); the data usually comes
as a vector. We shall often call this vector a “statistical series”.
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3.2.1 A few numbers


One can give a summary of such data with a few numbers: the mean, the minimum, the
maximum, the median (to get it, sort the numbers and take the middle one), the quantiles
(idem, but take the numbers a quarter from the beginning and a quarter from the end).
Unsurprisingly, this is what the “summary” function gives us.
> summary(faithful$eruptions)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.600 2.163 4.000 3.488 4.454 5.100
> mean(faithful$eruptions)
[1] 3.487783


Always be critical when observing data: in particular, you should check that the extreme
values are not aberrant, that they do not come from some mistake.
You can also check various dispersion measures such as the Median Absolute Deviation
(MAD), the “standard deviation” or the Inter-Quartile Range (IQR).
> mad(faithful$eruptions)
[1] 0.9510879
> sd(faithful$eruptions)
[1] 1.141371
> IQR(faithful$eruptions)
[1] 2.2915


But you might not be familiar with those notions: let us recall the links between the mean,
variance, median and MAD. When you have a set of numbers x1,x2,...,xn, you can try to
find the real number m that minimizes the sum
abs(m-x1) + abs(m-x2) + ... + abs(m-xn).


One can show that it is the median. You can also try to find the real number that minimizes
the sum
(m-x1)^2 + (m-x2)^2 + ... + (m-xn)^2.


One can show that it is the mean. This property of the mean is called the “Least Squares
Property”.
Hence the following definition: the Variance of a statistical series x1,x2,...,xn is the mean of
the squares deviations from the mean:


(m-x1)^2 + (m-x2)^2 + ... + (m-xn)^2
Var(x) = --------------------------------------


n
where m is the mean,


(some books or software replace “n” by “n-1”: we shall see why in a later chapter) the stan-
dard deviation is the square root of the variance, similarly, the Median Absolute Deviation
(MAD) is the mean of the absolute values of the deviation from the median:


abs(x1-m) + ... + abs(xn-m)
MAD(x) = -----------------------------


n
where m is the median.


At first, the relevance of that notion as a measure of dispersion was not obvious to me; why
should we take the mean of the squares of the deviations from the mean, why not simply
the mean of the absolute value of those deviations? The preceeding definition of the mean
provides one motivation of the notion of variance (or standard deviation). There are other
motivations: for instance, the variance is easy to compute, iteratively, contrary to the MAD
(it was important in the early days of the Computer Era, when computer power was very
limited); another motivation is that the notion of variance is central in many theoretical
results (Bienaime-Tchebychev inequality, etc. – this is due to the good properties of the
“square” function as opposed to the absolute value function – the former is differentiable,
not the latter).
But beware: the notions of mean and variance lose their relevance when the data is not
symetric or when it contains many extreme values (“outliers”, “aberrant values” or “fat
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tails”).
On the contrary, the median, the Inter-Quartile Range (IQR) or the Median Absolute Devia-
tion (MAD) are “robust” dispersion measures: they give good results, even on a non-gaussian
sample, contrary to the mean or the standard deviation. (This notion of robustness is very
important; robust methods used to be overlooked because they are more computer-intensive
– but this argument has become outdates.) Yet, if your data is gaussian, they are less pre-
cise. We shall come back and say more about this problem and others when we introduce
the notion of “estimator”.


3.2.2 Mean and standard deviation: L1-L2 space


TODO: Does this belong here or should it be in the “dimension reduction” section?
You can display high-dimensional datasets in the L1-L2 space: average value of the coordi-
nates and standard deviation of the coordinates.
TODO: is this correct???
If the data were gaussian, the cloud of points should exhibit a linear shape.
If the data is a mixture of gaussians, if there are several clusters,
you should see several lines. (???)
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n <- 1000
k <- 20
p <- 3
i <- sample(1:p, n, replace=TRUE)
x <- 10 * matrix(rnorm(p*k), nr=p, nc=k)
x <- x[i,] + matrix(rnorm(n*k), nr=n, nc=k)
L1L2 <- function (x) {
cbind(L1 = apply(x, 1, mean),


L2 = apply(x, 1, sd))
}
plot(L1L2(x), col=i)


This representation can be used to spot outliers.
This kind of representation is used in finance, where the coordinates are the “returns” of
assets, at different points in time, and the axes are the average return (vertical axis) and
the risk (horizontal axis).
TODO: A plot, with financial data.
e.g., retrieve from Google the returns of half a dozen indices, say,
FTSE100, CAC40, DAX, Nikkei225, DJIA.


On this plot, you can overlay the set of all possible (risk,return) pairs of portfolios built
from those assets (a portfolio is simply a linear combination of assets): the frontier of that
domain is called the efficient frontier.
TODO: plot it...


3.2.3 Normalization


To compare two different statistical series that may not have the same unit we can rescale
them so that their means be zero and their variance 1.


xn - m
yn = --------
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s


where m is the mean of the series
and s its standard deviation.
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x <- crabs$FL
y <- crabs$CL # The two vectors need not


# have the same length
op <- par(mfrow=c(2,1))
hist(x, col="light blue", xlim=c(0,50))
hist(y, col="light blue", xlim=c(0,50))
par(op)


Histogram of (x − mean(x))/sd(x)
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Histogram of (y − mean(y))/sd(y)


(y − mean(y))/sd(y)
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op <- par(mfrow=c(2,1))
hist( (x - mean(x)) / sd(x),


col = "light blue",
xlim = c(-3, 3) )


hist( (y - mean(y)) / sd(y),
col = "light blue",
xlim = c(-3, 3) )


par(op)


But beware: normalization will just rescale your data, it will not solve other problems. In
particular, if your data are not gaussian (i.e., if the histogram is not “bell-shaped”), they will
not become gaussian. Furthermore, the presence of even a single extreme value (“outlier”)
will change the value of the mean and the standard deviation and therefore change the
scaling.







CHAPTER 3. FROM DATA TO GRAPHICS 154


Uniform distribution
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Skewed distribution
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As above, with one outlier
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N <- 50 # Sample size
set.seed(2)
x1 <- runif(N) # Uniform distribution
x2 <- rt(N,2) # Fat-tailed distribution
x3 <- rexp(N) # Skewed distribution
x4 <- c(x2,20) # Outlier (not that uncommon,


# with fat-tailed distributions)
f <- function (x, ...) {
x <- (x - mean(x)) / sd(x)
N <- length(x)
hist( x,


col = "light blue",
xlim = c(-3, 3),
ylim = c(0, .8),
probability = TRUE,
...


)
lines(density(x),


col = "red", lwd = 3)
rug(x)


}
op <- par(mfrow=c(2,2))
f(x1, main = "Uniform distribution")
f(x2, main = "Fat-tailed distribution")
f(x3, main = "Skewed distribution")
f(x4, main = "As above, with one outlier")
par(op)


Sometimes, other transformations might make the distribution closer to a gaussian (i.e., bell-
shaped) one. For instance, for skewed distributions, taking the logarithm or the square root
is often a good idea (other sometimes used transformations include: power scales, arcsine,
logit, probit, Fisher).
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log(eps)
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p)


x <- read.csv("2006-08-27 pe.csv")
op <- par(mfrow=c(1,2))
plot(p ~ eps, data=x, main="Before")
plot(log(p) ~ log(eps), data=x, main="After")
par(op)


In some situations, other transformations are meaningful: power scales, arcsine, logit, probit,
Fisher, etc.
Whatever the analysis you perform, it is very important to look at your data and to transform
them if needed and possible.
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f <- function (x, main, FUN) {
hist(x,


col = "light blue",
probability = TRUE,
main = paste(main, "(before)"),
xlab = "")


lines(density(x), col = "red", lwd = 3)
rug(x)
x <- FUN(x)
hist(x,


col = "light blue",
probability = TRUE,
main = paste(main, "(after)"),
xlab = "")


lines(density(x), col = "red", lwd = 3)
rug(x)


}
op <- par(mfrow=c(2,2))


f(x3,
main="Skewed distribution",
FUN = log)


f(x2,
main="Fat tailed distribution",
FUN = function (x) { # If you have an idea of the


# distribution followed by
# your variable, you can use
# that distribution to get a
# p-value (i.e., a number between
# 0 and 1: just apply the inverse
# of the cumulative distribution
# function -- in R, it is called
# the p-function of the
# distribution) then apply the
# gaussian cumulative distribution
# function (in R, it is called the
# quantile function or the
# q-function).


qnorm(pcauchy(x))
}


)
par(op)


If you really want your distribution to be bell-shaped, you can “forcefully normalize” it –
but bear in mind that this discards relevant information: for instance, if the distribution
was bimodal, i.e., if it had the shape of two bells instead of one, that information will be
lost.
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uniformize <- function (x) { # This could be called
# "forceful uniformization".
# More about it when we introduce
# the notion of copula.


x <- rank(x,
na.last = "keep",
ties.method = "average")


n <- sum(!is.na(x))
x / (n + 1)


}
normalize <- function (x) {
qnorm(uniformize(x))


}
op <- par(mfrow=c(4,2))
f(x1, FUN = normalize, main = "Uniform distribution")
f(x3, FUN = normalize, main = "Skewed distribution")
f(x2, FUN = normalize, main = "Fat-tailed distribution")
f(x4, FUN = normalize, main = "Idem with one outlier")
par(op)


3.2.4 Moments


If you have skipped the last section, read this one. If you have not, skip to the next.
We have just seen that (for a centered statistical series, i.e., a series whose mean is zero), the
variance is the mean of the squares of the values. One may replace the squares by another
power: the k-th moment M k of a series is the mean of its k-th powers. One can show
(exercice) that:
mean = M 1
Variance = M 2 - M 1^2


The third moment of a centered statistical series is called skewness. For a symetric series,
it is zero. To check if a series is symetric and to quantify the departure from symetry, it
suffices to compute the third moment of the normalized series.
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library(e1071) # For the "skewness" and "kurtosis" functions
n <- 1000
x <- rnorm(n)
op <- par(mar=c(3,3,4,2)+.1)
hist(x, col="light blue", probability=TRUE,


main=paste("skewness =", round(skewness(x), digits=2)),
xlab="", ylab="")


lines(density(x), col="red", lwd=3)
par(op)


skewness = 1.95
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x <- rexp(n)
op <- par(mar=c(3,3,4,2)+.1)
hist(x, col="light blue", probability=TRUE,


main=paste("skewness =", round(skewness(x), digits=2)),
xlab="", ylab="")


lines(density(x), col="red", lwd=3)
par(op)
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skewness = −2.33
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x <- -rexp(n)
op <- par(mar=c(3,3,4,2)+.1)
hist(x, col="light blue", probability=TRUE,


main=paste("skewness =", round(skewness(x), digits=2)),
xlab="", ylab="")


lines(density(x), col="red", lwd=3)
par(op)


The fourth moment, tells if a series has fatter tails (i.e., more extreme values) than a gaussian
distribution and quantifies the departure from gaussian-like tails. The fourth moment of a
gaussian random variable is 3; one defines the kurtosis as the fourth moment minus 3, so
that the kurtosis of a gaussian distribution be zero, that of a fat-tailed one be positive, that
of a no-tail one be negative.
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library(e1071) # For the "skewness" and "kurtosis" functions
n <- 1000
x <- rnorm(n)
qqnorm(x, main=paste("kurtosis =", round(kurtosis(x), digits=2),


"(gaussian)"))
qqline(x, col="red")
op <- par(fig=c(.02,.5,.5,.98), new=TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)
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set.seed(1)
x <- rt(n, df=4)
qqnorm(x, main=paste("kurtosis =", round(kurtosis(x), digits=2),


"(T, df=4)"))
qqline(x, col="red")
op <- par(fig=c(.02,.5,.5,.98), new=TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)
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kurtosis = −1.16 (uniform)
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x <- runif(n)
qqnorm(x, main=paste("kurtosis =", round(kurtosis(x), digits=2),


"(uniform)"))
qqline(x, col="red")
op <- par(fig=c(.02,.5,.5,.98), new=TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


You stumble upon this notion, for instance, when you study financial data: we often assume
that the data we study follow a gaussian distribution, but in finance (more precisely, with
high-frequency (intra-day) financial data), this is not the case. The problem is all the more
serious that the data exhibits an abnormal number of extreme values (outliers). To see it,
we have estimated the density of the returns and we overlay this curve with the density of
a gaussian distribution. The vertical axis is logarithmic.
You can notice two things: first, the distribution has a higher, narrower peak, second, there
are more extreme values.
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Are stock returns gaussian?


op <- par(mfrow=c(2,2), mar=c(3,2,2,2)+.1)
data(EuStockMarkets)
x <- EuStockMarkets
# We aren’t interested in the spot prices, but in the returns
# return[i] = ( price[i] - price[i-1] ) / price[i-1]
y <- apply(x, 2, function (x) { diff(x)/x[-length(x)] })
# We normalize the data
z <- apply(y, 2, function (x) { (x-mean(x))/sd(x) })
for (i in 1:4) {
d <- density(z[,i])
plot(d$x,log(d$y),ylim=c(-5,1),xlim=c(-5,5))
curve(log(dnorm(x)),col=’red’,add=T)
mtext(colnames(x)[i], line=-1.5, font=2)


}
par(op)
mtext("Are stock returns gaussian?", line=3, font=2)


You can check this with a computation:
> apply(z^3,2,mean)


DAX SMI CAC FTSE
-0.4344056 -0.5325112 -0.1059855 0.1651614


> apply(z^4,2,mean)
DAX SMI CAC FTSE


8.579151 8.194598 5.265506 5.751968


While a gaussian distribution would give 0 and 3.
> mean(rnorm(100000)^3)
[1] -0.003451044
> mean(rnorm(100000)^4)
[1] 3.016637


You can do several simulations (as we have just done) and look at the distribution of the
resulting values: by comparison, are those that come from our data that large? (they were
large, but were they significantly large?)
For the third moment, two values are extreme, but the two others look normal.
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Third moment (skewness)
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n <- dim(z)[1]
N <- 2000 # Two thousand samples of the same size
m <- matrix(rnorm(n*N), nc=N, nr=n)
a <- apply(m^3,2,mean)
b <- apply(z^3,2,mean)
op <- par(mar=c(3,3,4,1)+.1)
hist(a, col=’light blue’, xlim=range(c(a,b)),


main="Third moment (skewness)",
xlab="", ylab="")


h <- rep(.2*par("usr")[3] + .8*par("usr")[4], length(b))
points(b, h, type=’h’, col=’red’,lwd=3)
points(b, h, col=’red’, lwd=3)
text(b, h, names(b), pos=3)
par(op)


On the contrary, for the kurtosis, our values are really high.


Expected kurtosis distribution and observed values
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n <- dim(z)[1]
N <- 2000
m <- matrix(rnorm(n*N), nc=N, nr=n)
a <- apply(m^4,2,mean) - 3
b <- apply(z^4,2,mean) - 3
op <- par(mar=c(3,3,4,1)+.1)
hist(a, col=’light blue’, xlim=range(c(a,b)),


main="Expected kurtosis distribution and observed values",
xlab="", ylab="")


h <- rep(.2*par("usr")[3] + .8*par("usr")[4], length(b))
points(b, h, type=’h’, col=’red’,lwd=3)
points(b, h, col=’red’, lwd=3)
text(b, h, names(b), pos=3)
par(op)


We shall see again, later, that kind of measurement of departure from gaussianity – the
computation we just made can be called a “parametric bootstrap p-value computation”.
For more moments, see the “moments” packages and, later in this document, the Method
of Moments Estimators (MME) and the Generalized Method of Moments (GMM).


3.2.5 L-moments


Moments allow you to spot non-gaussian features in your data, but they are very imprecise
(they have a large variance) and are very sensitive to outliers – simply because they are
defined with powers, that amplify those problems.
One can define similar quantities without any power, with a simple linear combination of
order statistics.
If X {k:n} is the k-th element of a sample of n observations of the distribution you are
studying, then the L-moments are
L1 = E[ X {1:1} ]
L2 = 1/2 E[ X {2:2} - X{1:2} ]
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L3 = 1/3 E[ X {3:3} - 2 X{2:3} + X{1:3} ]
L4 = 1/4 E[ X {4:4} - 3 X{3:4} + 3 X{2:4} - X{1:4} ]
...


L1 is the usual mean; L2 is a measure of dispersion: the average distance between two
observations; L3 is a measure of asymetry, similar to the skewness; L4 is a measure of tail
thickness, similar to the kurtosis.


Expected L−skewness distribution and observed values
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data(EuStockMarkets)
x <- EuStockMarkets
y <- apply(x, 2, function (x) { diff(x)/x[-length(x)] })


library(lmomco)
n <- dim(z)[1]
N <- 200
m <- matrix(rnorm(n*N), nc=N, nr=n)


# We normalize the data in the same way
f <- function (x) {
r <- lmom.ub(x)
(x - r$L1) / r$L2


}
z <- apply(y, 2, f)
m <- apply(m, 2, f)


a <- apply(m, 2, function (x) lmom.ub(x)$TAU3)


b <- apply(z, 2, function (x) lmom.ub(x)$TAU3)
op <- par(mar=c(3,3,4,1)+.1)
hist(a, col=’light blue’, xlim=range(c(a,b)),


main="Expected L-skewness distribution and observed values",
xlab="", ylab="")


h <- rep(.2*par("usr")[3] + .8*par("usr")[4], length(b))
points(b, h, type=’h’, col=’red’,lwd=3)
points(b, h, col=’red’, lwd=3)
text(b, h, names(b), pos=3)
par(op)


Expected L−kurtosis distribution and observed values
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a <- apply(m, 2, function (x) lmom.ub(x)$TAU4)
b <- apply(z, 2, function (x) lmom.ub(x)$TAU4)
op <- par(mar=c(3,3,4,1)+.1)
hist(a, col=’light blue’, xlim=range(c(a,b)),


main="Expected L-kurtosis distribution and observed values",
xlab="", ylab="")


h <- rep(.2*par("usr")[3] + .8*par("usr")[4], length(b))
points(b, h, type=’h’, col=’red’,lwd=3)
points(b, h, col=’red’, lwd=3)
text(b, h, names(b), pos=3)
par(op)
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3.2.6 Droves of numbers


We can see the data we are studying as an untidy bunch of numbers, in which we cannot
see anything (that is why you will often see me using the “str” command that only displays
the beginning of the data: displaying everything would not be enlightening).
There is a simple way of seeing someting in that bunch of numbers: just sort them. That is
better, but we still have hundreds of numbers, we still do not see anything.
> str( sort(faithful$eruptions) )
num [1:272] 1.60 1.67 1.70 1.73 1.75 ...


In those ordered numbers, you may remark that the first two digits are often the same.
Furthermore, after those two digits, there is only one left. Thus, we can put them in several
classes (or “bins”) according to the first two digits and write, on the bin, the remaining digit.
This is called a “stem-and-leaf plot”. It is just an orderly way of writing down our bunch
of number (we have not summurized the data yet, we have not discarded any information,
any number).
> stem(faithful$eruptions)


The decimal point is 1 digit(s) to the left of the |


16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370


We could also do that by hand (before the advent of computers, people used to do that by
hand – actually, it is no longer used).
http://www.shodor.org/interactivate/discussions/steml.html
http://davidmlane.com/hyperstat/A28117.html
http://www.google.fr/search?q=stem-and-leaf&ie=UTF-8&oe=UTF-8&hl=fr&btnG=Recherche+


Google&meta=


3.2.7 Stripchart (scatterplot)


One can graphically represent a univariate series by putting the data on an axis.



http://www.shodor.org/interactivate/discussions/steml.html

http://davidmlane.com/hyperstat/A28117.html

http://www.google.fr/search?q=stem-and-leaf&ie=UTF-8&oe=UTF-8&hl=fr&btnG=Recherche+Google&meta=

http://www.google.fr/search?q=stem-and-leaf&ie=UTF-8&oe=UTF-8&hl=fr&btnG=Recherche+Google&meta=
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


The "stripchart" function
data(faithful)
stripchart(faithful$eruptions, main="The \"stripchart\" function")


Yet, if there are many data, or if there are several observations with the same value, the
resulting graph is not very readable. We can add some noise to that the points do not end
up on top of one another.


1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


jittered scatterplot
# Only horizontal noise
stripchart(faithful$eruptions, jitter=TRUE,


main="jittered scatterplot")


1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


jittered scatterplot
stripchart(faithful$eruptions, method=’jitter’,


main="jittered scatterplot")


Exercise: to familiarize yourself with the “rnorm” command (and a few others), try to do
that yourself.
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my.jittered.stripchart <- function (x) {
x.name <- deparse(substitute(x))
n <- length(x)
plot( runif(n) ~ x, xlab=x.name, ylab=’noise’,


main="jittered scatterplot" )
}
my.jittered.stripchart(faithful$eruptions)
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my.jittered.stripchart <- function (x) {
x.name <- deparse(substitute(x))
n <- length(x)
x <- x + diff(range(x))*.05* (-.5+runif(n))
plot( runif(n) ~ x,


xlab=paste("jittered", x.name), ylab=’noise’,
main="jittered scatterplot" )


}
my.jittered.stripchart(faithful$eruptions)


You can also plot the sorted data:
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op <- par(mar=c(3,4,2,2)+.1)
plot( sort( faithful$eruptions ),


xlab = ""
)


par(op)


The two horizontal parts correspond to the two peaks of the histogram, to the two modes
of the distribution.
Actually, it is just a scatter plot with an added dimension. (The “rug” function adds a
scatter plot along an axis.)
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op <- par(mar=c(3,4,2,2)+.1)
plot(sort(faithful$eruptions), xlab="")
rug(faithful$eruptions, side=2)
par(op)
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It also helps to see that the data is discrete – in a scatter plot with no added noise (no
jitter), you would not see it).
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op <- par(mar=c(3,4,2,2)+.1)
x <- round( rnorm(100), digits=1 )
plot(sort(x))
rug(jitter(x), side=2)
par(op)


3.2.8 Cumulated frequencies


You can also plot the cumulated frequencies (this plot is symetric to the previous one).
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cumulated.frequencies <- function (x, main="") {
x.name <- deparse(substitute(x))
n <- length(x)
plot( 1:n ~ sort(x),


xlab = x.name,
ylab = ’Cumulated frequencies’,
main = main


)
}
cumulated.frequencies(faithful$eruptions,


main = "Eruption lengths")


In some cases, the observations (the subjects) are named: we can add the names to the plot
(it is the same plot as above, unsorted and rotated by 90 degrees).
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Island area
data(islands)
dotchart(islands, main="Island area")
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Island area (logarithmic scale)
dotchart(sort(log(islands)),


main="Island area (logarithmic scale)")


From a theoretical point of view, the cumulative distribution curve is very important, even
if its interpretation deos not spring to the eyes. In the following examples, we present the
cumulative distribution plot of several distributions.
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op <- par(mfcol=c(2,4), mar=c(2,2,1,1)+.1)
do.it <- function (x) {
hist(x, probability=T, col=’light blue’,


xlab="", ylab="", main="", axes=F)
axis(1)
lines(density(x), col=’red’, lwd=3)
x <- sort(x)
q <- ppoints(length(x))
plot(q~x, type=’l’,


xlab="", ylab="", main="")
abline(h=c(.25,.5,.75), lty=3, lwd=3, col=’blue’)


}
n <- 200
do.it(rnorm(n))
do.it(rlnorm(n))
do.it(-rlnorm(n))
do.it(rnorm(n, c(-5,5)))
par(op)


The box-and-whiskers plots are a simplified view of the cumulative distribution plot: they
just contain the quartiles, i.e., the intersections with the horizontal dotted blue lines above.
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N <- 2000
x <- rnorm(N)
op <- par(mar=c(0,0,0,0), oma=c(0,0,0,0)+.1)
layout(matrix(c(1,1,1,2), nc=1))
y <- ppoints( length(x) )
plot(sort(x), y, type="l", lwd=3,


xlab="", ylab="", main="")
abline(h=c(0,.25,.5,.75,1), lty=3)
abline(v = quantile(x), col = "blue", lwd = 3, lty=2)
points(quantile(x), c(0,.25,.5,.75,1), lwd=10, col="blue")
boxplot(x, horizontal = TRUE, col = "pink", lwd=5)
abline(v = quantile(x), col = "blue", lwd = 3, lty=2)
par(new=T)
boxplot(x, horizontal = TRUE, col = "pink", lwd=5)
par(op)


TODO:
Check the vocabulary I have used: "empirical cumulative
distribution function"
State the (much more technical) use of this ECDF to devise
a test comparing two distributions.


3.2.9 Box-and-whiskers plot


A box-and-whiskers plot is a graphical representation of the 5 quartiles (minimum, first
quartile, median, third quartile, maximum).
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boxplot(faithful$eruptions, range=0)


The name of this plot is more understandable if it is drawn horizontally.


1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


boxplot(faithful$eruptions, range=0, horizontal=TRUE)


On this example, we can clearly see that the data are not symetric: thus, we know that it
would be a bad idea to apply statistical procedures that assume they are symetric – or even,
normal.
This is one of the main uses of this kind of plot: assessing the symetry of your data.
This graphical representation of the quartiles is simpler and more directly understandable
than the following, in terms of area.
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op <- par(mfrow=c(1,2), mar=c(3,2,4,2)+.1)
do.it <- function (x, xlab="", ylab="", main="") {
d <- density(x)
plot(d, type=’l’, xlab=xlab, ylab=ylab, main=main)
q <- quantile(x)
do.it <- function (i, col) {
x <- d$x[i]
y <- d$y[i]
polygon( c(x,rev(x)), c(rep(0,length(x)),rev(y)), border=NA, col=col )


}
do.it(d$x <= q[2], ’red’)
do.it(q[2] <= d$x & d$x <= q[3], ’green’)
do.it(q[3] <= d$x & d$x <= q[4], ’blue’)
do.it(d$x >= q[4], ’yellow’)
lines(d, lwd=3)


}
do.it( rnorm(2000), main="Gaussian" )
do.it( rexp(200), main="Exponential" )


par(op)
mtext("Quartiles", side=3, line=3, font=2, cex=1.2)


(In this example, the four areas are equal; this highlights the often-claimed fact that the
human eye cannot compare areas.)
Without the “range=0” option, the plot also underlines the presence of outliers, i.e., points
far away from the median (beyond 1.5 times the InterQuartile Range (IQR)). In this example,
there are no outliers.
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No outliers
boxplot(faithful$eruptions, horizontal = TRUE,


main = "No outliers")


In some cases, these “outliers” are perfectly normal.
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Normal outliers
# There are outliers, they might bring trouble,
# but it is normal, it is not pathological
boxplot(rnorm(500), horizontal = TRUE,


main = "Normal outliers")


If there are only a few outliers, really isolated, they might be errors – yes, in the real life,
the data is “dirty”...
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An outlier
x <- c(rnorm(30),20)
x <- sample(x, length(x))
boxplot( x, horizontal = TRUE,


main = "An outlier" )


●
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An outlier
library(boot)
data(aml)
boxplot( aml$time, horizontal = TRUE,


main = "An outlier" )


They can also be the sign that the distribution is not gaussian at all.
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Non gaussian (asymetric) data
data(attenu)
boxplot(attenu$dist, horizontal = TRUE,


main = "Non gaussian (asymetric) data")


Then, we usually transform the data, by applying a simple and well-chosen function, so that
it becomes gaussian (more about this later).
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Transformed variable
data(attenu)
boxplot(log(attenu$dist), horizontal = TRUE,


main = "Transformed variable")


Outliers are troublesome, because many statistical procedures are sensitive to them (mean,
standard deviation, regression, etc.).
> x <- aml$time
> summary(x)


Min. 1st Qu. Median Mean 3rd Qu. Max.
5.00 12.50 23.00 29.48 33.50 161.00


> y <- x[x<160]
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> summary(y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.00 12.25 23.00 23.50 32.50 48.00


This was a second use of box-and-whiskers plots: spotting outliers. Their presence may be
perfectly normal (but you must beware that they might bias later computations – unless you
choose robust algorithms); they may be due to errors, that are to be corrected; they may also
reveal that the distribution is not gaussian and naturally contains many outliers (“fat tails”
– more about this later, when we mention the “extreme distributions” and high-frequency
(intra-day) financial data).
Actually, the larger the sample, the more outliers.


● ● ●


●● ●● ●● ●


●●● ●●● ●● ●●●●●●●●● ●●●● ● ● ●●● ●● ●●● ●● ●●●●● ●●●● ●● ●● ● ●●●● ● ●● ●●●


● ●●●● ● ●● ●●●●●●●● ●● ●● ●●● ●●● ● ●●● ●● ●●●●● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ● ●● ●●● ●●●● ● ●●●● ●●●●●●● ●● ● ●●● ●● ●●● ●● ●● ●●●●●●● ● ● ●●● ●●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●●●● ● ●●● ●● ●●●●●●● ●● ●●● ●●●●●●●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●● ●●● ●●●● ● ●●●●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ● ●●●● ●● ● ●●●●● ● ●● ●●●●●● ● ●● ●●● ●●● ●● ●●●●● ●● ●●● ●●● ●●●● ●● ●● ●●●●●● ●●● ●● ●● ●●●● ●● ●● ●●● ●● ●● ● ●● ●●●● ● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●●● ●● ● ● ●●●●●●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●●● ●● ●●● ● ●● ● ●●●● ● ●●●●●● ●●● ● ● ●●● ● ●● ●● ●●● ● ●●●●●●● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●●●● ●●● ●● ●●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●●● ●● ●●●● ●●●● ●● ●●●●● ●●● ●●●● ●●●● ●●●● ●● ● ● ●●●●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ● ●● ●●●●●● ●●●●● ●● ● ●●● ●●● ●●●●● ●●● ●●● ●●●● ●● ●●● ●●● ●●●● ● ● ●●●● ●● ●● ● ●● ●●●●● ● ● ●●●●● ● ●● ●●● ●●●● ●●●●● ●●● ●●● ●● ●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●● ● ●● ●●


1
2
3
4
5


−4 −2 0 2 4


The larger the sample, the more outliers
y <- c(rnorm(10+100+1000+10000+100000))
x <- c(rep(1,10), rep(2,100), rep(3,1000), rep(4,10000), rep(5,100000))
x <- factor(x)
plot(y~x,


horizontal = TRUE,
col = "pink",
las = 1,
xlab = "", ylab = "",
main = "The larger the sample, the more outliers")


You could plot boxes whose whiskers would extend farther for larger samples, but beware:
even if the presence of extreme values in larger samples is normal, it can have an important
leverage effect, an important influence on the results of your computations.
Exercise: plot box-and-whiskers whose whisker length varies with the sample size.
You can ask R to plot a confidence interval on the median:


1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


Confidence interval on the median...
boxplot(faithful$eruptions,


notch = TRUE,
horizontal = TRUE,
main = "Confidence interval on the median...")


0 10000 20000 30000 40000 50000


...that goes beyond the quartiles
library(boot)
data(breslow)
boxplot(breslow$n,


notch = TRUE,
horizontal = TRUE,
col = "pink",
main = "...that goes beyond the quartiles")


You can also add a scatter plot.
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0


boxplot(faithful$eruptions,
horizontal = TRUE,
col = "pink")


rug(faithful$eruption,
ticksize = .2)


3.2.10 Histogram and density


You can also represent those data with a histogram: put each observation in a class (the
computer can do this) and, for each class, plot a vertical bar whose height (or area) is
proportionnal to the number of elements.


Histogram of faithful$eruptions
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hist(faithful$eruptions)


There is a big, unavoidable prolem with histograms: a different choice of classes can lead to
a completely different histogram.
First, the width of the classes can play a role.
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Histogram of faithful$eruptions
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hist(faithful$eruptions, breaks=20, col="light blue")


TODO: give an example!


But their position, as well, can completely change the histogram and have it look sometimes
symetric, sometimes not. For instance, in neither of the following histograms does the peak
look symetric but the asymetry is not in the same direction.
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Is the first peak symetric or not?


op <- par(mfrow=c(2,1), mar=c(2,2,2,1)+.1)
hist(faithful$eruptions, breaks=seq(1,6,.5),


col=’light blue’,
xlab="", ylab="", main="")


hist(faithful$eruptions, breaks=.25+seq(1,6,.5),
col=’light blue’,
xlab="", ylab="", main="")


par(op)
mtext("Is the first peak symetric or not?",


side=3, line=2.5, font=2.5, size=1.5)


You can replace the histogram with a curve, a “density estimation”. If you see the data
as a sum of Dirac masses, you can obtain such a function by convolving this sum with a
well-chosen “kernel”, e.g., a gaussian density – but you have to choose the “bandwidth” of
this kernel, i.e., the standard deviation of the gaussian density.
This density estimation can be adaptive: the bandwidth of this gaussian kernel can change
along the sample, being larger when the point density becomes higher (the “density” function
does not use an adaptive kernel – check function akj in the quantreg package if you want
one).
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Histogram and density estimation
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hist(faithful$eruptions,
probability=TRUE, breaks=20, col="light blue",
xlab="", ylab="",
main="Histogram and density estimation")


points(density(faithful$eruptions, bw=.1), type=’l’,
col=’red’, lwd=3)


Density estimations still have the first problem of histograms: a different kernel may yield
a completely different curve – but the second problem disappears.


Histogram and density estimation
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hist(faithful$eruptions,
probability=TRUE, breaks=20, col="light blue",
xlab="", ylab="",
main="Histogram and density estimation")


points(density(faithful$eruptions, bw=1), type=’l’,
lwd=3, col=’black’)


points(density(faithful$eruptions, bw=.5), type=’l’,
lwd=3, col=’blue’)


points(density(faithful$eruptions, bw=.3), type=’l’,
lwd=3, col=’green’)


points(density(faithful$eruptions, bw=.1), type=’l’,
lwd=3, col=’red’)


One can add many other elements to a histogram. For instance, a scatterplot, or a gaussian
density (to compare with the estimated density).
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hist(faithful$eruptions,
probability=TRUE, breaks=20, col="light blue",
main="")


rug(faithful$eruptions)
points(density(faithful$eruptions, bw=.1), type=’l’, lwd=3, col=’red’)
f <- function(x) {
dnorm(x,


mean=mean(faithful$eruptions),
sd=sd(faithful$eruptions),


)
}
curve(f, add=T, col="red", lwd=3, lty=2)


3.2.11 Symetry plot (seldom used)


When you look at your data, one of the first questions you may ask is “are they symetric?”.
The following plot simply sorts the data and tries to pair the first with the last, the second
with the second from the end, etc.. The following is a plot of the distance to the median of
the (n-i)-th point versus that of the i-th point.
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Symetry plot (gaussian distribution)
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symetry.plot <- function (x0,
main="Symetry plot",
breaks="Sturges", ...) {


x <- x0[ !is.na(x0) ]
x <- sort(x)
x <- abs(x - median(x))
n <- length(x)
nn <- ceiling(n/2)
plot( x[n:(n-nn+1)] ~ x[1:nn] ,


xlab=’Distance below median’,
ylab=’Distance above median’,
main=main,
...)


abline(0,1, col="blue", lwd=3)
op <- par(fig=c(.02,.5,.5,.98), new=TRUE)
hist(x0, probability=T, breaks=breaks,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x0), col="red", lwd=2)


box()
par(op)


}


symetry.plot(rnorm(500),
main="Symetry plot (gaussian distribution)")
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Symetry plot (exponential distribution)
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symetry.plot(rexp(500),
main="Symetry plot (exponential distribution)")
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Symetry plot (negative skewness)
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symetry.plot(-rexp(500),
main="Symetry plot (negative skewness)")
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symetry.plot(rexp(500),
main="Symetry plot, logarithmic scales)")
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symetry.plot(faithful$eruptions, breaks=20)


The problem is that it is rather hard to see if you are “far away” from the line: the more
points the sample has, the more the plot looks like a line. Here, with a 100 points (this is a
lot), we are still far away from a line.
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Symetry plot: gaussian, 100 observations
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symetry.plot.2 <- function (x, N=1000,
pch=".", cex=1, ...) {


x <- x[ !is.na(x) ]
x <- sort(x)
x <- abs(x - median(x))
n <- length(x)
nn <- ceiling(n/2)
plot( x[n:(n-nn+1)] ~ x[1:nn] ,


xlab=’Distance below median’,
ylab=’Distance above median’,
...)


for (i in 1:N) {
y <- sort( rnorm(n) )
y <- abs(y - median(y))
m <- ceiling(n/2)
points( y[n:(n-m+1)] ~ y[1:m],


pch=pch, cex=cex, col=’red’ )
}


points(x[n:(n-nn+1)] ~ x[1:nn] , ...)
abline(0,1, col="blue", lwd=3)


}


n <- 100
symetry.plot.2( rnorm(n), pch=’.’, lwd=3,


main=paste("Symetry plot: gaussian,", n, "observations"))


With 10 points, it is even worse...
(It might be because of that that this plot it is rarely used...)


●


●


●


●


●


0.2 0.4 0.6 0.8 1.0 1.2 1.4


0.
2


0.
4


0.
6


0.
8


Symetry plot: gaussian, 10 observations
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n <- 10
symetry.plot.2( rnorm(n), pch=15, lwd=3, type="b", cex=.5,


main=paste("Symetry plot: gaussian,", n, "observations"))


But here, we are just comparing the symetry of our distribution with that of a gaussian one:
the differences can come either from our distribution not being symetric or from its being
non gaussian. Instead, we can compare our distribution with its symetrization, or samples
taken (with replacement) from our symetrized sample – to symetrize, simply concatenate
the x i and the M - (x i - M).
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])
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robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2, lwd = 3)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"CAC"])







CHAPTER 3. FROM DATA TO GRAPHICS 188


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


0 200 400 600 800 1000


0
50


0
10


00
15


00
20


00
25


00
30


00


Symetry plot


Distance below the median


D
is


ta
nc


e 
ab


ov
e 


th
e 


m
ed


ia
n


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


robust.symetry.plot <- function (x,
N = max(ceiling(1000/length(x)),2),
alpha = .05,
xlab = "Distance below the median",
ylab = "Distance above the median",
main = "Symetry plot",
...) {


cat(N, "\n")
# The symetry plot
x <- x[!is.na(x)]
n <- length(x)
nn <- ceiling(n/2)
x <- sort(x)
d <- abs(x - median(x)) # Distance to the median
plot( d[1:nn], d[n:(n-nn+1)],


xlab = xlab, ylab = ylab,
main = main,
... )


# The symetry plot of resampled, symetric data
y <- c(x, 2 * median(x) - x) # We symetrize the data
X <- Y <- rep(NA, N * nn)
for (i in 1:N) {
a <- sort(sample(y, n))
a <- abs(a - median(a))
j <- ((i-1) * nn + 1) : (i * nn)
X[j] <- a[1:nn]
Y[j] <- a[n:(n-nn+1)]


}
points(X, Y, col="red")
points( d[1:nn], d[n:(n-nn+1)], ...)
# The 5% confidence interval stemming from the resampled data
require(quantreg)
for (tau in c(alpha, 1-alpha)) {
r <- lprq(X, Y,


h = bw.nrd0(x), # See ?density
tau = tau)


lines(r$xx, r$fv, col = "blue", lwd = 3)
}
abline(0, 1, col = "blue", lty = 2)
# The histogram, in a corner
op <- par(fig = if (skewness(x)>0)


c(.02,.5,.5,.98) # Top left corner
else c(.5,.98,.02,.5), # Bottom right


new = TRUE)
hist(x, probability=T,


col="light blue", xlab="", ylab="", main="", axes=F)
lines(density(x), col="red", lwd=2)
box()
par(op)


}
robust.symetry.plot(EuStockMarkets[,"FTSE"])
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robust.symetry.plot(rnorm(100), N=100, pch=16)


3.2.12 Quantile-Quantile plot (important)


We have just seen a graphical way of assessing the symetry of a sample. One other thing
we like, about our data, is when they follow a gaussian distribution – or any well-known,
reference distribution.
In some cases, it is obvious that the distribution is not gaussian: this was the case for
the Old Faithful geyser eruption lengths (the data were bimodal, i.e., the density had two
peaks). In other cases, it is not that obvious. A first means of checking this is to compare
the estimated density with a gaussian density.


Histogram of x
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data(airquality)
x <- airquality[,4]
hist(x, probability=TRUE, breaks=20, col="light blue")
rug(jitter(x, 5))
points(density(x), type=’l’, lwd=3, col=’red’)
f <- function(t) {
dnorm(t, mean=mean(x), sd=sd(x) )


}
curve(f, add=T, col="red", lwd=3, lty=2)


You can also see, graphically, wether a variable is gaussian: just plot the gaussian quantiles
versus the sample quantiles.
There is already a function to do that. (The “qqline” function plots a line through the first
and third quartiles.) In this example, the data are roughly gaussian, but we can see that
they are discrete.
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x <- airquality[,4]
qqnorm(x)
qqline(x,


col="red", lwd=3)


Here is what we would get with a truly gaussian variable.
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y <- rnorm(100)
qqnorm(y, main="Gaussian random variable")
qqline(y,


col="red", lwd=3)


And now, a non gaussian variable.
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y <- rnorm(100)^2
qqnorm(y, main="Non gaussian variable")
qqline(y,


col="red", lwd=3)


As before, we can overlay several gaussian qqplots to our plot, to see how far from gaussian
our data are.
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QQplot: Gaussian distribution
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my.qqnorm <- function (x, N=1000, ...) {
op <- par()
x <- x[!is.na(x)]
n <- length(x)
m <- mean(x)
s <- sd(x)
print("a")
qqnorm(x, axes=F, ...)
for (i in 1:N) {
par(new=T)
qqnorm(rnorm(n, mean=m, sd=s), col=’red’, pch=’.’,


axes=F, xlab=’’, ylab=’’, main=’’)
}
par(new=T)
qqnorm(x, ...)
qqline(x, col=’blue’, lwd=3)
par(op)


}


my.qqnorm(rnorm(100),
main = "QQplot: Gaussian distribution")
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my.qqnorm(runif(100),
main = "uniform distribution")
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Here are other qqplot examples.
Two distributions shifted to the left.
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y <- exp(rnorm(100))
qqnorm(y,


main = ’(1) Log-normal distribution’)
qqline(y,


col = ’red’, lwd = 3)
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(2) Square of a gaussian variable
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y <- rnorm(100)^2
qqnorm(y, ylim = c(-2,2),


main = "(2) Square of a gaussian variable")
qqline(y,


col = ’red’, lwd = 3)


A distribution shifted to the right.
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(3) Opposite of a log−normal variable
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y <- -exp(rnorm(100))
qqnorm(y, ylim = c(-2,2),


main = "(3) Opposite of a log-normal variable")
qqline(y,


col = ’red’, lwd = 3)


A distribution less dispersed that the gaussian distribution (this is called a leptokurtic
distribution).
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(4) Uniform distribution
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y <- runif(100, min=-1, max=1)
qqnorm(y, ylim = c(-2,2),


main = ’(4) Uniform distribution’)
qqline(y,


col = ’red’, lwd = 3)


A distribution more dispersed that the gaussian distribution (this is called a platykurtic
distribution).
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(5) Cube of a gaussian r.v.
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y <- rnorm(10000)^3
qqnorm(y, ylim = c(-2,2),


main = "(5) Cube of a gaussian r.v.")
qqline(y,


col = ’red’, lwd = 3)


A distribution with several peaks.
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(6) Two peaks
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y <- c(rnorm(50), 5+rnorm(50))
qqnorm(y,


main = ’(6) Two peaks’)
qqline(y,


col = ’red’, lwd = 3)
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(7) Two peaks, farther away
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y <- c(rnorm(50), 20+rnorm(50))
qqnorm(y,


main = ’(7) Two peaks, farther away’)
qqline(y,


col = ’red’, lwd = 3)
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(7) Discrete distribution
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y <- sample(seq(0,1,.1), 100, replace=T)
qqnorm(y,


main = ’(7) Discrete distribution’)
qqline(y,


col = ’red’, lwd = 3)


You can read those plots as follows.
a. If the distribution is more concentrated to the left than the gaussian distribution, the left
part of the plot is above the line (examples 1, 2 and 4 above).
b. If the distribution is less concentrated to the left than the gaussian distribution, the left
part of the plot is under the line (example 3 above).
c. If the distribution is more concentrated to the right than the gaussian distribution, the
right part of the plot is under the line (examples 3 and 4 above).
d. If the distribution is less concentrated to the right than the gaussian distribution, the
right part of the plot is above the line (examples 1 and 2 above).
For instance, example 5 can be interpreted as: the distribution is symetric, to the left of 0,
near 0, it is more concentrated that a gaussian distribution ; to the left of 0, far from 0, it
is less concentrated than a gaussian distribution; on the right of 0, it is the same.
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less concentrated on the right
more concentrates on the right
less concentrated on the left
more concentrated on the left


Reading a qqplot
x <- seq(from=0, to=2, length=100)
y <- exp(x)-1
plot( y ~ x, type = ’l’, col = ’red’,


xlim = c(-2,2), ylim = c(-2,2),
xlab = "Theoretical (gaussian) quantiles",
ylab = "Sample quantiles")


lines( x~y, type=’l’, col=’green’)
x <- -x
y <- -y
lines( y~x, type=’l’, col=’blue’, )
lines( x~y, type=’l’, col=’cyan’)
abline(0,1)
legend( -2, 2,


c( "less concentrated on the right",
"more concentrates on the right",
"less concentrated on the left",
"more concentrated on the left"


),


lwd=3,
col=c("red", "green", "blue", "cyan")


)
title(main="Reading a qqplot")


e. If the distribution is “off-centered to the left” (think: if the median is less than the mean
between the first and third quartiles), then the curve is under the line in the center of the







CHAPTER 3. FROM DATA TO GRAPHICS 199


plot (examples 1 and 2 above).
f. If the distribution is “off-centered to the right” (think: if the median is more than the
mean between the first and third quartiles), then the curve is above the line in the center
of the plot (example 3 above).
g. If the distribution is symetric (think: if the median coincides with the average of the first
and third quartiles), then the curve cuts the line in the center of the plot (examples 4 and
5 above).
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Reading a qqplot


op <- par()
layout( matrix( c(2,2,1,1), 2, 2, byrow=T ),


c(1,1), c(1,6),
)


# The plot
n <- 100
y <- rnorm(n)
x <- qnorm(ppoints(n))[order(order(y))]
par(mar=c(5.1,4.1,0,2.1))
plot( y ~ x, col = "blue",


xlab = "Theoretical (gaussian) quantiles",
ylab = "Sample quantiles" )


y1 <- scale( rnorm(n)^2 )
x <- qnorm(ppoints(n))[order(order(y1))]
lines(y1~x, type="p", col="red")
y2 <- scale( -rnorm(n)^2 )
x <- qnorm(ppoints(n))[order(order(y2))]
lines(y2~x, type="p", col="green")


abline(0,1)


# The legend
par(bty=’n’, ann=F)
g <- seq(0,1, length=10)
e <- g^2
f <- sqrt(g)
h <- c( rep(1,length(e)), rep(2,length(f)), rep(3,length(g)) )
par(mar=c(0,4.1,1,0))
boxplot( c(e,f,g) ~ h, horizontal=T,


border=c("red", "green", "blue"),
col="white", # Something prettier?
xaxt=’n’,
yaxt=’n’,
)


title(main="Reading a qqplot")
par(op)


You can roll up your own qqplot, by going back to the definition.
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y <- rnorm(100)^2
y <- scale(x)
y <- sort(x)
x <- qnorm( seq(0,1,length=length(y)) )
plot(y~x)
abline(0,1)


Let us have a look at the way the “qqnorm” function is programmed.
> help.search("qqnorm")
Help files with alias or concept or title matching "qqnorm" using
fuzzy matching:


qqnorm.acomp(compositions)
Normal quantile plots for compositions and
amounts


qqnorml(faraway) Labeled QQ plot
GarchDistributions(fSeries)


GARCH Distributions
qqnorm.aov(gplots) Makes a half or full normal plot for the


effects from an aov model
tnorm(msm) Truncated Normal distribution
qqnorm.gls(nlme) Normal Plot of Residuals from a gls Object
qqnorm.lm(nlme) Normal Plot of Residuals or Random Effects


from an lme Object
pnorMix(nor1mix) Normal Mixture Cumulative Distribution and


Quantiles
qnormp(normalp) Quantiles of an exponential power distribution
qqnormp(normalp) Quantile-Quantile plot for an exponential


power distribution
pcdiags.plt(pcurve) Diagnostic Plots for Principal Curve Analysis
Lognormal(stats) The Log Normal Distribution
Normal(stats) The Normal Distribution
qqnorm(stats) Quantile-Quantile Plots
NormScore(SuppDists) Normal Scores distribution


> qqnorm
function (y, ...)
UseMethod("qqnorm")


> apropos("qqnorm")
[1] "my.qqnorm" "qqnorm" "qqnorm.default"


> qqnorm.default
function (y, ylim, main = "Normal Q-Q Plot", xlab = "Theoretical Quantiles",


ylab = "Sample Quantiles", plot.it = TRUE, ...)
{
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y <- y[!is.na(y)]
if (0 == (n <- length(y)))
stop("y is empty")


if (missing(ylim))
ylim <- range(y)


x <- qnorm(ppoints(n))[order(order(y))]
if (plot.it)
plot(x, y, main = main, xlab = xlab, ylab = ylab, ylim = ylim,


...)
invisible(list(x = x, y = y))


}


You can reuse the same idea to compare your data with other distributions.
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qq <- function (y, ylim, quantiles=qnorm,
main = "Q-Q Plot", xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles", plot.it = TRUE, ...)


{
y <- y[!is.na(y)]
if (0 == (n <- length(y)))
stop("y is empty")


if (missing(ylim))
ylim <- range(y)


x <- quantiles(ppoints(n))[order(order(y))]
if (plot.it)
plot(x, y, main = main, xlab = xlab, ylab = ylab, ylim = ylim,


...)
# From qqline
y <- quantile(y, c(0.25, 0.75))
x <- quantiles(c(0.25, 0.75))
slope <- diff(y)/diff(x)
int <- y[1] - slope * x[1]


abline(int, slope, ...)
invisible(list(x = x, y = y))


}


y <- runif(100)
qq(y, quantiles=qunif)


(The various interpretations of the qqplot remain valid, but points e, f ang g no longer
assess the symetry of the distribution but compare this symetry with that of the reference
distribution, which need not be symetric.)
People sometimes use a quantile-quantile plot to compare a positive variable with a half-
gaussian – it may help you spot outliers: we shall use it later to look at Cook’s distances.


3.2.13 Detrended probability plot


You can turn the quantile-quantile plot so that the line (through the first and third quartiles)
be horizontal.
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Detrended quantile−quantile plots


two.point.line <- function (x1,y1,x2,y2, ...) {
a1 <- (y2-y1)/(x2-x1)
a0 <- y1 - a1 * x1
abline(a0,a1,...)


}
trended.probability.plot <- function (x, q=qnorm) {
n <- length(x)
plot( sort(x) ~ q(ppoints(n)),


xlab=’theoretical quantiles’,
ylab=’sample quantiles’)


two.point.line(q(.25), quantile(x,.25),
q(.75), quantile(x,.75), col=’red’)


}
detrended.probability.plot <- function (x, q=qnorm,


xlab="", ylab="") {
n <- length(x)
x <- sort(x)
x1 <- q(.25)


y1 <- quantile(x,.25)
x2 <- q(.75)
y2 <- quantile(x,.75)
a1 <- (y2-y1)/(x2-x1)
a0 <- y1 - a1 * x1
u <- q(ppoints(n))
x <- x - (a0 + a1 * u)
plot(x ~ u,


xlab=xlab, ylab=ylab)
abline(h=0, col=’red’)


}


op <- par(mfrow = c(3,2), mar = c(2,2,2,2) + .1)
x <- runif(20)
trended.probability.plot(x)
detrended.probability.plot(x)
x <- runif(500)
trended.probability.plot(x)
detrended.probability.plot(x)
trended.probability.plot(x, qunif)
detrended.probability.plot(x,qunif)
par(op)
mtext("Detrended quantile-quantile plots",


side=3, line=3, font=2, size=1.5)


3.2.14 Gini concentration


Recently, I had to follow a “data analysis course” (statistical tests, regression, Principal
Component Analysis, Correspondance Analysis, Hierarchical analysis – but, as these are
very classical subjects and as I had already started to write this document, I did not learn
much) during which we discovered the Gini (or Lorentz) concentration curve.
This is the curve that summarises statements such as “20% of the patients are responsible
for 90% of the NHS spendings”. For instance:


Proportion of patients | Proportions of spendings
----------------------------------------------------


20% | 90%
30% | 95%
50% | 99%


These are cumulated percents: the table should be read as
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The top 20% are responsible for 90% of the expenses
The top 30% are responsible for 95% of the expenses
The top 50% are responsible for 99% of the expenses


We can plot those figures:
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xy <- matrix(c( 0, 0,
.2, .9,
.3, .95,
.5, .99,
1, 1), byrow = T, nc = 2)


plot(xy, type = ’b’, pch = 15,
main = "Conventration curve",
xlab = "patients",
ylab = "expenses")


polygon(xy, border=F, col=’pink’)
lines(xy, type=’b’, pch=15)
abline(0,1,lty=2)


The more inegalities in the situation, the larger the area between the curve and the diagonal:
this area (actually, we multiply this area by 2, so that the index varies between 0 (equality)
and 1 (maximum inequalities)) is called the “Gini index”.
Here is another example:
In a cell,
20 genes are expressed 10^5 times ("expressed" means


"transcribed into ARNm")
2700 genes are expressed 10^2 times
280 genes are expressed 10 times


Let us convert this into cumulated numbers:
20 genes 100000 ARNm
2720 genes 100100 ARNm
3000 genes 100110 ARNm


and then into cumulated frequencies:
Genes | ARNm
-------------------
0.7% | 0.9989012


90.7% | 0.9999001
100% | 1


Here is the curve (the situation is much worse than the preceding!):
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x <- c(0,20,2720,3000)/3000
y <- c(0,100000,100100,100110)/100110
plot(x,y, type=’b’, pch=15,


xlab = "Genes", ylab = "ARNm",
main = "Conventration curve")


polygon(x,y, border=F, col=’pink’)
lines(x,y, type=’b’, pch=15)
abline(0,1,lty=2)


The classical example for the Gini curve is the study of incomes.
The “ineq” package contains functions to plot the Gini curve and compute the Gini index
(well, the curves are the symetrics of mine, but that does not change the results).
The “Gini” function, in the “ineq” package, computes the Gini concentration index. It is
only defined if the variable studied is POSITIVE (in the examples above – “NHS spendings”,
“number of transcribed genes”, “income”, etc. – we did not explicitely mention the variable
but merely gave its cumulated frequencies).
> n <- 500
> library(ineq)
> Gini(runif(n))
[1] 0.3241409
> Gini(runif(n,0,10))
[1] 0.3459194
> Gini(runif(n,10,11))
[1] 0.01629126
> Gini(rlnorm(n))
[1] 0.5035944
> Gini(rlnorm(n,0,2))
[1] 0.8577991
> Gini(exp(rcauchy(n,1)))
[1] 0.998
> Gini(rpois(n,1))
[1] 0.5130061
> Gini(rpois(n,10))
[1] 0.1702435







CHAPTER 3. FROM DATA TO GRAPHICS 205


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


uniform on [0,1]


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


uniform on [0,10]


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


uniform on [10,11]


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


log−normal


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


log−normal, wider


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


half−Cauchy


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


half−Gaussian


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


Poisson with mean 1


0.0 0.2 0.4 0.6 0.8 1.0


0.0


0.2


0.4


0.6


0.8


1.0


Poisson with mean 10


Gini concentration curves


library(ineq)
op <- par(mfrow=c(3,3), mar=c(2,3,3,2)+.1, oma=c(0,0,2,0))
n <- 500
set.seed(1)
plot(Lc(runif(n,0,1)),


main="uniform on [0,1]", col=’red’,
xlab="", ylab="")


do.it <- function (x, main="", xlab="", ylab="") {
plot(Lc(x), col = "red",


main=main, xlab=xlab, ylab=ylab)
}
do.it(runif(n,0,10), main="uniform on [0,10]")
do.it(runif(n,10,11), main="uniform on [10,11]")
do.it(rlnorm(n), main="log-normal")
do.it(rlnorm(n,0,4), main="log-normal, wider")
do.it(abs(rcauchy(n,1)), main="half-Cauchy")
do.it(abs(rnorm(n,1)), main="half-Gaussian")
do.it(rpois(n,1), main="Poisson with mean 1")


do.it(rpois(n,10), main="Poisson with mean 10")
par(op)
mtext("Gini concentration curves", side=3, line=3,


font=2, cex=1.5)


We can compute the Gini index ourselves:
n <- 500
x <- qlnorm((1:(n-1))/n, 1, 2.25)
x <- sort(x)
i <- (1:n)/n
plot(cumsum(x)/sum(x) ~ i, lwd=3, col=’red’)
abline(0,1)
2*sum(i-cumsum(x)/sum(x))/n


Exercise: the the examples above, the data were presented in two different forms: either
cumulated frequencies or a random variable. Write some code to turn one representation
into the other.


3.3 Ordered univariate data


We are no longer interested in precise numeric values but in rankings. Sometimes, one
will cheat and consider them as quantitative variables (and indeed, ordered variables are
sometimes a simplification of quantitative variables, when they are put into classes – but
beware, by doing so, you lose information), after transforming them if needed (so that they
look more gaussian) or as qualitative variables (because, as qualitative variables, they only
assume a finite number of values).
In R, qualitative variables are stored in “factors” and ordered variables in “ordered factors”:
just replace the “factor” function by “ordered”.
> l <- c(’petit’, ’moyen’, ’grand’)
> ordered( sample(l,10,replace=T), levels=l)
[1] grand moyen moyen grand moyen petit moyen petit moyen moyen
Levels: petit < moyen < grand


The plots are the same as with factors, but the order between the levels is not arbitrary.
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The origin is not on the plot
data(esoph)
dotchart(table(esoph$agegp))
mtext("Misleading plot", side=3, line=2.5, font=2, cex=1.2)
mtext("The origin is not on the plot", side=3, line=1)
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barplot(table(esoph$agegp))


Histogram of as.numeric(esoph$agegp)


as.numeric(esoph$agegp)
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hist(as.numeric(esoph$agegp),
breaks=seq(.5,.5+length(levels(esoph$agegp)),step=1),
col=’light blue’)
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boxplot(as.numeric(esoph$agegp),
horizontal = T, col = "pink")
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stripchart(jitter(as.numeric(esoph$agegp),2), method=’jitter’)
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plot(table(esoph$agegp), type=’b’, pch=7)


3.4 Qualitative univariate variables


We have a list of non-numeric values (actually, the data can be coded by numbers, but they
are arbitrary, a difference of those numbers is meaningless: for instance, zip codes, phone
numbers, or answer numbers in a questionnaire).


3.4.1 Different ways of presenting those data: data frames and con-
tingency tables


There are two ways of presenting such data: either a vector of strings (more precisely, of
“factors”: when you print it, it looks like strings, but as we expect there will be few values,
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often repeated, it is coded more efficiently – you can convert a factor into an actual vector
of strings with the “as.character” function), or a contingency table.
> p <- factor(c("oui", "non"))
> x <- sample(p, 100, replace=T)
> str(x)
Factor w/ 2 levels "non","oui": 1 2 2 2 2 1 2 2 2 2 ...
> table(x)
x
non oui
48 52


The second representation is much more compact. If you only have quantitative variables,
and few of them, you might want to favour it. In the following example, there are three
variables and the contingency table is consequently 3-dimensional.
> data(HairEyeColor)
> HairEyeColor
, , Sex = Male


Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 38 50 25 15
Red 10 10 7 7
Blond 3 30 5 8


, , Sex = Female


Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 81 34 29 14
Red 16 7 7 7
Blond 4 64 5 8


On the contrary, if you have both qualitative and quantitative variables, or if you have many
qualitative variables, you will prefer the first representation.
> data(chickwts)
> str(chickwts)
‘data.frame’: 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horseb..",..: 2 2 2 2 2 2 2 2 2 2 ...


But let us stay, for the moment, with univariate data sets.
We have already seen the “table” function, that allowed us to get the compact, contingency
table, presentation.
> table(chickwts$feed)


casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12


In the orther direction, you can use the “rep” function.
> x <- table(chickwts$feed)
> rep(names(x),x)
[1] "casein" "casein" "casein" "casein" "casein" "casein"
[7] "casein" "casein" "casein" "casein" "casein" "casein"
[13] "horsebean" "horsebean" "horsebean" "horsebean" "horsebean" "horsebean"
[19] "horsebean" "horsebean" "horsebean" "horsebean" "linseed" "linseed"
[25] "linseed" "linseed" "linseed" "linseed" "linseed" "linseed"
[31] "linseed" "linseed" "linseed" "linseed" "meatmeal" "meatmeal"
[37] "meatmeal" "meatmeal" "meatmeal" "meatmeal" "meatmeal" "meatmeal"
[43] "meatmeal" "meatmeal" "meatmeal" "soybean" "soybean" "soybean"
[49] "soybean" "soybean" "soybean" "soybean" "soybean" "soybean"
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[55] "soybean" "soybean" "soybean" "soybean" "soybean" "sunflower"
[61] "sunflower" "sunflower" "sunflower" "sunflower" "sunflower" "sunflower"
[67] "sunflower" "sunflower" "sunflower" "sunflower" "sunflower"


3.4.2 Column plots
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Column plot
data(HairEyeColor)
x <- apply(HairEyeColor, 2, sum)
barplot(x)
title(main="Column plot")
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Column plot
barplot(x, col = 1, density = c(3,7,11,20),


angle = c(45,-45,45,-45))
title(main = "Column plot")
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3.4.3 Bar plot
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Bar plot
x <- apply(HairEyeColor, 2, sum)
barplot(as.matrix(x), legend.text = TRUE)
title("Bar plot")
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Bar plot
barplot(as.matrix(x),


horiz = TRUE,
col = rainbow(length(x)),
legend.text = TRUE)


title(main = "Bar plot")


For a single variable, it might be better to place the legend yourself.
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Bar plot, with legend
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op <- par(no.readonly=TRUE)
par(mar=c(5,4,4,7)+.1)
barplot(as.matrix(x))
title("Bar plot, with legend")
par(xpd=TRUE) # Do not clip to the drawing area
lambda <- .025
legend(par("usr")[2],


par("usr")[4],
names(x),
fill = grey.colors(length(x)),
xjust = 0, yjust = 1


)
par(op)
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0 100 200 300 400 500


Bar plot, with legend


Brown
Blue
Hazel
Green


op <- par(no.readonly=TRUE)
par(mar=c(3,1,4,7)+.1)
barplot(as.matrix(x),


horiz = TRUE,
col = rainbow(length(x)))


title(main = "Bar plot, with legend")
par(xpd=TRUE) # Do not clip to the drawing area
lambda <- .05
legend((1+lambda)*par("usr")[2] - lambda*par("usr")[1],


par("usr")[4],
names(x),
fill = rainbow(length(x)),
xjust = 0, yjust = 1


)
par(op)


3.4.4 Pareto Plot


This is simply a column plot in which the data are ordered along decreasing frequencies.
If there are few possible values, it is not more enlightening that an unordered column plot
(in the preceding examples, the data were already ordered: we were unknowingly looking at
Pareto plots).


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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35


Column plot
data(attenu)
op <- par(las=2) # Write the labels perpendicularly to the axes
barplot(table(attenu$event))
title(main="Column plot")
par(op)
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Pareto Plot
op <- par(las=2)
barplot(rev(sort(table(attenu$event))))
title(main="Pareto Plot")
par(op)


Often, one adds the cumulated frequencies.
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Pareto plot with cumulated frequencies
# I cannot seem to manage to do it with
# the "barplot" function...
pareto <- function (x, main = "", ylab = "Value") {
op <- par(mar = c(5, 4, 4, 5) + 0.1,


las = 2)
if( ! inherits(x, "table") ) {
x <- table(x)


}
x <- rev(sort(x))
plot( x, type = ’h’, axes = F, lwd = 16,


xlab = "", ylab = ylab, main = main )
axis(2)
points( x, type = ’h’, lwd = 12,


col = heat.colors(length(x)) )
y <- cumsum(x)/sum(x)
par(new = T)
plot(y, type = "b", lwd = 3, pch = 7,


axes = FALSE,


xlab=’’, ylab=’’, main=’’)
points(y, type = ’h’)
axis(4)
par(las=0)
mtext("Cumulated frequency", side=4, line=3)
print(names(x))
axis(1, at=1:length(x), labels=names(x))
par(op)


}
pareto(attenu$event)
title(main="Pareto plot with cumulated frequencies")


3.4.5 Pie chart


Pie charts are usually a bad idea: the human eye cannot efficiently compare areas or (even
worse) angles; it might be fine if you want to hide information, but if you want to convey
information,
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Brown


Blue


Hazel


Green


Pie chart
x <- apply(HairEyeColor, 2, sum)
pie(x)
title(main="Pie chart")


Actually, human beings cannot easily spot angle or surface differences. As pie charts relie
exactly on that, it might not be the most insightful plot to display your data.
If you want to cheat, you can even use a 3D pie chart and put the class you want to appear
larger in the foreground.


3.4.6 Polar coordinates


Actually, the piechart is simply the respectful barchart in polar coordinates. More generally,
you can try to plot other common plots in polar coordinates – most of the time, the result
will be awful and/or misleading, but not always.


Barchart


0
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4
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8


Barchart with an added dimension


Stacked area chart


A


B
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D
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F


Pie chart Annular chart


A


B
C


D


E


F


From bad... ...to worse


1 2


Barchart with several bars


0
2


4
6


8


Two annular charts


op <- par(mfrow=c(4,2), mar=c(2,4,2,2))


# Barchart (1 bar)
set.seed(1)
x <- rlnorm(6)
barplot(as.matrix(x),


xlim = c(-2,3),
main = "Barchart")


# Barchart with an added dimension (stacked area chart) (p.173)
y <- matrix(rnorm(60), nc=6)
y <- apply(y, 2, cumsum)
y <- exp(y/5)
stacked area chart <- function (y, axes = TRUE, ...) {
stopifnot(all(y>=0))
y <- t(apply(y, 1, cumsum))
plot.new()
plot.window(xlim = c(1,nrow(y)),


ylim = range(y) + .1*c(-1,1)*diff(range(y)))
for (i in ncol(y):1) {
polygon(c(1,1:nrow(y),nrow(y)),


c(0,y[,i],0),
col=i, border=NA)


lines(1:nrow(y), y[,i], lwd=3)


}
if (axes) {
axis(1)
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axis(2)
}
box()


}
stacked area chart(y, axes = FALSE)
title(main = "Barchart with an added dimension",


sub = "Stacked area chart")


# Pie chart
pie(x,


col = 1:length(x),
labels = LETTERS[1:length(x)],
main = "Pie chart")


# Annular chart
annular chart <- function (x, r1=1, r2=2) {
stopifnot(x>=0, r1 >= 0, r2 > 0, r1 < r2)
x <- cumsum(x) / sum(x)
x <- c(0,x)
plot.new()
plot.window(xlim = c(-1.1,1.1)*r2,


ylim = c(-1.1,1.1)*r2)
for (i in 2:length(x)) {
theta <- 2*pi*seq(x[i-1], x[i], length=100)
polygon( c(r1 * cos(theta), r2 * cos(rev(theta))),


c(r1 * sin(theta), r2 * sin(rev(theta))),
col = i )


}
}
annular chart(x)
title("Annular chart")


# Pie chart
pie(x,


col = 1:length(x),
labels = LETTERS[1:length(x)],
main = "From bad...")


# Concentrical chart
# Grid graphics would be better for this: they would
# help you enforce orthonormal coordinates, and thus
# circular circles...
circular pie <- function (x, ...) {
stopifnot(is.vector(x),


all(x >= 0),
length(x) >= 1)


plot.new()
radii <- sqrt(cumsum(x)) # The areas are


# proportional to the
# inital x


plot.window(xlim = max(radii)*c(-1.1,1.1),
ylim = max(radii)*c(-1.1,1.1) )


theta <- seq(0, 2*pi, length=100)[-1]
x <- cos(theta)
y <- sin(theta)
for (i in length(x):1) {
polygon(radii[i] * x, radii[i] * y,


col = i, border = NA)
lines(radii[i] * x, radii[i] * y)


}
}
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circular pie(x)
title("...to worse")


# barchart (several bars)
xx <- sample(x)
barplot(cbind("1" = x, "2" = xx),


space = 1,
xlim = c(0,5),
col = 1:length(x),
main = "Barchart with several bars")


# Several annular charts p.212
annular chart <- function (x, r1=1, r2=2) {
stopifnot(x>=0, r1 >= 0, r2 > 0, r1 < r2)
x <- cumsum(x) / sum(x)
x <- c(0,x)
for (i in 2:length(x)) {
theta <- 2*pi*seq(x[i-1], x[i], length=100)
polygon( c(r1 * cos(theta), r2 * cos(rev(theta))),


c(r1 * sin(theta), r2 * sin(rev(theta))),
col = i )


}
}
two annular charts <- function (x, y,


r1=1, r2=1.9,
r3=2, r4=2.9) {


plot.new()
plot.window(xlim = c(-1.1,1.1)*r4,


ylim = c(-1.1,1.1)*r4)
annular chart (x, r1, r2)
annular chart (y, r3, r4)


}
two annular charts(x, xx)
title("Two annular charts")


par(op)


For instance, it makes sense to plot trees (dendograms) in polar coordinates.
TODO: Check that the following produces a single plot...


A


Struthioniformes
Tinamiformes
Craciformes
Galliformes
Anseriformes
Turniciformes
Piciformes
Galbuliformes
Bucerotiformes
Upupiformes
Trogoniformes
Coraciiformes
Coliiformes
Cuculiformes
Psittaciformes
Apodiformes
Trochiliformes
Musophagiformes
Strigiformes
Columbiformes
Gruiformes
Ciconiiformes
Passeriformes


0


3.14841342383859


1.25700987612120


3.15032794902479
2.99620061406166


0.332950371213518


0.556421252588233


1.35478764808421


0.910738167624983
0.952854040769219


3.80251913696302


2.87082986846705


0.894675844165097
0.645029316613065


1.68534271725206


2.23737166497471


1.98619299215868
0.810049993810654


1.33918488853042


3.35357660185167
2.68202367166486
1.30939460170626


03.148413423838591.257009876121203.150327949024792.996200614061660.3329503712135180.5564212525882331.354787648084210.9107381676249830.9528540407692193.802519136963022.870829868467050.8946758441650970.6450293166130651.685342717252062.237371664974711.986192992158680.8100499938106541.339184888530423.353576601851672.682023671664861.3093946017062603.148413423838591.257009876121203.150327949024792.996200614061660.3329503712135180.5564212525882331.354787648084210.9107381676249830.9528540407692193.802519136963022.870829868467050.8946758441650970.6450293166130651.685342717252062.237371664974711.986192992158680.8100499938106541.339184888530423.353576601851672.68202367166486


library(ape)
example(plot.ancestral)
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Strix aluco


Asio otus


Athene noctua


Tyto alba


example(plot.phylo)


3.4.7 2-dimensional barplot (treemap)


TODO: Write a few comments, take real data.


2−dimensional barplot


A


B


C
D


E F


G


H


I


J
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M


N


O


P


Q


R


S


T


##
## barplot2D(area, colour)
##
##
## The algorithm is not that obvious.
## - Start with a rectangle, representing 100%, to be filled
## by other rectangles.
## - Try to put the first rectangle on the left
## - If it too elongated, try to put two rectangles, on
## top of each other, on the left
## - Go on, until you are satisfied
## - When you have put those rectangles, proceed with the
## remaining of the large rectangle container.
## More precisely, we choose the number of rectables to
## stack so as to minimize the following penalty:
## penalty for the first rectangle in the stack + penalty for the last
## where the penalty of a rectangle is
## ratio - 1.1


## where "ratio" is the ratio of the longer side by the smaller.
##
## Arguments:
## area: vector, containing positive number (NAs are discarded),
## to be used as the area of the rectangles
## colour: vector (same length) of strings containing the colours
## You can create it with "rgb", or "cm.colors".
## threshold: The maximum acceptable aspect ratio of the rectangles
## width, height: Dimensions of the initial rectangle.
## I suggest to plot the picture in a rectangular
## device, e.g.,
## pdf(width=6, height=4)
## but to tell the function that this rectangle is
## actually a square, i.e.,
## barplot2D(area, colour, width=1, height=1)
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## so that the cells be horizontal
## rectangles: you get more space to add
## labels
##
## Returns:
## A matrix, one row per cell, containing the x- and
## y-coordinates of the corners of all the cells (first
## eight columns), and the coordinates of the center of
## those cells (last two columns).
## The rows are in one-to-one correspondance with the
## elements of the "area" vector: if there were missing
## values, we have rows of missing values.
## The row names are the same as the names of the "area"
## vector, in the same order.
##


barplot2D <- function (area, colour,
threshold=1.1,
width=1, height=1) {


stopifnot(is.vector(area), is.vector(colour),
length(area) == length(colour),
!all(is.na(area)))


if (is.null(names(area))) {
names(area) <- as.character(1:length(area))


}
area0 <- area
if (any(is.na(area))) {
warning("Discarding NAs")
i <- which(!is.na(area))
area <- area[i]
colour <- colour[i]


}
stopifnot(all(area>=0), sum(area)>0)
i <- order(-area)
area <- area[i]
colour <- colour[i]
n <- length(area)
res <- matrix(NA, nr=n, nc=8)
colnames(res) <- as.vector(t(outer(LETTERS[1:4], 1:2, paste, sep="")))
rownames(res) <- names(area)
A <- c(0,height)
B <- c(0,0)
C <- c(width,0)
D <- c(width,height)
plot.new()
plot.window(xlim=c(0,1), ylim=c(0,1))
i <- 1
while (i <= n) {
lambda <- cumsum(area[i:n]) / sum(area[i:n])
mu <- area[i] / cumsum(area[i:n])
nu <- area[i:n] / cumsum(area[i:n])
penalty1 <- mu * sum(abs(A-B)) / ( lambda * sum(abs(A-D)) )
penalty1 <- ifelse(penalty1 <= threshold, 0, penalty1 - threshold)
penalty2 <- lambda * sum(abs(A-D)) / ( nu * sum(abs(A-B)) )
penalty2 <- ifelse(penalty2 <= threshold, 0, penalty2 - threshold)
j <- which.min(penalty1 + penalty2)[1] + i - 1
cat(i, " => ", j, "\n")
lambda <- sum(area[i:j]) / sum(area[i:n])
A1 <- A
B1 <- B
C1 <- (1-lambda) * B + lambda * C
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D1 <- (1-lambda) * A + lambda * D
AA <- C1
BB <- C
CC <- D
DD <- D1
while (i <= j) {
lambda <- area[i] / sum(area[i:j])
B2 <- (1-lambda) * A1 + lambda * B1
C2 <- (1-lambda) * D1 + lambda * C1
polygon(rbind(A1, B2, C2, D1), col=colour[i])
res[i,] <- c(A1, B2, C2, D1)
A1 <- B2
D1 <- C2
i <- i + 1


}
A <- AA
B <- BB
C <- CC
D <- DD


} # Main loop
res0 <- matrix(NA, nr=length(area0), nc=10)
colnames(res0) <- c(colnames(res), "x", "y")
rownames(res0) <- names(area0)
res0[ names(area), 1:8] <- res
res0[, "x"] <- apply(res0[,c("A1","B1","C1","D1")],1,mean)
res0[, "y"] <- apply(res0[,c("A2","B2","C2","D2")],1,mean)
invisible(res0)


}


N <- 20
area <- rlnorm(N)
names(area) <- LETTERS[1:N]
value <- rt(N, df=4)
# Difficult part: compute the colours...
colour <- cm.colors(255)[
1 + round(
254 * (value - min(value, na.rm = TRUE)) /
diff(range(value, na.rm = TRUE))


)
]
r <- barplot2D(area, colour)
title("2-dimensional barplot")
# Add the labels
text(r[,"x"], r[,"y"], names(area), cex=.8)


This plot also goes by the name “treemap” and can be used to represent tree-like datasets,
for instance, the space on your hard drive occupied by directories, subdirectories, etc.
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http://gdmap.sourceforge.net/
http://www.cs.umd.edu/hcil/treemap-history/index.shtml


See also the following thread, on the R-SIG-Finance mailing list:
https://stat.ethz.ch/pipermail/r-sig-finance/2006q2/000875.html


3.4.8 Beyond mosaic plots: Treemaps, Region Trees and Tem-
pleMVV plots


Treemaps are 2-dimensional barplots used to represent hiearchical classifications.


Map of the Market


−13 −6 0 6 13


Industrials


Staples


Financials


Technology Cyclicals


Communications Materials Energy


library(portfolio)
example(map.market)


A Region Tree is a set of barplots that progressively drill-down into the data.



http://gdmap.sourceforge.net/

http://www.cs.umd.edu/hcil/treemap-history/index.shtml
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Region tree


olap <- function (x, i) {
# Project (drill-up?) a data cube
y <- x <- apply(x, i, sum)
if (length(i) > 1) {
y <- as.vector(x)
n <- dimnames(x)
m <- n[[1]]
for (i in (1:length(dim(x)))[-1]) {
m <- outer(m, n[[i]], paste)


}
names(y) <- m


}
y


}
col1 <- c("red", "green", "blue", "brown")
col2 <- c("red", "light coral",


"green", "light green",
"blue", "light blue",


"brown", "rosy brown")
col3 <- col2[c(1,2,1,2,3,4,3,4,5,6,5,6,7,8,7,8)]
op <- par(mfrow=c(3,1), mar=c(8,4,0,2), oma=c(0,0,2,0), las=2)
barplot(olap(Titanic,1), space=0, col=col1)
barplot(olap(Titanic,2:1), space=0, col=col2)
barplot(olap(Titanic,3:1), space=0, col=col3)
par(op)
mtext("Region tree", font = 2, line = 3)


A TempleMVV plot can be seen as those barplots overlaid on one another.
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TempleMVV Plot


x1 <- olap(Titanic,3:1)
x2 <- rep(olap(Titanic,2:1), each=dim(Titanic)[3])
x3 <- rep(olap(Titanic,1), each=prod(dim(Titanic)[2:3]))
x4 <- rep(sum(Titanic), each=prod(dim(Titanic)[1:3]))
op <- par(mar=c(8,4,4,2))
barplot(x4, names.arg="", axes = FALSE, col = "light coral")
barplot(x3, names.arg="", axes = FALSE, col = "light green", add = TRUE)
barplot(x2, names.arg="", axes = FALSE, col = "light blue", add = TRUE)
barplot(x1, las=2, axes = FALSE, col = "yellow", add = TRUE)
mtext("TempleMVV Plot", line=2, font=2, cex=1.2)
par(op)


Those plots are designed to study OLAP data (i.e., “data cubes”, i.e., correspondance tables
with many, many variables).


3.4.9 Dotchart


When there are many values, “dotplots” can replace column plots.
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dotchart
x <- apply(HairEyeColor, 2, sum)
dotchart(x, main="dotchart")


They remain readable.
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Dodge
Eagle
Ford
Geo
Honda
Hyundai
Infiniti
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library(MASS) # For the Cars93 data set
dotchart(table(Cars93$Manufacturer))
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library(nlme)
data(Milk)
dotchart(table(Milk$Cow))


3.5 Quantitative bivariate data


Now, consider two series of numbers, in parallel: often, the data comes as a 2-column array,
one column per variable, one row per subject.
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3.5.1 Point cloud
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Point cloud
data(cars)
plot(cars$dist ~ cars$speed,


xlab = "Speed (mph)",
ylab = "Stopping distance (ft)",
las = 1)


title(main = "Point cloud")


You can add a 1-dimensional scatterplot in the margins.
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cars data
plot(cars$dist ~ cars$speed,


xlab = "Speed (mph)",
ylab = "Stopping distance (ft)",
las = 1)


title(main = "cars data")
rug(side=1, jitter(cars$speed, 5))
rug(side=2, jitter(cars$dist, 20))


You may also want to add a box-and-whiskers plot.
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op <- par()
layout( matrix( c(2,1,0,3), 2, 2, byrow=T ),


c(1,6), c(4,1),
)


par(mar=c(1,1,5,2))
plot(cars$dist ~ cars$speed,


xlab=’’, ylab=’’,
las = 1)


rug(side=1, jitter(cars$speed, 5) )
rug(side=2, jitter(cars$dist, 20) )
title(main = "cars data")


par(mar=c(1,2,5,1))
boxplot(cars$dist, axes=F)
title(ylab=’Stopping distance (ft)’, line=0)


par(mar=c(5,1,1,2))


boxplot(cars$speed, horizontal=T, axes=F)
title(xlab=’Speed (mph)’, line=1)


par(op)


You can try to approximate the data with a straight line.
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plot(dist ~ speed, data = cars,
main = "\"cars\" data and regression line")


abline(lm( dist ~ speed, data = cars),
col = ’red’)


The “loess” function approximates the data with a curve, not necessarily a line. We shall
explain what is behind this (it is called “local regression”) when we tackle regression.
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"cars" data and loess curve
plot(cars,


xlab = "Speed (mph)",
ylab = "Stopping distance (ft)",
las = 1)


# lines(loess(dist ~ speed, data=cars),
# col = "red") # Didn’t that use to work?
r <- loess(dist ~ speed, data=cars)
lines(r$x, r$fitted, col="red")
title(main = "\"cars\" data and loess curve")


This is approximately the same as the older “lowess” function.
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"cars" data and lowess curve
plot(cars,


xlab = "Speed (mph)",
ylab = "Stopping distance (ft)",
las = 1)


lines(lowess(cars$speed, cars$dist,
f = 2/3, iter = 3),


col = "red")
title(main = "\"cars\" data and lowess curve")


3.5.2 With a periodic variable


If one of the variables is periodic (say, the hour of the day, the direction of the wind), you
may want to represent the data as a circle.
Here is for instance the number of visitors to a web site as a function of the time of the day.
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Number of visitors to a web site for each hour of the day
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x <- c(15, 9, 75, 90, 1, 1, 11, 5, 9, 8, 33, 11, 11,
20, 14, 13, 10, 28, 33, 21, 24, 25, 11, 33)


# I tried to produce the same with the "stars"
# function, with no success.
clock.plot <- function (x, col = rainbow(n), ...) {
if( min(x)<0 ) x <- x - min(x)
if( max(x)>1 ) x <- x/max(x)
n <- length(x)
if(is.null(names(x))) names(x) <- 0:(n-1)
m <- 1.05
plot(0,


type = ’n’, # do not plot anything
xlim = c(-m,m), ylim = c(-m,m),
axes = F, xlab = ’’, ylab = ’’, ...)


a <- pi/2 - 2*pi/200*0:200
polygon( cos(a), sin(a) )
v <- .02
a <- pi/2 - 2*pi/n*0:n


segments( (1+v)*cos(a), (1+v)*sin(a),
(1-v)*cos(a), (1-v)*sin(a) )


segments( cos(a), sin(a),
0, 0,
col = ’light grey’, lty = 3)


ca <- -2*pi/n*(0:50)/50
for (i in 1:n) {
a <- pi/2 - 2*pi/n*(i-1)
b <- pi/2 - 2*pi/n*i
polygon( c(0, x[i]*cos(a+ca), 0),


c(0, x[i]*sin(a+ca), 0),
col=col[i] )


v <- .1
text((1+v)*cos(a), (1+v)*sin(a), names(x)[i])


}
}
clock.plot(x,
main = "Number of visitors to a web site for each hour of the day")


The “stars” function can also produce similar plots.
?stars
TODO


The plotrix package also provides similar functions.
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library(plotrix)
clock24.plot(x,


line.col = "blue",
lwd = 10)


# See also polar.plot, radial.plot


For more information about that kind of data, have a look at the “circular” package


0


ππ


2


ππ


3ππ


2


+


library(circular)
rose.diag(x)
# x <- as.circular(rep( 2*pi / 24 * (0:23), x ))
detach("package:circular") # redefines "var"...


Plots in polar coordinates can also help highlight periodic phenomena.







CHAPTER 3. FROM DATA TO GRAPHICS 228


0 500 1000


−
80


0
−


60
0


−
40


0
−


20
0


0
20


0
40


0
60


0


UK gas consumption


Winter


Spring


Summer


Autumn


1960
1973
1986


# Polar plot to spot seasonal patterns
x <- as.vector(UKgas)
n <- length(x)
theta <- seq(0, by=2*pi/4, length=n)
plot(x * cos(theta), x * sin(theta),


type = "l",
xlab = "", ylab = "",
main = "UK gas consumption")


abline(h=0, v=0, col="grey")
abline(0, 1, col="grey")
abline(0, -1, col="grey")
circle <- function (x, y, r, N=100, ...) {
theta <- seq(0, 2*pi, length=N+1)
lines(x + r * cos(theta), y + r * sin(theta), ...)


}
circle(0,0, 250, col="grey")
circle(0,0, 500, col="grey")
circle(0,0, 750, col="grey")


circle(0,0, 1000, col="grey")
circle(0,0, 1250, col="grey")
segments( x[-n] * cos(theta[-n]),


x[-n] * sin(theta[-n]),
x[-1] * cos(theta[-1]),
x[-1] * sin(theta[-1]),
col = terrain.colors(length(x)),
lwd = 3)


text(par("usr")[2], 0, "Winter", adj=c(1,0))
text(0, par("usr")[4], "Spring", adj=c(0,1))
text(par("usr")[1], 0, "Summer", adj=c(0,0))
text(0, par("usr")[3], "Autumn", adj=c(0,0))
legend("topright", legend = c(1960, 1973, 1986),


fill = terrain.colors(3))


3.5.3 Beyond polar coordinates: conformal mappings


A conformal mapping is a (continuous) transformation of the plane that preserves angles.
http://mathworld.wolfram.com/ConformalMapping.html


Though they have interesting theoretical properties, they rarely provide intuitive graphics,
with one exception: the exponential – it can be used as a replacement for polar coordinates
should you feel the need to preserve angles.



http://mathworld.wolfram.com/ConformalMapping.html
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Sunspots after conformal transformation


conformal plot <- function (x, y, ...) {
# To be used when y is thought to be a periodic function of x,
# with period 2pi.
z <- y + 1i * x
z <- exp(z)
x <- Re(z)
y <- Im(z)
plot(x, y, ...)


}
conformal abline <- function (h=NULL, v=NULL, a=NULL, b=NULL, ...) {
if (!is.null(a) | ! is.null(b)) {
stop("Do not set a or b but only h or v")


}
if (!is.null(h)) {
theta <- seq(0, 2*pi, length=200)
for (i in 1:length(h)) {
rho <- exp(h[i])
lines(rho * cos(theta), rho * sin(theta), type = "l", ...)


}
}
if (!is.null(v)) {
rho <- sqrt(2) * max(abs(par("usr")))
segments(0, 0, rho * cos(v), rho * sin(v), ...)


}
}


op <- par(mar=c(1,1,3,1))
x <- as.vector(sunspots)
conformal plot(2 * pi * seq(from=0, by=1/(11*12), length=length(x)),


x / 100,
type = "l",
lwd = 2,
col = "blue",
xlab = "", ylab = "",
main = "Sunspots after conformal transformation")


conformal abline(h=seq(0,3, by=.25), col="grey")
conformal abline(v = seq(0, 2*pi, length=12), ## 11 years...


col = "grey")
par(op)


3.5.4 Lattice


You can also cut the cloud point in slices, along one variable Y, and plot a boxplot, a
histogram, a density estimation of the other variable X. These are called “treillis plots” or
“lattice plots”; the “lattice” package provides the corresponding functions.
The idea of cutting the data into slices may sound simple, but it is actually very powerful.
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vitesse library(lattice)
y <- cars$dist
x <- cars$speed
# vitesse <- shingle(x, co.intervals(x, number=6))
vitesse <- equal.count(x)
histogram(~ y | vitesse)
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bwplot(~ y | vitesse, layout=c(1,6))
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densityplot(~ y | vitesse, aspect=’xy’)
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densityplot(~ y | vitesse, layout=c(1,6))


Before knowing lattice plots, I was cutting one of the variables in quartiles and plotting the
median (or the quartiles) of the other for each of those quartiles.
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y <- cars$dist
x <- cars$speed
q <- quantile(x)
o1 <- x<q[2]
o2 <- q[2]<x & x<q[3]
o3 <- q[3]<x & x<q[4]
o4 <- q[4]<x
dotchart(c(median(y[o1]), median(y[o2]),


median(y[o3]), median(y[o4])),


labels = as.character(1:4),
xlab = "speed", ylab = "distance",
main = "Before I knew lattice plots")
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my.dotchart <- function (y,x,...) {
x <- as.matrix(x)
z <- NULL
for (i in 1:dim(x)[2]) {
q <- quantile(x[,i])
for (j in 1:4) {
z <- append(z, median(y[
q[j] <= x[,i] & x[,i] <= q[j+1]


]))
names(z)[length(z)] <-
paste(colnames(x)[i], as.character(j))


}
}
dotchart(z, ...)


}
my.dotchart(y, x, xlab = "speed", ylab = "distance",


main = "Before I knew lattice plots")
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my.dotchart <- function (y,x,...) {
x <- as.matrix(x)
z <- NULL
for (i in 1:dim(x)[2]) {
q <- quantile(x[,i])
for (j in 1:4) {
ya <- y[ q[j] <= x[,i] & x[,i] <= q[j+1] ]
z <- rbind(z, quantile(ya))
rownames(z)[dim(z)[1]] <-
paste(colnames(x)[i], as.character(j))


}
}
dotchart(t(z), ...)


}
my.dotchart(y, x, xlab = "speed", ylab = "distance",


main = "Before I knew lattice plots")


I would like to overlay those plots...
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my.dotchart <- function (y,x,...) {
x <- as.matrix(x)
z <- NULL
for (i in 1:dim(x)[2]) {
q <- quantile(x[,i])
for (j in 1:4) {
ya <- y[ q[j] <= x[,i] & x[,i] <= q[j+1] ]
z <- rbind(z, quantile(ya))
rownames(z)[dim(z)[1]] <-


paste(colnames(x)[i], as.character(j))
}


}
xmax <- max(z)
xmin <- min(z)
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n <- dim(z)[1]
plot( z[,3], 1:n, xlim = c(xmin,xmax), ylim = c(1,n),


axes=F, frame.plot = TRUE, pch = ’.’,
... )


axis(1)
axis(2, at=1:n, las=1)
abline( h=1:n, lty=3 )
# median
points( z[,3], 1:n, pch=16, cex=3 )
# quartiles
segments( z[,2], 1:n, z[,4], 1:n, lwd=7 )
# min and max
segments( z[,1], 1:n, z[,5], 1:n )


}
my.dotchart(y,x, xlab="speed", ylab="distance",


main = "Before I knew lattice plots")


Ah... I have reinvented the box-and-whiskers plot...


3.5.5 Facets


Scatterplot matrices or lattice plots can be generalized: e.g., the plots can be arranged into
a circle (a lattice plot whose cells are drawn in polar coordinates), a tree, a graph, etc.
TODO: Example


Mosaic plots and linked micromaps can also be seen as facet plots.
TODO: Examples?


3.5.6 Convex hull


To have an idea of the shape of the cloud of points, some people suggest to have a look at
the convex hull of the cloud.
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plot(cars)
polygon( cars[chull(cars),], col="pink", lwd=3)
points(cars)


The convex hull is actually determined by a (usually) small number of points from the cloud:
if you remove all the others, the convex hull would not change. Those points are sometimes
called “archetypes” and can be used to describe or summarize the data: this can be seen as
a 2-dimensional (or low-dimensional – in very high dimensions, most of the points would be
on the convex hull) of the minumum and maximum.
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3.5.7 Ellipse
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draw.ellipse <- function (
x, y = NULL,
N = 100,
method = lines,
...


) {
if (is.null(y)) {
y <- x[,2]
x <- x[,1]


}
centre <- c(mean(x), mean(y))
m <- matrix(c(var(x),cov(x,y),


cov(x,y),var(y)),
nr=2,nc=2)


e <- eigen(m)
r <- sqrt(e$values)
v <- e$vectors
theta <- seq(0,2*pi, length=N)


x <- centre[1] + r[1]*v[1,1]*cos(theta) +
r[2]*v[1,2]*sin(theta)


y <- centre[2] + r[1]*v[2,1]*cos(theta) +
r[2]*v[2,2]*sin(theta)


method(x,y,...)
}
plot(cars)
draw.ellipse(cars, col="blue", lwd=3)


3.5.8 2-dimensional density estimation


If you have too many points, scatterplots are unreadable: the picture is all black. Instead,
you can estimate the “density” of the cloud of points (e.g., with the “kde2d” function, from
the MASS package) and represent it in various ways.
TODO: Find appropriate data...
TODO: change the default arguments of persp, contour.


TODO: this plot?
library(chplot)
data(hdr)
x <- hdr$age
y <- log(hdr$income)
library(hexbin)
plot(hexbin(x,y))
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Density estimation
library(chplot)
data(hdr)
x <- hdr$age
y <- log(hdr$income)
library(MASS)
z <- kde2d(x,y, n=50)
image(z, main = "Density estimation")


Density estimation: contour plot
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contour(z,
col = "red", drawlabels = FALSE,
main = "Density estimation: contour plot")
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jitter(x[i])


y[
i]


i <- sample(1:length(x), 1000)
plot(jitter(x[i]), y[i])
contour(z,


col = "red", lwd = 3, drawlabels = FALSE,
add = TRUE,
main = "Density estimation: contour plot")


z


Y


Z


Density estimation: perspective plot
persp(z, main = "Density estimation: perspective plot")
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Density estimation: perspective plot
persp(z,


phi = 45, theta = 30,
xlab = "age", ylab = "income", zlab = "density",
main = "Density estimation: perspective plot")


age
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density


Density estimation: perspective plot


op <- par(mar=c(0,0,2,0)+.1)
persp(z, phi = 45, theta = 30,


xlab = "age", ylab = "income", zlab = "density",
col = "yellow", shade = .5, border = NA,
main = "Density estimation: perspective plot")


par(op)


TODO: a more colourful plot, as in the manual page?
For a more interactive plot, you can use “rgl”.
library(rgl)
open3d()
surface3d((z$x - min(z$x)) / diff(range(z$x)),


(z$y - min(z$y)) / diff(range(z$y)),
(z$z - min(z$z)) / diff(range(z$z)))
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surface3d((z$x - min(z$x)) / diff(range(z$x)),
(z$y - min(z$y)) / diff(range(z$y)),
(z$z - min(z$z)) / diff(range(z$z)),
color = terrain.colors(256)[
1 + round(254 * (z$z - min(z$z)) / diff(range(z$z)))


])
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surface3d((z$x - min(z$x)) / diff(range(z$x)),
(z$y - min(z$y)) / diff(range(z$y)),
(z$z - min(z$z)) / diff(range(z$z)),
color = terrain.colors(256)[
1 + round(254 * (z$z - min(z$z)) / diff(range(z$z)))


],
back="lines"
)
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Actually, you can draw much more than surfaces.
demo(rgl)
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3.5.9 Mean per fractile


Another way of plotting a very large cloud of points is to divide it into fractiles of the
first variable and compute the mean (or the median, or anything you see fit) of the second
variable in each of those fractiles.
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library(chplot)
data(hdr)
x <- hdr$age
y <- log(hdr$income)
FUNPerFractile <- function (x, y, N, FUN=mean, ...) {
y <- cut(y,


breaks = quantile(y, seq(0, 1, length = N+1),
na.rm=T),


labels = FALSE)
a <- 1:N
b <- tapply(x, y, FUN, ...)
data.frame(a,b)


}
MeanPerFractilePlot <- function (x, y, N=20, ...) {
plot(FUNPerFractile(x,y,N=N,FUN=mean,na.rm=T),...)


}
MeanPerFractilePlot(x, y, type = "b", lwd = 3,


xlab = "age fractiles",


ylab = "mean income",
main = "Mean-per-fractile plot")
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MedianPerFractilePlot <- function (x, y, N=20, ...) {
plot(FUNPerFractile(x,y,N=N,FUN=median,na.rm=T),...)


}
MedianPerFractilePlot(x,y, type="b", lwd=3,


xlab = "age fractiles",
ylab = "median income",
main = "Median-per-fractile plot")


This is very similar to the loess line – drawn WITHOUT the chould of points. There is a
big difference, however, if your data have a lot of outliers.
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loess curve, without the points
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r <- loess(y~x)
o <- order(x)
plot( r$x[o], r$fitted[o], type = "l",


xlab = "age", ylab = "income",
main = "loess curve, without the points" )


Er...
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Loess curve
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r <- loess(y~x)
o <- order(x)
plot( jitter(x, amount = .5), y, pch = ".",


xlab = "age", ylab = "income",
main = "Loess curve")


lines(r$x[o], r$fitted[o], col="blue", lwd=3)
r <- kde2d(x,y)
contour(r, drawlabels=F, col="red", lwd=3, add=T)


3.6 Qualitative/quantitative bivariate data


3.6.1 Box-and-whiskers plots (boxplots)


You can draw one box-and-whiskers plot for each value of the qualitative variable (here, we
compare the efficiency of several insect sprays).
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data(InsectSprays)
boxplot(count ~ spray,


data = InsectSprays,
xlab = "Type of spray",
ylab = "Insect count",
main = "InsectSprays data",
varwidth = TRUE,
col = "lightgray")


We can modify the “my.dotchart”, defined above, so that it also accepts qualitative variables.
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my.dotchart <- function (y,x,...) {
x <- data.frame(x)
z <- NULL
cn <- NULL
for (i in 1:dim(x)[2]) {
if( is.numeric(x[,i]) ) {
q <- quantile(x[,i])
for (j in 1:4) {
ya <- y[ q[j] <= x[,i] & x[,i] <= q[j+1] ]
z <- rbind(z, quantile(ya))
cn <- append(cn, paste(colnames(x)[i], as.character(j)))


}


} else {
for (j in levels(x[,i])) {
ya <- y[ x[,i] == j ]
z <- rbind(z, quantile(ya))
cn <- append(cn, paste(colnames(x)[i], as.character(j)))


}
}


}
xmax <- max(z)
xmin <- min(z)
n <- dim(z)[1]
plot( z[,3], 1:n,


xlim=c(xmin,xmax), ylim=c(1,n),
axes=F, frame.plot=T, pch=’.’, ... )


axis(1)
axis(2, at=1:n, labels=cn, las=1)
abline( h=1:n, lty=3 )
# median
points( z[,3], 1:n, pch=16, cex=3 )
# quartiles
segments( z[,2], 1:n, z[,4], 1:n, lwd=7 )
# min and max
segments( z[,1], 1:n, z[,5], 1:n )
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}
spray <- InsectSprays$spray
y <- InsectSprays$count
my.dotchart(y,spray, xlab="count", ylab="spray")


3.6.2 Violin plot


Violin plots are a variant of box-and-whiskers plots, that also represent an estimation of the
density of each variable. For instance, you can spot bimodal distributions.
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# (This package used to be called UsingR)
library(UsingR)
n <- 1000
k <- 10
x <- factor(sample(1:5, n, replace=T))
m <- rnorm(k,sd=2)
s <- sample( c(rep(1,k-1),2) )
y <- rnorm(n, m[x], s[x])
simple.violinplot(y~x, col=’pink’)
detach("package:UsingR")


The vioplot function, in the vioplot packages is similar, but it does not expect a formula.
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vioplot
library(vioplot)
vioplot(y[x=="1"], y[x=="2"], y[x=="3"],


y[x=="4"], y[x=="5"])
title( main = "vioplot" )
# The following does not work because the function
# wants its first argument to be called "x": it was
# defined as function(x,...) instead of function(...).
# do.call("vioplot", tapply(y, x, function (x) x))


There is also a similar function in the “lattice” package.
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panel.violin
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library(lattice)
bwplot( y ~ x,


panel = panel.violin,
main = "panel.violin" )


3.6.3 Box-percentile plots


Box-and-whiskers plots only contain information about the quartiles of a distribution: we
can try to use the same idea with deciles or centiles, to get an idea of the continuity of the
distribution.


f <- function (x, N=20) {
plot.new()
plot.window( xlim = range(x),


ylim = c(0,1) )
q <- quantile(x, seq(0, 1, by=1/N))
segments(q, 0, q, 1)
lines(c(min(x), min(x), max(x), max(x), min(x)),


c(0, 1, 1, 0, 0))
}


x <- rnorm(1000)
f(x)


We can also add the same information vertically.


f <- function (x, N=20) {
plot.new()
plot.window( xlim=range(x), ylim=c(-.6,.6) )
q <- quantile(x, seq(0,1, by=1/N))
for (i in 1:N) {
y <- if (i <= N/2) (i-1)/N else (N-i)/N
lines( c(q[i], q[i], q[i+1], q[i+1], q[i]),


c(y, -y, -y, y, y) )
}


}
f(x, N=100)


Actually, what we did was, more or less, to draw the cumulative distribution function of our
sample – in order to have a diamond shape, the second part (after the median) has to be
reversed.
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Cumulative distribution function


sort(x)
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We reverse its second half
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We symetrize it to get the box−percentile plot


op <- par(mfrow=c(3,1), mar=c(2,2,3,2))


n <- length(x)
plot(sort(x), (1:n)/n,


type = "l",
main = "Cumulative distribution function")


a <- sort(x)
b <- (1:length(x))/length(x)
plot(a, b,


type = "l",
main = "We reverse its second half")


k <- ceiling(n/2)
lines(a, c( b[1:(k-1)], (1-b)[k:n] ),


col = "blue", lwd = 3)


plot.new()
plot.window( xlim=range(x), ylim=c(-.6, .6) )


lines(a, c( b[1:(k-1)], (1-b)[k:n] ),
col="blue", lwd=3,)


lines(a, -c( b[1:(k-1)], (1-b)[k:n] ),
col="blue", lwd=3)


axis(1)
title("We symetrize it to get the box-percentile plot")
abline(h=0, lty=3)
par(op)
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Box−Percentile Plot


tapply(y, x, function(x) x)


library(Hmisc)
bpplot(tapply(y, x, function (x) x))


Actually, such box-percentile plots are not really more readable than cumulative distribution
functions, from which you cannot easily extract information. The vertical bars indicating
the quartiles or deciles are needed.
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bpplt()
library(Hmisc)
bpplt() # This is the documentation
title(main = "bpplt()")


panel.bpplot


y
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x bwplot( ~ y | x,
panel = panel.bpplot,
main = "panel.bpplot",
layout = c(1,5) )


Even then, this tool will fail to reveal important and obvious facts about your data, such as
bimodality – but if you know your distribution is unimodal, it is fine.
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Box−precentile plot of bimodal data


faithful$waiting


bpplot( faithful$waiting,
main = "Box-precentile plot of bimodal data" )


TODO: use Grid graphics
grid.newpage()
pushViewport(viewport(layout=grid.layout(2, 1)))
pushViewport(viewport(layout.pos.col=1,


layout.pos.row=1))


nint <- round(log2(length(x)) +1)
endpoints <- lattice:::extend.limits(
range(x, finite = TRUE),
prop = 0.04


)
breaks <- do.breaks(endpoints, nint)
panel.histogram(x, breaks= breaks)
popViewport()
pushViewport(viewport(layout.pos.col=1,


layout.pos.row=2))
panel.histogram(x, breaks=2)
popViewport()
popViewport()


3.6.4 Highest Density Region (HDR)


Yet another modification of the box-and-whiskers plot...
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library(hdrcde)
hdr.boxplot(rnorm(1000), col = "pink",


main = "Highest Density Region Plot")
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hdr.boxplot(faithful$waiting,
col = "pink",
main = "Highest Density Region Plot")
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3.6.5 Parallel scatterplot
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stripchart(InsectSprays$count ~ InsectSprays$spray,
method = ’jitter’)


3.6.6 Colored scatterplot


In higher dimensions, one often adds colors in scatterplots.
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Petal.Width


data(iris)
plot(iris[1:4],


pch = 21,
bg = c("red", "green", "blue")[
as.numeric(iris$Species)


])


But the “scatterplot” function lacks this “bg” argument. We can try to do it by hand – but
it is not very enlightening.
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Number of insects


a <- InsectSprays$count
b <- rnorm(length(a))
plot(b ~ a,


pch = 21,
bg = c("red", "green", "blue",


"cyan", "yellow", "black")
[as.numeric(InsectSprays$spray)],


main = "1-dimensional scatter plot",
xlab = "Number of insects",
ylab = "")
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1−dimensional scatter plot


Number of insects


a <- as.vector(t(iris[1]))
b <- rnorm(length(a))
plot(b ~ a,


pch = 21,
bg = c("red", "green", "blue")[
as.numeric(iris$Species)


],
main = "1-dimensional scatter plot",
xlab = "Number of insects",
ylab = "")


Let us try with simulated data.
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1−dimensional scatterplot


x


r


do.it <- function (v, ...) {
n <- 100
y <- sample( 1:3, n, replace=T )
a <- runif(1)
b <- runif(1)
c <- runif(1)
x <- ifelse( y==1, a+v*rnorm(n),


ifelse( y==2, b+v*rnorm(n), c+v*rnorm(n) ))
r <- rnorm(n)
plot( r ~ x,


pch = 21,
bg = c(’red’, ’green’, ’blue’)[y],
... )


}
do.it(.1, main = "1-dimensional scatterplot")


The groups really have to be clearly separated...
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1−dimensional scatterplot


x


r


do.it(.05, main = "1-dimensional scatterplot")


3.6.7 Histograms


We can also plot several histograms, one for each group.
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hists <- function (x, y, ...) {
y <- factor(y)
n <- length(levels(y))
op <- par( mfcol=c(n,1), mar=c(2,4,1,1) )
b <- hist(x, ..., plot=F)$breaks
for (l in levels(y)){
hist(x[y==l], breaks=b, probability=T, ylim=c(0,.3),


main="", ylab=l, col=’lightblue’, xlab="", ...)
points(density(x[y==l]), type=’l’, lwd=3, col=’red’)


}
par(op)


}
hists(InsectSprays$count, InsectSprays$spray)


3.6.8 Lattice (treillis) plots


We can do the same thing with lattice plots.
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F library(lattice)
histogram( ~ count | spray, data=InsectSprays)
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bwplot( ~ count | spray, data = InsectSprays, layout=c(1,6) )


3.6.9 R squared


If X is a qualitative variable and Y a quantitative variable, we can write the variance of Y as
the sum of the “variance explained by X” and a “residual variance”. One can then compute
the quotient of the variance explained by X by the total variance of Y: this is the R squared
(some people take the square root, others do not).
> aov( count ~ spray, data = InsectSprays )
Call:


aov(formula = r)


Terms:
spray Residuals


Sum of Squares 2668.833 1015.167
Deg. of Freedom 5 66


Residual standard error: 3.921902
Estimated effects may be unbalanced


Here, the explained variance is 2669, the residual variance is 1015. The R squared is thus
(it is the ratio of the explained variance by the total variance),
> s <- summary(aov( count ~ spray, data = InsectSprays ))[[1]][,2]
> s[1]/(s[1]+s[2])
[1] 0.7244


One sums this up by saying that the insect spray explains 70% of the variation of the number
of insects.
Here is another way of getting this quantity (we shall detail the rest of this output when we
tacke regression and analysis of variance).
> summary( lm( count ~ spray, data = InsectSprays ) )


Call:
lm(formula = count ~ spray, data = InsectSprays)


Residuals:
Min 1Q Median 3Q Max


-8.333 -1.958 -0.500 1.667 9.333
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Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 14.5000 1.1322 12.807 < 2e-16 ***
sprayB 0.8333 1.6011 0.520 0.604
sprayC -12.4167 1.6011 -7.755 7.27e-11 ***
sprayD -9.5833 1.6011 -5.985 9.82e-08 ***
sprayE -11.0000 1.6011 -6.870 2.75e-09 ***
sprayF 2.1667 1.6011 1.353 0.181
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 3.922 on 66 degrees of freedom
Multiple R-Squared: 0.7244, Adjusted R-squared: 0.7036
F-statistic: 34.7 on 5 and 66 DF, p-value: < 2.2e-16


We shall come back on the notion of R squared and its generalizations later, when we present
regression.


3.7 Qualitative bivariate data


3.7.1 Tables


One can represent such data as a contingency table, one row for each value of the first
variable, one column for each value of the second variable, the entries of the table containing
the number of corresponding observations (“frequencies”).
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Blond
Red
Brown
Black
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0
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20
0


data(HairEyeColor)
a <- as.table( apply(HairEyeColor, c(1,2), sum) )
barplot(a, legend.text = attr(a, "dimnames")$Hair)


Table “a” then contains:
Eye


Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16


Here are other ways of displaying the same information.
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barplot(a,
beside = TRUE,
legend.text = attr(a, "dimnames")$Hair)
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barplot(t(a),
legend.text = attr(a, "dimnames")$Eye)
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barplot(t(a),
beside = TRUE,
legend.text = attr(a, "dimnames")$Eye)


3.7.2 Row-profiles and column-profiles.


You can replace the row by the “row-profiles”, i.e., the “marginal frequencies”: you consider
each row separately and you divide each row by its sum. To check that we did not interchange
rows and columns, we compute the sum of the elements of each row: it should be 1.
> b <- a / apply(a, 1, sum)
> apply(b, 1, sum)
Black Brown Red Blond


1 1 1 1
> stopifnot( apply(b, 1, sum) == 1 )
> options(digits=2)
> b


Eye
Hair Brown Blue Hazel Green
Black 0.630 0.19 0.139 0.046
Brown 0.416 0.29 0.189 0.101
Red 0.366 0.24 0.197 0.197
Blond 0.055 0.74 0.079 0.126


TODO
> # Bad example: You should not call your
> # variables "c" -- it is already the name
> # of a function...
> c <- t( t(a) / apply(a, 2, sum) )
> apply(c, 2, sum)
Brown Blue Hazel Green


1 1 1 1
> stopifnot( apply(c, 2, sum) == 1 )
> c


Eye
Hair Brown Blue Hazel Green
Black 0.309 0.093 0.16 0.078
Brown 0.541 0.391 0.58 0.453
Red 0.118 0.079 0.15 0.219
Blond 0.032 0.437 0.11 0.250
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0 c <- t( t(a) / apply(a, 2, sum) )


barplot(c)


The “mosaicplot” function already does this (and the width of the bars depends on the
marginal frequencies).
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plot(a, main = "Mosaic plot")
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plot(t(a), main = "Mosaic plot")


We can add colours:
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plot(a,
col = heat.colors(dim(a)[2]),
main = "Mosaic plot")


or simply:


Mosaic plot


Hair
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Black Brown Red Blond
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plot(a,
color = TRUE,
main = "Mosaic plot")


But I cannot seem to get both colours (for the values of the first variable) and shading lines
(for the second).
We can ask R to stress the classes whose frequencies are significantly high or significantly
low.
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plot(t(a),
shade = TRUE,
main = "Mosaic plot")


3.7.3 Several coloured curves


One can display each row of the table by a curve (the x-axis is then used for the other
qualitative variable and the y-axis for the frequencies).
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data(HairEyeColor)
a <- apply(HairEyeColor, c(1,2) , sum)
qualplot <- function (a) {
matplot( row(a), a,


type = ’l’, axes = FALSE,
col = 1:dim(a)[2]+1,
lty = 1:dim(a)[2],
lwd=3,
xlab = names(dimnames(a))[1],
ylab = names(dimnames(a))[2] )


axis(1, 1:dim(a)[1], row.names(a))
axis(2)
legend(1, max(a), row.names(t(a)),


lwd = 3, cex = 1.5,
col = 1:dim(a)[2]+1,
lty = 1:dim(a)[2])


}
# For interactive use


qualplots <- function (a) {
op <- par(ask=TRUE)
qualplot(a)
qualplot(t(a))
par(op)


}
qualplot(a)
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qualplot(t(a))


You can also modify the contingency table so that the marginal frequencies be equal, i.e.,
replace the contingency table by the row-profiles or the column profiles.
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qualplotfreq <- function (a) {
a <- t( t(a) / apply(a,2,sum) )
qualplot(a)


}
qualplotsfreq <- function (a) {
op <- par(ask=TRUE)
qualplotfreq(a)
qualplotfreq(t(a))
par(op)


}
qualplotfreq(a)
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qualplotfreq(t(a))


3.7.4 Fourfoldplot


If the variables only have two values, you can also use the “fourfoldplot” function.







CHAPTER 3. FROM DATA TO GRAPHICS 265
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data(bacteria, package="MASS")
fourfoldplot( table(bacteria$y, bacteria$ap) )


The area of the quarter discs is proportioinnal to the frequencies. The two variables are
linked (not independant) if opposite quqrter circles have comparable sizes significantly dif-
ferent from the two other quarters. To ease the comparison, 95% confidence intervals are
also plotted: if they do not overlap, the difference is statistically significant. In the preced-
ing example, the difference is significant. In the following examples, the variables seem not
independant for week 6, but seem so for the other weeks – but beware: we have actually per-
formed several tests, so the probability that one of them wrongly tells us there is something
statistically significant gets higher...


: n


: a


: y


: p


: 0


3


26


2


19


: n


: a


: y


: p


: 2


3


21


1


19


: n


: a


: y


: p


: 4


7


17


4


14


: n


: a


: y


: p


: 6


10


13


1


16


: n


: a


: y


: p


: 11


8


16


4


16


fourfoldplot( table(bacteria$y,
bacteria$ap,
bacteria$week) )


3.8 Three variables and more


3.8.1 Bubble chart


One can plot three quantititative variables by discs in the plane: the first three give the
coordinates of the center, the third gives the diameter or the area (if you want to convey
the impression that the changes are important, use the diameter, if you want to deceive and
give the impression that the changes are not important, use the area). This is often used
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for spacial data: e.g., for when you measure the diameter of trees and the location of those
trees.
Either way, you will fail to objectively convey information: the human eye has problems
comparing areas.
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Bubble plot
n <- 50
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
my.renorm <- function (z) {
z <- abs(z)
z <- 10*z/max(z)
z


}
z <- my.renorm(z)
op <- par(mar = c(3,2,4,2)+.1)
plot(x, y, cex = z,


xlab = "", ylab = "",
main = "Bubble plot")
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plot(x, y, cex = z,
pch = 16, col = ’red’,
xlab = "", ylab = "",
main = "Bubble plot")


points(x, y, cex = z)


You can also add a variable (often, a qualitative one such as the tree species) by varying the
colour of the discs;
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u <- sample(c(’red’,’green’,’blue’),n,replace=T)
plot(x, y, cex = z, col = u,


pch = 16,
xlab = "", ylab = "",
main = "Bubble plot")


points(x, y, cex = z)


you can also add several qualitative variables by replacing the discs by concentric circles,
etc. (but it becomes even less readable).
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z2 <- rnorm(n)
z2 <- my.renorm(z2)
plot(x, y, cex = z,


xlab = "", ylab = "",
main = "Bubble plot")


points(x, y, cex = z2, col = ’red’)
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# Other renormalization (if there is no zero)
my.renorm <- function (z) {
z <- (z-min(z)) / (max(z)-min(z))
z <- 1+9*z
z


}
z <- my.renorm(z)
z2 <- my.renorm(z2)
plot(x, y, cex = z,


xlab = "", ylab = "",
main = "Bubble plot")


points(x, y, cex = z2, col = ’red’)


You can also replace the concentric circles by star plots.
Star plot


n <- 50
x <- runif(n)
y <- runif(n)
z1 <- rnorm(n)
z2 <- rnorm(n)
z3 <- rnorm(n)
z4 <- rnorm(n)
z5 <- rnorm(n)
stars( data.frame(z1,z2,z3,z4,z5), location=cbind(x,y),


labels=NULL, len=1/sqrt(n)/2,
main = "Star plot" )
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Star plot


v <- .2
n <- 50
x <- runif(n)
y <- runif(n)
z1 <- x+y+v*rnorm(n)
z2 <- x*y+v*rnorm(n)
z3 <- x^2 + y^2 + v*rlnorm(n)
stars( data.frame(z1,z2,z3),


location = cbind(x,y),
labels = NULL,
len = 1/sqrt(n)/2,
axes = TRUE,
draw.segments = TRUE,
col.segments = 1:5,
main = "Star plot" )


3.8.2 Line chart


Here, we plot several variables Y1, Y2, etc. as a function of X. We can overlay the curves
with the “matplot” function.
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Matplot
n <- 10
d <- data.frame(y1 = abs(rnorm(n)),


y2 = abs(rnorm(n)),
y3 = abs(rnorm(n)),
y4 = abs(rnorm(n)),
y5 = abs(rnorm(n))
)


matplot(d,
type = ’l’,
ylab = "",
main = "Matplot")


We could also use a bar plot.
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barplot(t(as.matrix(d)))


For a “line chart”, we can proceed as follows. We first plot Y1 as a function of X, we colour
under the curve, we plot Y1+Y2 as a function of X, we colour between the two curves, etc..
Of course, this only works for positive variables, using the same measurement unit.
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Linechart
line.chart <- function (d,


xlab = "", ylab = "",
main = "") {


m <- d
m <- t(apply(m,1,cumsum))
#print(m)
n1 <- dim(m)[1]
n2 <- dim(m)[2]
col <- rainbow(n)
plot.new()
plot.window(xlim = c(1, n1),


ylim = c(min(m), max(m)))
axis(1)
axis(2)
title(xlab = xlab, ylab = ylab,


main = main)
for (i in n2:1) {
polygon(c(1:n1,n1,1), c(m[,i],0,0),


col = col[i],
border = 0)


}
for (i in n2:1) {
lines(m[,i], lwd = 2)


}
}
line.chart(d, main = "Linechart")


3.8.3 Point clouds


The “pairs” function displays such data.
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data(LifeCycleSavings)
plot(LifeCycleSavings)


We can have a look at the correlation matrix (but beware, this is only relevant if the
phenomena you are studying are linear).
> cor(LifeCycleSavings)


sr pop15 pop75 dpi ddpi
sr 1.00 -0.46 0.32 0.22 0.30
pop15 -0.46 1.00 -0.91 -0.76 -0.05
pop75 0.32 -0.91 1.00 0.79 0.03
dpi 0.22 -0.76 0.79 1.00 -0.13
ddpi 0.30 -0.05 0.03 -0.13 1.00


You can configure this plot, by putting other things in the squares: histograms, correlation
coefficients, etc. However, this is not sufficiently configurable to my taste, because the
functions we give to the “pairs” function do not know the row and column number of the
data they are displaying – no way to get an “added variable plot”...
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panel.hist <- function(x, ...) {
usr <- par("usr");
on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks
nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, ...)


}
# Correlation coefficient
my.panel.smooth <-
function (x, y,


col = par("col"),
bg = NA,
pch = par("pch"),
cex = 1,
col.smooth = "red",


span = 2/3,
iter = 3, ...) {


points(x, y,
pch = pch, col = col,
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bg = bg, cex = cex)
ok <- is.finite(x) & is.finite(y)
if (any(ok))
lines(lowess(x[ok], y[ok],


f = span,
iter = iter),


col = col.smooth,
...)


usr <- par(’usr’)
text( (usr[1]+usr[2])/2, (usr[3]+9*usr[4])/10,


floor(100*cor(x,y))/100,
col=’blue’, cex=3, adj=c(.5,1) )


}
pairs(LifeCycleSavings,


diag.panel = panel.hist,
upper.panel = panel.smooth,
lower.panel = my.panel.smooth,
gap = 0)


You can also use colours to represent the correlation coefficients. In the following example,
we see that y is correlated with x1, x4 and x5 and that x4 and x5 are correlated. We shall
again see that kind of example when we present multiple regression and “variable selection”
(and when we explain why variable selection is rarely a good idea): someone wanting to
forecast y from the xi would be tempted to use x1 and x4 or x1 and x5.
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Correlation plot
cor.plot <- function (x,


xlab = "", ylab = "",
main = "") {


n <- dim(x)[1]
m <- dim(x)[2]
N <- 1000
col = topo.colors(N)
plot(NA, xlim = c(0,1.2), ylim = c(-1,0),


xlab = xlab, ylab = ylab, main = main)
for (i in 1:n) {
for (j in 1:m) {
polygon( c((j-1)/m, (j-1)/m, j/m, j/m),


-c((i-1)/m, i/m, i/m, (i-1)/m),
col = col[ N*(x[i,j]+1)/2 ] )


}
}
for (i in 1:N) {
polygon( c(1.1, 1.1, 1.2, 1.2),


-c((i-1)/N, i/N, i/N, (i-1)/N),
col = col[N-i+1],
border = NA )


}
# Exercice: add a legend


}


n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
x <- rnorm(n)
x4 <- x + .1*rnorm(n)
x5 <- x + .1*rnorm(n)
y <- 1 + x1 + x4 + rnorm(n)
d <- data.frame(y,x1,x2,x3,x4,x5)
op <- par(mar=c(3,3,4,2)+.1)
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cor.plot(cor(d), main = "Correlation plot")
par(op)


Actually, there is already a function to do this.


plot.cor (in the "sma" package)


x5


x4


x3


x2


x1


y


y x1 x2 x3 x4 x5 library(sma)
plot.cor(cor(d),


labels = colnames(d),
main = "plot.cor (in the \"sma\" package)")


plotcorr (in the "ellipse" package)


y


x1


x2


x3


x4


x5


y x1 x2 x3 x4 x5


library(ellipse)
plotcorr(cor(d), main = "plotcorr (in the \"ellipse\" package)")


3.8.4 Scagnostics


When a scatterplot matrix (splom) is too large, you can just plot a (selected) part of it. But
how to select “interesting” pairs of variables?
One idea is to consider several measures of “interestingness”, of peculiarity of scatterplots:
for instance, whether the plot is circular, whether there is a clear relation between the vari-
ables, whether this relation is monotonic, whether this relation is linear, etc. Those measures
are called “scagnostics” – scatterplot diagnostics. One can then look at the scatterplot of
those scagnostics: the variables are those scagnostics and the observations are the pairs of
initial variables, i.e., the cells in the initial (overly large) splom.
Here are some classical scagnostics: area of closed 2-dimensional density contours, perimeter
of those contours, convexity of those contours, number of connected components of those
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contours (multimodality), non-linearity of the principal curves, average nearest-neighbour
distance, etc.
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uniformize <- function (x) {
x <- rank(x, na.last="keep")
x <- (x - min(x, na.rm=TRUE)) / diff(range(x, na.rm=TRUE))
x


}
scagnostic contour <- function (x, y, ..., FUN = median) {
x <- uniformize(x)
y <- uniformize(y)
require(MASS) # For kde2d()
r <- kde2d(x, y, ...)
r$z > FUN(r$z)


}
translate <- function (x,i,j,zero=0) {
n <- dim(x)[1]
m <- dim(x)[2]
while (i>0) {
x <- rbind( rep(zero,m), x[-n,] )
i <- i - 1


}
while (i<0) {
x <- rbind( x[-1,], rep(zero,m) )
i <- i + 1


}
while (j>0) {
x <- cbind( rep(zero,n), x[,-m] )
j <- j - 1


}
while (j<0) {
x <- cbind( x[,-1], rep(zero,n) )
j <- j + 1


}
x


}
scagnostic perimeter <- function (x, y, ...) {
z <- scagnostic contour(x, y, ...)
zz <- z |


translate(z,1,0) | translate(z,0,1) |
translate(z,-1,0) | translate(z,0,-1)


sum(zz & ! z)
}
scagnostic area <- function (x, y, ...) {
z <- scagnostic contour(x, y, ..., FUN = mean)
sum(z) / length(z)


}
connected components <- function (x) {
stopifnot(is.matrix(x), is.logical(x))
m <- dim(x)[1]
n <- dim(x)[2]
x <- rbind( rep(FALSE, n+2),


cbind( rep(FALSE, m), x, rep(FALSE, m) ),
rep(FALSE, n+2))


x[ is.na(x) ] <- FALSE
# Assign a label to each pixel, so that pixels with the same
# label be in the same connected component -- but pixels in the
# same connected component may have different labels.
current label <- 0
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result <- ifelse(x, 0, 0)
equivalences <- list()
for (i in 1 + 1:m) {
for (j in 1 + 1:n) {
if (x[i,j]) {
number of neighbours <- x[i-1,j-1] + x[i-1,j] + x[i-1,j+1] + x[i,j-1]
labels <- c( result[i-1,j-1], result[i-1,j],


result[i-1,j+1], result[i,j-1] )
labels <- unique(labels[ labels > 0 ])
neighbour label <- max(0,labels)
if (number of neighbours == 0) {
current label <- current label + 1
result[i,j] <- current label


} else if (length(labels) == 1) {
result[i,j] <- neighbour label


} else {
result[i,j] <- neighbour label
equivalences <- append(equivalences, list(labels))


}
}


}
}
# Build the matrix containing the equivalences between those labels
# We just have the matrix of a (non-equivalence) relation: we compute
# the equivalence relation it generates.
E <- matrix(FALSE, nr=current label, nc=current label)
for (e in equivalences) {
stopifnot( length(e) > 1 )
for (i in e) {
for (j in e) {
if (i != j) {
E[i,j] <- TRUE


}
}


}
}
E <- E | t(E)
diag(E) <- TRUE
for (k in 1:current label) {
E <- E | (E %*% E > 0)


}
stopifnot( E == E | (E %*% E > 0) )
# Find the equivalence classes, i.e., the unique rows of this matrix
E <- apply(E, 2, function (x) min(which(x)))
# Finally, label the equivalence classes
for (i in 1:current label) {
result[ result == i ] <- E[i]


}
result


}
connected components TEST <- function () {
n <- 100
x <- matrix(NA, nr=n, nc=n)
x <- abs(col(x) - (n/3)) < n/8 & abs(row(x) - n/3) < n/8
x <- x | ( (col(x) - 2*n/3)^2 + (row(x) - 2*n/3)^2 < (n/8)^2 )
image(!x)
image(-connected components(x))


}
scagnostic modality <- function (x, y, ...) {
z <- scagnostic contour(x, y, ...)
z <- connected components(z)
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max(z)
}
scagnostic slope <- function (x,y) {
x <- uniformize(x)
y <- uniformize(y)
pc1 <- prcomp(cbind(x,y))$rotation[,1]
pc1[2] / pc1[1]


}
scagnostic sphericity <- function (x,y) {
x <- uniformize(x)
y <- uniformize(y)
# Ratio of the eigenvalues of the PCA
# For a spherical cloud of points, the slope
# is not well defined, but this ratio is close to 1.
ev <- prcomp(cbind(x,y))$sdev
ev[1] / ev[2]


}
scagnostic curvature <- function (x,y) {
x <- uniformize(x)
y <- uniformize(y)
require(pcurve)
# BUG: pcurve() starts a new plot by fiddling with par() --
# it also fails to set it back to what it was...
par <- function (...) { }
r <- NULL
try(
r <- pcurve(cbind(x,y),


start = "pca", # Defaults to CA,
# which only works with count data...


plot.pca = FALSE,
plot.true = FALSE,
plot.init = FALSE,
plot.segs = FALSE,
plot.resp = FALSE,
plot.cov = FALSE,
use.loc = FALSE)


)
if (is.null(r)) return(0)
X <- r$s[,1:2] # The principal curve
n <- dim(X)[1]
V <- X[2:n,] - X[1:(n-1),]
V <- V / sqrt(V[,1]^2 + V[,2]^2) # The direction of the principal


# curve, at each point on it
C <- apply( V[1:(n-2),] * V[2:(n-1),], 1, sum )
C <- acos(C) # The angles
sum(abs(C)) / pi


}
scagnostic distance <- function (x,y) {
i <- is.finite(x) & is.finite(y)
if (length(i) < 2) {
return(NA)


}
x <- uniformize(x)[i]
y <- uniformize(y)[i]
d <- as.matrix(dist(cbind(x,y)))
diag(d) <- Inf
d <- apply(d, 2, min) # Nearest neighbour distance
mean(d)


}
scagnostics <- function (
x,
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functions = list(
Perimeter = scagnostic perimeter,
Area = scagnostic area,
Modality = scagnostic modality,
Slope = scagnostic slope,
Sphericity = scagnostic sphericity,
Curvature = scagnostic curvature,
"Nearest neighbour distance" = scagnostic distance


)
) {
stopifnot( is.matrix(x) || is.data.frame(x) )
number of variables <- dim(x)[2]
number of scagnostics <- length(functions)
res <- array(NA, dim=c(number of variables,


number of variables,
number of scagnostics))


dimnames(res) <- list(
Variable1 = colnames(x),
Variable2 = colnames(x),
Scagnostic = names(functions)


)
for (i in 1:number of variables) {
for (j in 1:number of variables) {
if (i != j) {
for (k in 1:number of scagnostics) {
res[i,j,k] <- functions[[k]] (x[,i], x[,j])


}
}


}
}
class(res) <- "scagnostics"
res


}
plot.scagnostics <- function (x, FUN=pairs, ...) {
stopifnot(inherits(x, "scagnostics"))
y <- apply(x, 3, as.vector)
colnames(y) <- dimnames(x)[[3]]
rownames(y) <- outer(dimnames(x)[[1]], dimnames(x)[[2]], paste, sep="-")
FUN(y, ...)


}


pairs(USJudgeRatings, gap=0)
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Nearest neighbour distance


plot(scagnostics(x), gap=0)


Scagnostics are most useful in an interactive environment: one would have the traditionnal
scatterplot matrix and the scagnostics scatterplot matrix; one could select cells in the tra-
ditional scatterplot and see where they are in the scagnostics scatterplot matrix; one could
select (“brush”) sets of pairs of variables in the scagnostics scatterplot matrix and have the
corresponding cells in the traditional scatterplot matrix immediately highlighted. Sadly, R
does not provide such a high level of interactivity yet – but keep an eye on iPlot.
http://rosuda.org/iPlots/iplots.html


One can also define graph-theoretic scagnostics (i.e., using the minimum spanning tree, the
convex hull, the alpha hull, etc., instead of the density estimation).
Graph-theoretic scagnostics, Wilkinson et al. (2005)
http://infovis.uni-konstanz.de/members/bustos/sva_ss06/papers/wilkinso.pdf


3.8.5 Data patterns


When dealing with a large number of numeric variables, one could be tempted to consider
the dataset as a table of numbers and plot it, as an image. It is not that insightful, because
the order on the variables and the observations is likely to be random.



http://rosuda.org/iPlots/iplots.html

http://infovis.uni-konstanz.de/members/bustos/sva_ss06/papers/wilkinso.pdf
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Can we select a meaningful order on the variables and the observations to highlight patterns
in the data? Most people advocate a hierarchical clustering on the rows and columns, but
it does not appear to be the most efficient method: most of the time, principal component
analysis (PCA) or multidimensional scaling (MDS) (or its variants: isomap, LPP, etc.) yield
slightly better results.
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# This uses cluster analysis
heatmap(as.matrix(USJudgeRatings))


These methods are useful when you need to choose an order on the variables and/or on the
observations and no such order is available a priori (for instance, it could be a time or space
ordering): e.g., to plot a correlation matrix or for a parallel plot.


3.8.6 dotplot


You can also plot a box-and-whiskers plot of the values of Y for each quantile of each variable
Xi – this is not symetric.
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my.dotchart(LifeCycleSavings[,1], LifeCycleSavings[,-1],
xlab=’savings’, ylab=’’)


With real box-and-whiskers plots:


● ●
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Boxplot for each quartile
to.factor.vector <- function (x, number = 4) {
resultat <- NULL
intervalles <- co.intervals(x, number,


overlap = 0)
for (i in 1:number) {
if ( i == 1 ) {
intervalles[i,1] = min(x)


} else {
intervalles[i,1] <- intervalles[i-1,2]


}
if( i == number ) {
intervalles[i,2] <- max(x)


}
}
for (valeur in x) {
r <- NA
for (i in 1:number) {
if( valeur >= intervalles[i,1] &


valeur <= intervalles[i,2] )
r <- i


}
resultat <- append(resultat, r)


}
factor(resultat, levels = 1:number)


}
to.factor <- function (x, number = 4) {
if(is.vector(x))
r <- to.factor.vector(x, number)


else {
r <- NULL
for (v in x) {
a <- to.factor.vector(v)
if( is.null(r) )
r <- data.frame(a)


else
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r <- data.frame(r,a)
}
names(r) <- names(x)


}
r


}
x <- to.factor(LifeCycleSavings[,-1])
y <- LifeCycleSavings[,1]
y <- as.vector(matrix(y,


nr = length(y),
ncol = dim(x)[2]))


for (i in names(x)) {
levels(x[[i]]) <- paste(i, levels(x[[i]]))


}
col <- gl( dim(x)[2], length(levels(x[,1])),


labels = rainbow( dim(x)[2] ))
col <- as.vector(col)
x <- factor(as.vector(as.matrix(x)))
boxplot(y ~ x,


horizontal = TRUE,
las = 1,
col = col,
main = "Boxplot for each quartile")


You can also do this with lattice plots, whose basic idea is to cut data into slices (here,
fractiles). I could not seem to manage to put this in a loop: nothing was getting displayed.
TODO: Loop...


LifeCycleSavings[, 1]
0 5 10 15 20


● ●


equal.count(LifeCycleSavings[, 2], number = 4)


●● ● ●●


equal.count(LifeCycleSavings[, 2], number = 4)


●


equal.count(LifeCycleSavings[, 2], number = 4)


●


equal.count(LifeCycleSavings[, 2], number = 4)


bwplot( ~ LifeCycleSavings[,1] |
equal.count(LifeCycleSavings[,2], number=4),


layout=c(1,4) )


LifeCycleSavings[, 1]
0 5 10 15 20


●


equal.count(LifeCycleSavings[, 3], number = 4)


●


equal.count(LifeCycleSavings[, 3], number = 4)


●● ●


equal.count(LifeCycleSavings[, 3], number = 4)


● ●●


equal.count(LifeCycleSavings[, 3], number = 4)


bwplot( ~ LifeCycleSavings[,1] |
equal.count(LifeCycleSavings[,3], number=4),


layout=c(1,4) )
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LifeCycleSavings[, 1]
0 5 10 15 20


●


equal.count(LifeCycleSavings[, 4], number = 4)


●


equal.count(LifeCycleSavings[, 4], number = 4)


●● ● ●


equal.count(LifeCycleSavings[, 4], number = 4)


●● ●


equal.count(LifeCycleSavings[, 4], number = 4)


bwplot( ~ LifeCycleSavings[,1] |
equal.count(LifeCycleSavings[,4], number=4),


layout=c(1,4) )


LifeCycleSavings[, 1]
0 5 10 15 20


●


equal.count(LifeCycleSavings[, 5], number = 4)


●


equal.count(LifeCycleSavings[, 5], number = 4)


●


equal.count(LifeCycleSavings[, 5], number = 4)


● ●


equal.count(LifeCycleSavings[, 5], number = 4)


bwplot( ~ LifeCycleSavings[,1] |
equal.count(LifeCycleSavings[,5], number=4),


layout=c(1,4) )


3.8.7 Star plots (or radar plots)


If you have many variables (half a dozen or more quantitative variables) and few observations
(a dozen), you can use starplots.


Motor Trend Cars : stars(*, full = FALSE)


Mazda RX4
Mazda RX4 Wag


Datsun 710
Hornet 4 Drive


Hornet Sportabout
Valiant


Duster 360
Merc 240D


Merc 230
Merc 280


Merc 280C
Merc 450SE


Merc 450SL
Merc 450SLC


Cadillac Fleetwood
Lincoln Continental


Chrysler Imperial
Fiat 128


Honda Civic
Toyota Corolla


Toyota Corona
Dodge Challenger


AMC Javelin
Camaro Z28


Pontiac Firebird
Fiat X1−9


Porsche 914−2
Lotus Europa


Ford Pantera L
Ferrari Dino


Maserati Bora
Volvo 142E mpg


cyl
disphpdrat


wt


qsec


data(mtcars)
stars(mtcars[, 1:7],


key.loc = c(14, 2),
main = "Motor Trend Cars : stars(*, full = FALSE)",
full = FALSE)
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Motor Trend Cars : full stars()


Mazda RX4Mazda RX4 WagDatsun 710 Hornet 4 DriveHornet Sportabout Valiant


Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE


Merc 450SL Merc 450SLCCadillac FleetwoodLincoln ContinentalChrysler Imperial Fiat 128


Honda Civic Toyota CorollaToyota CoronaDodge ChallengerAMC Javelin Camaro Z28


Pontiac Firebird Fiat X1−9 Porsche 914−2Lotus EuropaFord Pantera LFerrari Dino


Maserati Bora Volvo 142E
mpg


cyl
disp


hp


drat


wt
qsec


stars(mtcars[, 1:7],
key.loc = c(14, 1.5),
main = "Motor Trend Cars : full stars()",
flip.labels = FALSE)


Motor Trend Cars


Mazda RX4
Mazda RX4 Wag


Datsun 710
Hornet 4 Drive


Hornet Sportabout
Valiant


Duster 360
Merc 240D


Merc 230
Merc 280


Merc 280C
Merc 450SE


Merc 450SL
Merc 450SLC


Cadillac Fleetwood
Lincoln Continental


Chrysler Imperial
Fiat 128


Honda Civic
Toyota Corolla


Toyota Corona
Dodge Challenger


AMC Javelin
Camaro Z28


Pontiac Firebird
Fiat X1−9


Porsche 914−2
Lotus Europa


Ford Pantera L
Ferrari Dino


Maserati Bora
Volvo 142E


mpg


cyldisp


hp


drat wt


qsec


palette(rainbow(12, s = 0.6, v = 0.75))
stars(mtcars[, 1:7],


len = 0.8,
key.loc = c(12, 1.5),
main = "Motor Trend Cars",
draw.segments = TRUE)
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Motor Trend Cars


mpg


cyl


disp


hp


drat


wt


qsec


stars(mtcars[, 1:7],
locations = c(0,0),
radius = FALSE,
key.loc=c(0,0),
main="Motor Trend Cars",
lty = 2)


TODO:


0


ππ


2


ππ


3ππ


2


+


library(circular)
rose.diag(mtcars[,5])
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0


ππ


2


ππ


3ππ


2


+


rose.diag(mtcars)


3.8.8 3D


R can plot surfaces defined by an equation of the form z = f(x,y). They are described the
value of f on a grid: the first two arguments are vectors (of length n and m), giving the x
and y coordinates of the grid, the third argument in a matrix (of size n*m) containing the
values of z.
First, a wireframe surface.


X


Y


Z


# From the manual
x <- seq(-10, 10, length=50)
y <- x
f <- function(x,y) {
r <- sqrt(x^2+y^2)
10 * sin(r)/r


}
z <- outer(x, y, f)
z[is.na(z)] <- 1
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",


shade=.5,
xlab = "X", ylab = "Y", zlab = "Z")
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# From the manual
data(volcano)
z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10-meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10-meter spacing (E to W)
persp(x, y, z,


theta = 120, phi = 15,
scale = FALSE, axes = FALSE)


# See also the other examples in
# demo(persp)


The “contour” function draws level lines.


0 200 400 600 800


0
20


0
40


0
60


0


A Topographic Map of Maunga Whau
# From the manual
data("volcano")
rx <- range(x <- 10*1:nrow(volcano))
ry <- range(y <- 10*1:ncol(volcano))
ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2
tcol <- terrain.colors(12)
op <- par(pty = "s", bg = "lightcyan")
plot(x = 0, y = 0,


type = "n",
xlim = rx, ylim = ry,
xlab = "", ylab = "")


u <- par("usr")
rect(u[1], u[3], u[2], u[4],


col = tcol[8],
border = "red")


contour(x, y, volcano,
col = tcol[2],
lty = "solid",


add = TRUE,
vfont = c("sans serif", "plain"))


title("A Topographic Map of Maunga Whau", font = 4)
abline(h = 200*0:4, v = 200*0:4,


col = "lightgray",
lty = 2,
lwd = 0.1)


par(op)


We can overlay the level lines on the image plot.
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100 200 300 400 500 600 700 800
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0
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0
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40
0
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0


Maunga Whau Volcano
# From the manual
data(volcano)
x <- 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))
image(x, y, volcano,


col = terrain.colors(100),
axes = FALSE,
xlab = "", ylab = "")


contour(x, y, volcano,
levels = seq(90, 200, by=5),
add = TRUE,
col = "peru")


axis(1, at = seq(100, 800, by = 100))
axis(2, at = seq(100, 600, by = 100))
box()
title(main = "Maunga Whau Volcano", font.main = 4)


You might also want to look at the “wireframe” and “cloud” functions, in the lattice library.


x
y


z


data(volcano)
x <- 10*(1:nrow(volcano))
x <- rep(x, ncol(volcano))
y <- 10*(1:ncol(volcano))
y <- rep(y, each=nrow(volcano))
z <- as.vector(volcano)
wireframe( z ~ x * y )
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x
y


z


cloud( z ~ x * y )


If you have the required glasses, you can also consider a stereoscopic plot.
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Petal.Length


Petal.Width


Sepal.Length


data(iris)
print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,


data = iris, cex = .8,
groups = Species,
subpanel = panel.superpose,
main = "Stereo",
screen = list(z = 20, x = -70, y = 3)),


split = c(1,1,2,1), more = TRUE)
print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,


data = iris, cex = .8,
groups = Species,
subpanel = panel.superpose,
main = "Stereo",
screen = list(z = 20, x = -70, y = 0)),


split = c(2,1,2,1))


3.8.9 Image


When plotting a 3-dimensional dataset with the image() function, especially with few points,
you might want to interpolate between those points, so as to have a smoother plot (this is
the analogue of linking the points with a linem when you draw a function).
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Data to be smoothed or interpolated
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Linear interpolation


z <- matrix(rnorm(24),nr=4)
library(akima) # non-free
r <- interp( as.vector(row(z)),


as.vector(col(z)),
as.vector(z),
seq(1, dim(z)[1], length=500),
seq(1, dim(z)[2], length=500) )


op <- par(mfrow=c(2,1))
image(t(z), main="Data to be smoothed or interpolated")
box()
image(t(r$z), main="Linear interpolation")
box()
par(op)


# The following should provide spline interpolation.
# It does not work because the points form a grid.
# If you try to add some noise to the points, the results
# become meaningless.
# (But this uses a non-free Fortran library: nothing surprising)
r <- interp( as.vector(row(z)),


as.vector(col(z)),
as.vector(z),
seq(1, dim(z)[1], length=500),
seq(1, dim(z)[2], length=500),
linear = FALSE )


image(t(r$z), main="Spline interpolation")
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Raw data
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Linear interpolation
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−1.0


−0.5


0.0


0.5


1.0
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library(fields)
loc <- make.surface.grid(list( seq(1,dim(z)[1],length=500),


seq(1,dim(z)[2],length=500) ))
r <- interp.surface(
list(x=1:dim(z)[1], y=1:dim(z)[2], z=z),
loc


)
op <- par(mfrow=c(2,1))
image.plot(z, main="Raw data")
image.plot(as.surface(loc,r), main="Linear interpolation")
par(op)
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Loess 2−dimensional smoothing
# You may not want to interpolate, but rather to smooth
# (the initial data set need not be on a grid)
# Also check the Tps() function in the fields package
library(tgp)
r <- interp.loess( as.vector(row(z)),


as.vector(col(z)),
as.vector(z),
gridlen = 500 )


image(t(r$z), main="Loess 2-dimensional smoothing")


3.8.10 image() versus image.plot()


Prefer image.plot(), from the fields package to image(): the latter misses a legend and you
may notice that the box surrounding the plot is not always complete.
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image()
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image.plot()


20
40
60
80
100
120
140


library(fields)
data(lennon)
x <- lennon[201:240,201:240]
op <- par(mfrow=c(2,1))
image(x, main="image()")
image.plot(x, main="image.plot()")
par(op)


3.8.11 Colour palette


The default colour palette for the image() function is not always a good choice. For instance,
if the sign of the values to be plotted is important, you want that sign to be easily readable
from the colours – with the default palette, you are not even sure that the zero is in the
middle of the palette.
The RColorBrewer package provides colour palette “with a zero” (it also provides some
without a zero, and some to be used for qualitative plots).


BrBG


PiYG


PRGn


PuOr


RdBu


RdGy


RdYlBu


RdYlGn


Spectral


RColorBrewer: diverging palettes (i.e., with a zero)
library(RColorBrewer)
display.brewer.all(type="div")
title(main="RColorBrewer: diverging palettes (i.e., with a zero)")
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Blues
BuGn
BuPu
GnBu


Greens
Greys


Oranges
OrRd
PuBu


PuBuGn
PuRd


Purples
RdPu
Reds
YlGn


YlGnBu
YlOrBr


YlOrRd


RColorBrewer: sequential palettes
display.brewer.all(type="seq")
title(main="RColorBrewer: sequential palettes")


Accent


Dark2


Paired


Pastel1


Pastel2


Set1


Set2


Set3


RColorBrewer: qualitative palettes
display.brewer.all(type="qual")
title(main="RColorBrewer: qualitative palettes")
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−1181.4
 −918.8
 −656.3
 −393.8
 −131.3
  115.3
  345.8
  576.3
  806.8
 1037.3


breaks <- function (x, N) {
x <- as.vector(x)
x <- x[ !is.na(x) ]
if (length(x) == 0) {
return( rep(NA, N) )


}
if (N %% 2 == 0) {
if (all(x >= 0)) {
res <- c(rep(0, N/2), seq(0, max(x), length=N/2+1))


} else if (all(x <= 0)) {
res <- c(seq(min(x), 0, length=N/2+1), rep(0,N/2))


} else {
res <- c(seq(min(x), 0, length=N/2+1),


seq(0, max(x), length=N/2+1)[-1])
}


} else {
if (all(x >= 0)) {
res <- c(rep(0,length=(N+1)/2), seq(0, max(x), length=(N+1)/2))


} else if (all(x <= 0)) {
res <- c(seq(min(x), 0, length=(N+1)/2), rep(0, length=(N+1)/2))


} else {
res <- c(seq(min(x), 0, length=N+1) [seq(1, N, by=2)],


seq(0, max(x), length=N+1) [seq(2, N+1, by=2)])
}


}
stopifnot( length(res) == N+1 )
stopifnot( res == sort(res) )
stopifnot( all(x <= max(res)), all(x >= min(res)) )
res


}


breaks( 0:10, 5) == c(0,0,0, 0,5,10)
breaks(-(0:10), 5) == c(-10,-5,0, 0,0,0)
breaks(-20:10, 5) == c(-20, -12, -4, 2, 6, 10)
breaks( 0:9, 6) == c(0,0,0, 0, 3,6,9)
breaks(-(0:9), 6) == c(-9,-6,-3, 0, 0,0,0)
breaks( -30:9, 6) == c(-30,-20,-10,0,3,6,9)


# Example from the "fields" manual
data(ozone2)
x<-ozone2$lon.lat
y<- ozone2$y[16,]
# Remove the missing values
i <- !is.na(y)
y <- y[i]
x <- x[i,]
# The residuals of a regression
r <- Tps(x,y)
z <- residuals(r)
# Put those residuals on a regular grid
# We cannot use interp.surface(): it assumes that the data is regular
library(tgp)
r <- interp.loess(x[,1], x[,2], z, gridlen=500)


# I wanted an example with skewed data: residuals tend to be symetric...
op <- par(mfrow=c(2,2))
image(r)
image.plot(r)
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image.plot(r,
breaks=breaks(r$z, 9), # Fine for the plot, but no for the legend...
col=rev(brewer.pal(9, "RdBu")))


par(op)


3.8.12 Rgl


TODO
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler/rgl/


3.8.13 XGobi: animations, interactions


TODO: Check that this section is still up to date
(xgobi is supposed to have been superceded by ggobi -- for
at least three years)


R itself cannot (yet) display animations, but you can export the data to observe them in
another software, e.g., xgobi. (When the xgobi window appears, press “g” to start the
animation.)
library(xgobi)
n <- 50
x <- seq(-10, 10, length=n)
y <- x
f <- function(x,y) {
r <- sqrt(x^2+y^2)
10 * sin(r)/r


}
z <- outer(x, y, f)
z[is.na(z)] <- 1
x <- matrix(x,nr=n,nc=n)
y <- matrix(y,nr=n,nc=n,byrow=T)
sombrero <- data.frame(x=as.vector(x),y=as.vector(y),z=as.vector(z))
xgobi(sombrero)


This is also very useful to look at statistical data in higher dimensionnal spaces.



http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler/rgl/





CHAPTER 3. FROM DATA TO GRAPHICS 296


http://www.public.iastate.edu/~dicook/JSS/paper/paper.html


TODO: You can give xgobi several files:
x.dat data
x.row row names
x.col col names
x.glyphs
x.colors


But how can we do that when we call it from R?


A few tutorials:
http://industry.ebi.ac.uk/%257Ealan/VisWorkshop99/XGobi_Tutorial/index.html
http://www.public.iastate.edu/~dicook/stat503.html


The new version of xgobi is called ggobi:
http://www.ggobi.org/


If the data are rather complex, you can ask xgobi to plot it at the same time in several
windows, select some points in one window and see when they are in the other windows:
this is called “brushing”.
n <- 1000
x <- runif(3) + rnorm(n)
y <- runif(3) + rnorm(n)
z <- runif(3) + rnorm(n)
t <- c(-5,-5,5) + rnorm(n)
u <- c(-5,5,5) + rnorm(n)
three.clusters <- data.frame(x,y,z,t,u)
xgobi(three.clusters)


3.8.14 Parallel plots


Xgobi also displays “parallel plots”: for each data point, we draw a broken line whose y-
coordinate are the successive coordinates of the point. Quite often, you do not see anything
on it. But you can ask Xgobi to highlight some points or groups of points.



http://www.public.iastate.edu/~dicook/JSS/paper/paper.html

http://industry.ebi.ac.uk/%257Ealan/VisWorkshop99/XGobi_Tutorial/index.html

http://www.public.iastate.edu/~dicook/stat503.html

http://www.ggobi.org/





CHAPTER 3. FROM DATA TO GRAPHICS 297


1 2 3 4 5


−
2


0
2


4
6


Parallel plot: Homogeneous cloud
n <- 100
m <- matrix( rnorm(5*n)+c(1,-1,3,0,2),


nr = n, nc = 5, byrow = TRUE )
matplot(1:5, t(m), type = ’l’,


xlab = "", ylab = "")
title(main = "Parallel plot: Homogeneous cloud")
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Parallel plot: two clusters
n <- 50
k <- 2
m <- matrix( rnorm(5*k*n) +


runif(5*k, min = -10, max = 10),
nr = n, nc = 5, byrow = TRUE )


matplot(1:5, t(m), type = ’l’,
xlab = "", ylab = "")


title(main = "Parallel plot: two clusters")
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Parallel plot, 5 clusters
n <- 50
k <- 5
m <- matrix( rnorm(5*k*n) +


runif(5*k, min = -10, max = 10),
nr = n, nc = 5, byrow = TRUE )


matplot(1:5, t(m), type = ’l’,
xlab = "", ylab = "")


title(main = "Parallel plot, 5 clusters")
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Idem, after PCA
matplot(1:5, t(princomp(m)$scores), type = ’l’)
title(main = "Idem, after PCA")
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Point cloud with less visible clusters
matplot(1:5, t(m), type = ’l’)
title(main = "Point cloud with less visible clusters")


Should you want it, there is already a “parallel” function in the “lattice” package.


V1


V2


V3


V4


V5


Min Max


library(lattice)
parallel(as.data.frame(m))


You can also create parallel plots in polar coordinates.
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Sepal.Length


Sepal.Width


Petal.Length


Petal.Width


polar parallel plot <- function (d, col = par("fg"),
type = "l", lty = 1, ...) {


d <- as.matrix(d)
d <- apply(d, 2, function (x) .5 + (x - min(x)) / (max(x) - min(x)))
theta <- (col(d) - 1) / ncol(d) * 2 * pi
d <- cbind(d, d[,1])
theta <- cbind(theta, theta[,1])
matplot( t(d * cos(theta)),


t(d * sin(theta)),
col = col,
type = type, lty = lty, ...,
axes = FALSE, xlab = "", ylab = "" )


segments(rep(0,ncol(theta)), rep(0, ncol(theta)),
1.5 * cos(theta[1,]), 1.5 * sin(theta[1,]))


if (! is.null(colnames(d))) {
text(1.5 * cos(theta[1,-ncol(theta)]),


1.5 * sin(theta[1,-ncol(theta)]),
colnames(d)[-ncol(d)])


}
}
op <- par(mar=c(0,0,0,0))
polar parallel plot(iris[1:4], col = as.numeric(iris$Species))
par(op)


Some care should be taken to choose an order on the coordinates: the parallel plot actually
compares each variable with the next. If there are interesting features between variables n
and n+2, but nothing striking between n and n+1 and between n+1 and n+2, they will
be unnoticed. For instance, in the previous example, one could readily compare the width
and length of a petal, or the length and width of a sepal, but not the width of sepals and
petals, nor their lengths. The order on the variables should be carefully chosen, either from
previous domain knowledge, or from the data.


Sepal.Length


Sepal.Width


Petal.Length


Petal.Width


Min Max


parallel(~iris[1:4], groups = Species, iris)
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Sepal.Width


Petal.Width


Sepal.Length


Petal.Length


Min Max


parallel(~iris[c(2,4,1,3)], groups= Species, iris)


Instead of a parallel plot, you can use a Fourier function, i.e., represent the vector (x1, x2,
x3, x4, x5) by the curve of the function
f(t) = x1 + x2 cos(t) + x3 sin(t)


+ x4 cos(2t) + x5 sin(2t).


The resulting curves are sometimes called “Andrew curves”. In polar coordinates, this is
called a Fourier blob. As for parallel plots, care should be taken to select a meaningful order
on the coordinates.


−3 −2 −1 0 1 2 3


0
5


10
15


Fourier (Andrew) curves
x <- seq(-pi, pi, length=100)
y <- apply(as.matrix(iris[,1:4]),


1,
function (u) u[1] + u[2] * cos(x) +


u[3] * sin(x) + u[4] * cos(2*x))
matplot(x, y,


type = "l",
lty = 1,
col = as.numeric(iris[,5]),
xlab = "", ylab = "",
main = "Fourier (Andrew) curves")
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−5 0 5 10 15


−
5


0
5


10


Fourier blob
matplot(y * cos(x), y * sin(x),


type = "l",
lty = 1,
col = as.numeric(iris[,5]),
xlab = "", ylab = "",
main = "Fourier blob")


3.8.15 Chernoff faces


Chernoff faces are a more human alternative to Fourier blobs – they might look funny and
useless, but they are surprisingly efficient for quick decision making.


Index


1947


Index


1948


Index


1949


Index


1950


Index


1951


Index


1952


Index


1953


Index


1954


Index


1955


Macro−economic data
library(TeachingDemos)
faces(longley[1:9,], main="Macro-economic data")


3.8.16 Barycentric coordinates (ternary plot)


Let us now consider three quantitative variables that sum up to 100 (often, percents, in
chemistry).
TODO: There is now a function to do exactly this.
help.search("ternary")
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library(MASS)
data(Skye)


ternary <- function(X, pch = par("pch"), lcex = 1,
add = FALSE, ord = 1:3, ...)


{
X <- as.matrix(X)
if(any(X) < 0) stop("X must be non-negative")
s <- drop(X %*% rep(1, ncol(X)))
if(any(s<=0)) stop("each row of X must have a positive sum")
if(max(abs(s-1)) > 1e-6) {
warning("row(s) of X will be rescaled")
X <- X / s


}
X <- X[, ord]
s3 <- sqrt(1/3)
if(!add)
{


oldpty <- par("pty")
on.exit(par(pty=oldpty))
par(pty="s")
plot(c(-s3, s3), c(0.5-s3, 0.5+s3), type="n", axes=FALSE,


xlab="", ylab="")
polygon(c(0, -s3, s3), c(1, 0, 0), density=0)
lab <- NULL
if(!is.null(dn <- dimnames(X))) lab <- dn[[2]]
if(length(lab) < 3) lab <- as.character(1:3)
eps <- 0.05 * lcex
text(c(0, s3+eps*0.7, -s3-eps*0.7),


c(1+eps, -0.1*eps, -0.1*eps), lab, cex=lcex)
}
points((X[,2] - X[,3])*s3, X[,1], ...)


}


ternary(Skye/100, ord=c(1,3,2))


Here, the sum of each row of the table is 100.
> sum( apply(Skye,1,sum) != 100 )
[1] 0


Here is another way of plotting these data, following http://finzi.psych.upenn.edu/R/



http://finzi.psych.upenn.edu/R/Rhelp01/archive/1000.html 
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Rhelp01/archive/1000.html


c1 c3


c2


tri <-
function(a, f, m, symb = 2, grid = F, ...)
{
ta <- paste(substitute(a))
tf <- paste(substitute(f))
tm <- paste(substitute(m))


tot <- 100/(a + f +m)
b <- f * tot
y <- b * .878
x <- m * tot + b/2
par(pty = "s")
oldcol <- par("col")
plot(x, y, axes = F, xlab = "", ylab = "",


xlim = c(-10, 110), ylim= c(-10, 110), type = "n", ...)
points(x,y,pch=symb)
par(col = oldcol)
trigrid(grid)


text(-5, -5, ta)
text(105, -5, tm)
text(50, 93, tf)
par(pty = "m")
invisible()


}


trigrid <-
function(grid = F)
{
lines(c(0, 50, 100, 0), c(0, 87.8, 0, 0)) #draw frame
if(!grid) {
for(i in 1:4 * 20) {
lines(c(i, i - 1), c(0, 2 * .878)) #side a-c (base)
lines(c(i, i + 1), c(0, 2 * .878))
T.j <- i/2 #side a-b (left)
lines(c(T.j, T.j + 2), c(i * .878, i * .878))
lines(c(T.j, T.j + 1), c(i * .878, (i - 2) * .878))
T.j <- 100 - i/2 #side b-c (right)
lines(c(T.j, T.j - 2), c(i * .878, i * .878))
lines(c(T.j, T.j - 1), c(i * .878, (i - 2) * .878))


}
} else {
for(i in 1:4 * 20) {
# draw dotted grid
lines(c(i, i/2), c(0, i * .878), lty = 4, col = 3)
lines(c(i, (50 + i/2)), c(0, .878 * (100 - i)), lty = 4, col = 3)
lines(c(i/2, (100 - i/2)), c(i * .878, i * .878), lty = 4, col = 3)


}
par(lty = 1, col = 1)


}
}


# some random data in three variables
c1<- runif(5, 10, 20)
c2<- runif(5, 1, 5)
c3 <- runif(5, 15, 25)
# basic plot
tri(c1,c2,c3)



http://finzi.psych.upenn.edu/R/Rhelp01/archive/1000.html 

http://finzi.psych.upenn.edu/R/Rhelp01/archive/1000.html 





CHAPTER 3. FROM DATA TO GRAPHICS 305


c1 c3


c2


# plot with different symbols and a grid
tri(c1,c2,c3, symb=7, grid=T)


It is a good exercise to write your own ternary plot function. For instance, could you, behind
the grid, add a gradient, assigning a colour to each vertex of the triangle?
TODO


TODO: There is now a function to do this...
library(ade4)
example(triangle.plot)


3.8.17 Barycentric coordinates, in higher dimensions


You can add a dimension and use xgobi to display the result.
library(xgobi)
data(PaulKAI)
quadplot(PaulKAI, normalize = TRUE)
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3.8.18 Sound


You can also turn your data into sound – but a musical ear might be helpful...
http://www.matthiasheymann.de/Download/Sonification.pdf
http://www.matthiasheymann.de/Download/sound-manual.pdf


Musical interlude: some people try to turn DNA into music...
http://www.bbc.co.uk/radio4/science/thematerialworld_20031120.shtml
http://www.dnamusiccentral.com/#About%20DNA


Another example:
http://www.bbc.co.uk/radio4/science/thematerialworld_20061005.shtml


3.9 Multivariate data, with some qualitative variables


3.9.1 One qualitative variable and two quantitative variables


We can use lattice plots.
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virginica
histogram( ~ Sepal.Length | Species, data = iris,


layout = c(1,3) )



http://www.matthiasheymann.de/Download/Sonification.pdf

http://www.matthiasheymann.de/Download/sound-manual.pdf

http://www.bbc.co.uk/radio4/science/thematerialworld_20031120.shtml

http://www.dnamusiccentral.com/#About%20DNA

http://www.bbc.co.uk/radio4/science/thematerialworld_20061005.shtml
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virginica
xyplot( Sepal.Length ~ Sepal.Width | Species, data = iris,


layout = c(1,3) )
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xyplot( Sepal.Length ~ Sepal.Width, group = Species, data = iris,
panel = function (x, y, groups, ...) {
panel.superpose(x, y, groups = groups, ...)
groups <- as.factor(groups)
for (i in seq(along=levels(groups))) {
g <- levels(groups)[i]
panel.lmline( x[groups == g], y[groups == g],


col = trellis.par.get("superpose.line")$col[i] )
}


}
)
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xyplot( Sepal.Length ~ Sepal.Width, group = Species, data = iris,
panel = function (x, y, groups, ...) {
panel.superpose(x, y, groups = groups, ...)
groups <- as.factor(groups)
for (i in seq(along=levels(groups))) {
g <- levels(groups)[i]
panel.loess( x[groups == g], y[groups == g],


col = trellis.par.get("superpose.line")$col[i] )
}


}
)


3.9.2 One or two qualitative variables and several quantitative vari-
ables


You can display the values of the qualitative variable by different symbols or different colors.
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data(iris)
plot(iris[1:4], pch=21,


bg=c("red", "green", "blue")[as.numeric(iris$Species)])


3.9.3 fourfoldplot


If one of the qualitative variables is binary, you can use the “fourfoldplot”, as seen above.


3.9.4 Several qualitative variables: box-and-whiskers plots


Whe you have a simgle qualitative variable and a quantitative variable, you can use a box-
and-whiskers plot.
But with two qualitative and one quantitative variable, the plot is no longer readable.
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a <- rnorm(10)
b <- 1+ rnorm(10)
c <- 1+ rnorm(10)
d <- rnorm(10)
x <- c(a,b,c,d)
y <- factor(c( rep("A",20), rep("B",20)))
z <- factor(c( rep("U",10), rep("V",20), rep("U",10) ))
op <- par(mfrow=c(2,2))
plot(x~y)
plot(x~z)
plot(x[z=="U"] ~ y[z=="U"], border="red", ylim=c(min(x),max(x)))
plot(x[z=="V"] ~ y[z=="V"], border="blue", add=T)
plot(x[y=="A"] ~ z[y=="A"], border="red", ylim=c(min(x),max(x)))
plot(x[y=="B"] ~ z[y=="B"], border="blue", add=T)
par(op)


If the variables ave just two values, you can put the boxplots side by side.


A U A V B U B V


−
1


0
1


2


l <- rep("",length(x))
for (i in 1:length(x)){
l[i] <- paste(y[i],z[i])


}
l <- factor(l)
boxplot(x~l)


3.9.5 Several qualitative variables: the “matplot” function


Instead of stacking the boxplots, you can overlay the curves plotting the mean of each group.
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# l is a 2-element list
myplot1 <- function (x, l, ...) {
t <- tapply(x,l,mean)
l1 <- levels(l[[1]])
l2 <- levels(l[[2]])
matplot(t,


type=’l’, lty=1, col=1:length(l2),
axes=F, ...)


axis(1, 1:2, l1)
axis(2)
lim <- par("usr")
legend(lim[1] + .05*(lim[2]-lim[1]), lim[4],


l2, lwd=1, lty=1, col=1:length(l2) )
}
op <- par(mfrow=c(1,2))
myplot1( x, list(y,z), ylim=c(0,2), ylab = "" )
myplot1( x, list(z,y), ylim=c(0,2), ylab = "" )
par(op)


If the plot is not too cluttered, you can add the quartiles and the extreme values of each
group.
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myplot3 <- function (x, l, ...) {
l1 <- levels(l[[1]])
l2 <- levels(l[[2]])
t0 <- tapply(x,l,min)
t1 <- tapply(x,l,function(x)quantile(x,.25))
t2 <- tapply(x,l,median)
t3 <- tapply(x,l,function(x)quantile(x,.75))
t4 <- tapply(x,l,max)
matplot(cbind(t0,t1,t2,t3,t4),


type=’l’,
lty=c(rep(3,length(l2)), rep(2,length(l2)),


rep(1,length(l2)), rep(2,length(l2)),
rep(3,length(l2)) ),


col=1:length(l2),
axes=F, ...)


axis(1, 1:2, l1)
axis(2)
lim <- par("usr")


legend(lim[1] + .05*(lim[2]-lim[1]), lim[4],
l2, lwd=1, lty=1, col=1:length(l2) )


}
op <- par(mfrow=c(1,2))
myplot3( x, list(y,z), ylab = "" )
myplot3( x, list(z,y), ylab = "" )
par(op)


3.10 Fun


3.10.1 Decorations


We can play and add 3d effects – it distracts the reader, but if you do not want to convey
information but merely deceive, this is for you...
A pie chart with a shadow.
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shaded.pie <- function (...) {
pie(...)
op <- par(new=T)
a <- seq(0,2*pi,length=100)
for (i in (256:64)/256) {
r <- .8-.1*(1-i)
polygon( .1+r*cos(a), -.2+r*sin(a), border=NA, col=rgb(i,i,i))


}
par(new=T)
pie(...)
par(op)


}
x <- rpois(10,5)
x <- x[x>0]
shaded.pie(x)


A 3D bar chart (Err... I cheated: this was done with kchart. I leave it to the reader, as an
exercice, to do the same thing with R).


You could also put the bars behind each other, you could also use 3D-bands, etc.
You could even delagate this task to a real drawing software such as PoVRay...
http://www.povray.org/
http://www.irtc.org/
http://www.kpovmodeler.org/
http://www.blender3d.org/
http://www.elysiun.com/forum/
http://www.cs.brown.edu/~tor/


For instance, here is the R code that generated the PoVRay code that generated the 3-
dimensional part of the coverart of this book.
povray.hist <- function (x, ...) {
x <- hist(x, plot=F, ...)$counts



http://www.povray.org/

http://www.irtc.org/

http://www.kpovmodeler.org/

http://www.blender3d.org/

http://www.elysiun.com/forum/

http://www.cs.brown.edu/~tor/
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if( min(x)<0 ) x <- x-min(x)
x <- x/max(x)*1.5
n <- length(x)
w <- 2/n
e <- .01
my.cat <- function (s) { cat(s); cat("\n") }
my.cat(’#include "colors.inc"’)
my.cat(’#include "stones.inc"’)
my.cat(’#include "woods.inc"’)
my.cat(’#declare rd=seed(0);’)
my.cat(’#declare T1 = texture { T Stone16 scale .2}’)
my.cat(’#declare T2 = texture { T Wood9 }’)
my.cat(’background { color White }’)
my.cat(’camera{’)
my.cat(’ location <.6,2,-1.5>’)
my.cat(’ look at <0,.6,0>’)
my.cat(’}’)
my.cat(’light source{<-1, 4, -2> color .5*White}’)
my.cat(’light source{<+1, 4, -2> color White}’)
my.cat(’light source{<1,.5,-2> color White}’)
my.cat(’// Ground ’)
my.cat(’#declare e = .1 ;’)
my.cat(’box{ <-1-e, -.02, -.25-e>, <1+e, 0, .25+e> texture {T1} }’)
my.cat(’// Boxes’)
for (i in 1:n) {
my.cat(paste( ’box{<’, -1+(i-1)*w +e, ’,’, x[i], ’,’, -w/2, ’>, <’,


-1+i*w, ’,’, 0, ’,’, w/2, ’> ’,
’texture{T2 rotate rand(rd)*90*x ’,
’translate 2*<rand(rd), rand(rd), rand(rd)> }}’ ))


}
}
povray.hist(faithful$eruptions)


3.10.2 Animations


An animation is merely a sequence of static images: the following example represents the
quantile-quantile plot ox xˆa for several values of a. In a corner, we have added a histogram
of xˆa and an estimation of its density.
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n <- 500
set.seed(7236)
x <- rnorm(n,10)
N <- 50
a <- seq(.002,10,length=N)
for (i in factor(1:N)) {
png(filename=sprintf("animation 1 %03d.png", i))
y <- x^a[i]
qqnorm(y, main=paste("a =", signif(a[i])))
qqline(y, col=’red’)
par(fig=c(.7,.9,.2,.4),mar=c(0,0,0,0),new=T)
hist(y, col=’light blue’, probability=T,axes=F,main=’’)
lines(density(y), col=’red’, lwd=3)
curve(dnorm(x,mean(y),sd=sd(y)),col=’blue’,lty=2,lwd=3, add=T)
dev.off()


}


We can now convert this sequence of images into an animation, e.g., with ImageMagick.
convert -delay 50 -loop 50 *.png animation 1.gif


The “MNG” format is to “PNG” what “animated GIF” is to “GIF”:
convert -delay 50 -loop 50 *.png animation 1.mng


If you just want to watch the animation, you do not need to convert the files:
animate -delay 50 *.png


You should be able to convert a bunch of PNG or JPEG files into an animation with
mencoder (part of mplayer), as follows:
mencoder mf://*.jpg -mf fps=25:type=jpg -o output.avi -ovc lavc


or
mencoder mf://*.png -mf fps=25:type=png -o output.avi -ovc lavc


(I tried, it did work for JPEG, but not for PNG.)
See also
http://users.pandora.be/acp/ppmfilter/
TODO


Here are a few (fractal) animations made with R:
http://pinard.progiciels-bpi.ca/plaisirs/animations/index.html


TODO:
library(caTools) # Animated GIFs


TODO:
http://software.newsforge.com/article.pl?sid=05/07/01/1959251&from=rss
https://stat.ethz.ch/pipermail/r-help/2005-July/074819.html


You can also use Tcl/Tk:
TODO: Explain...
f <- function () {
plot(...)
tkcmd("after", 1000, f)


}
f()
# To stop the animation: f <- NULL



http://users.pandora.be/acp/ppmfilter/

http://pinard.progiciels-bpi.ca/plaisirs/animations/index.html

http://software.newsforge.com/article.pl?sid=05/07/01/1959251&from=rss
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3.11 TO SORT


3.11.1 Dense pixel displays


You can sometimes display a very large data set without really summarizing it: this is the
case if you can put the data into a rectangular table, with a meaning fil order on the rows
and columns.
TODO: Example with random, unordered data
TODO: Example with random, reordered data


This is the case, for instance, with the results of microarray experiments: there is one
column per patient, one row per gene; the values measure the expression of each gene in
each patient. There is no a priori order on the genes or on the patients, but one can obtain
one by a hierarchical classification of the genes and of the patients. The resulting picture is
often decorated by the corresponding classification trees.
TODO: Example


Here is another example. Software development is usually centered around a version con-
trol system (the best known are the ageing CVS and its competitor, Subversion): all the
developers send (or “commit”) their modifications, improvements, bug corrections to a cen-
tral “repository”, that tracks them all. It is then possible to retrieve the latest version of
the software (a version is often called a “revision”), or the version at a given date, or the
modifications that occured between two dates. Version control systems typically allow for a
coarse graphical representation of those data: the number of revisions per day, the number
of commits per developer and per week, etc. Can we do better?
A dense pixel display can display much more information: the table would have one row per
line of code, one column per revision and the values could be a flag for the creation, deletion,
modification of that line; the presence or absence of the line; the presence or absence of a
keyword (“BUG”, “TODO”, “FIXME”, etc.); the success of regression tests; whether the
line was acrually tested; who modified the line; etc.
There is one problem, though: the number of lines of a project can vary wildly. One solution
is to use a row for each line that ever existed – if the project is young, this will not be much
of a project, but if it has already undergone several rewrites, the picture will be mostly
empty. Another solution is to accept that the number of lines varies: the “table” is no
longer rectangular, but each column has a potentially different number or elements – it has
to be coerced into a rectangular form, e.g., by adding elements at the end of each column
so that the have the same number of elements, or by adding elements at both ends of the
columns, so that the plot be centered.
This can help decompose the life of a project into phases, such as growth, debugging prior
to a release, bug fixes after a release, etc. – it can also help see whether the software was
released at the right time.
(You may wonder, as I do, how to include “branches” in such a plot...)
CVSscan: Visualization of code evolution (L. Voinea et al.)
http://www.win.tue.nl/~lvoinea/cvss.pdf


Version-Centric visualization of code evolution (S.L. Voinea et al.)
http://www.win.tue.nl/~alext/ALEX/PAPERS/EuroVis05/paper.pdf


3.11.2 Hiearchical data


TODO
Examples:
Financial data, stocks: sector/industry group/industry/subindustry


region/country
E-commerce items: Books/Computer science/Programming languages
Newsgroups
Information classification (in a library, on Yahoo, dmoz)
Directories on a hard drive



http://www.win.tue.nl/~lvoinea/cvss.pdf

http://www.win.tue.nl/~alext/ALEX/PAPERS/EuroVis05/paper.pdf
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Graphical representation:
- diagram with a lot of circles (for more readability, you can only
represent the "current" element (the one on which you focus), its
parents and children.
Actually, it can remain readable if you represent all the
ancestors (concentric circles) and their immediate offsprings
(just one generation) (other circles in those outer circles).


- tree
You can zoom on an element and only represent its immediate
parents and children.
You can also draw the whole tree and zoom by deforming the
picture, as if you had put a magnifying glass on if (maginfying
the current element and its immediate neighbours), or if you were
looking at it through a fish-eye lens.
Mathematitians can also implement this zoom by drawing the tree in
the hyperbolic (Poincare) plane -- do not do that in the US: the
hyperbolic plane has been patented...
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
http://hypertree.sourceforge.net/
http://www.freepatentsonline.com/6104400.html


Multi-hierarchies: each element can have several tags, some of which
are nested (as in a real hierarchy, by you could have several
unrelated hierarchies), some of which overlap.


3.11.3 Visualizing complex functions


library(help=elliptic)



http://mathworld.wolfram.com/PoincareHyperbolicDisk.html

http://hypertree.sourceforge.net/

http://www.freepatentsonline.com/6104400.html





Chapter 4


Customizing graphics


In this chapter (it tends to be overly comprehensive: consider it as a reference and feel free to
skip it), we consider all the configurable details in graphics: symbols, colours, annotations
(with text and mathematical symbols), grid graphics, but also LATEX and GUI building
with Tk. This chapter’s object of interest is the graphic – the previous chapter, still about
graphics, was data-centric.
Things can be quite complicated because there are two sets of graphical functions: the
classical ones and those, more complex but much more powerful, from the lattice and grid
packages. We shall detail them in turn and finally explain how graphics can leave R: isolated
PDF or PNG files, for inclusion of PDF (e.g., LATEX) or HTML documents, use of interactive
programs to look at the data, etc.


4.1 Graphics


4.1.1 Basic commands


Here are the main functions that turn data into graphs. We do not detail them here, we
shall come back on them when we have some data to provide them with.
The “plot” function draw a set of points; it may link the points by a broken line.
The syntax “y ˜ x” might look strange: it should be read “y as a function of x”. We
shall also use this syntax to describe the regression models. The can be more complex, for
instance, “y ˜ x1 + x2” means “y as a function of x1 and x2” and “y ˜ x — z” means “y as
a function of x for each value of z” (more about this later, when we tackle lattice plots and
mixed models).
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library(MASS)
data(beav1)
plot(beav1$temp ~ beav1$time)
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The "plot" function, with type="l"
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x <- beav1$time
y <- beav1$temp
o <- order(x)
x <- x[o]
y <- y[o]
plot(y ~ x,


type = "l",
xlab = "Time",
ylab = "Temperature",
main = "The \"plot\" function, with type=\"l\"")
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The "plot" function, with type="b"
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plot(y ~ x,
type = "b",
lwd = 3,
xlim = c(0, 400),
xlab = "Time",
ylab = "Temperature",
main = "The \"plot\" function, with type=\"b\"")


Actually, it is a generic function: it will behave in a different way depending on its argument
type. If the argument belongs to the “toto” class, it will look for a “plot.toto” function; if
it does not exist, it will fall back to the “plot.default” function. Among others, the “plot”,
“print”, “summary”, “predict” behave that way.
# What we would expect
> plot
function (x, y, ...)
UseMethod("plot")


# What we used to have
> plot
function (x, y, ...)
{
if (is.null(attr(x, "class")) && is.function(x)) {
if ("ylab" %in% names(list(...)))
plot.function(x, ...)


else plot.function(x, ylab = paste(deparse(substitute(x)),
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"(x)"), ...)
}
else UseMethod("plot")


}


# What we currently have (R-2.1.0)
> plot
function (x, y, ...)
{


if (is.null(attr(x, "class")) && is.function(x)) {
nms <- names(list(...))
if (missing(y))


y <- {
if (!"from" %in% nms)
0


else if (!"to" %in% nms)
1


else if (!"xlim" %in% nms)
NULL


}
if ("ylab" %in% nms)


plot.function(x, y, ...)
else plot.function(x, y, ylab = paste(deparse(substitute(x)),


"(x)"), ...)
}
else UseMethod("plot")


}
<environment: namespace:graphics>


> apropos("^plot\.")
[1] "plot.data.frame" "plot.default" "plot.density" "plot.factor"
[5] "plot.formula" "plot.function" "plot.histogram" "plot.lm"
[9] "plot.mlm" "plot.mts" "plot.new" "plot.POSIXct"


[13] "plot.POSIXlt" "plot.table" "plot.ts" "plot.TukeyHSD"
[17] "plot.window" "plot.xy"


> methods(plot)
[1] plot.acf* plot.boot* plot.correspondence*
[4] plot.data.frame* plot.Date* plot.decomposed.ts*
[7] plot.default plot.dendrogram* plot.density


[10] plot.ecdf plot.EDAM* plot.factor*
[13] plot.formula* plot.hclust* plot.histogram*
[16] plot.HoltWinters* plot.isoreg* plot.lda*
[19] plot.lm plot.mca* plot.medpolish*
[22] plot.mlm plot.NaiveBayes* plot.POSIXct*
[25] plot.POSIXlt* plot.ppr* plot.prcomp*
[28] plot.princomp* plot.profile* plot.profile.nls*
[31] plot.rda* plot.ridgelm* plot.shingle*
[34] plot.spec plot.spec.coherency plot.spec.phase
[37] plot.stepclass* plot.stepfun plot.stl*
[40] plot.table* plot.ts plot.tskernel*
[43] plot.TukeyHSD


Non-visible functions are asterisked


To get the non-visible functions, you can use the “getAnywhere” function.
> plot.Date
Error: Object "plot.Date" not found


> getAnywhere("plot.Date")
A single object matching ’plot.Date’ was found
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It was found in the following places
registered S3 method for plot from namespace graphics
namespace:graphics


with value


function (x, y, xlab = "", axes = TRUE, frame.plot = axes, xaxt = par("xaxt"),
...)


{
axisInt <- function(x, main, sub, xlab, ylab, col, lty, lwd,


xlim, ylim, bg, pch, log, asp, ...) axis.Date(1, x, ...)
plot.default(x, y, xaxt = "n", xlab = xlab, axes = axes,


frame.plot = frame.plot, ...)
if (axes && xaxt != "n")


axisInt(x, ...)
}
<environment: namespace:graphics>


> str( getAnywhere("plot.Date") )
List of 5
$ name : chr "plot.Date"
$ objs :List of 2
..$ :function (x, y, xlab = "", axes = TRUE,


frame.plot = axes, xaxt = par("xaxt"),
...)


..$ :function (x, y, xlab = "", axes = TRUE,
frame.plot = axes, xaxt = par("xaxt"),
...)


$ where : chr [1:2] "registered S3 method for plot from namespace graphics"
"namespace:graphics"


$ visible: logi [1:2] FALSE FALSE
$ dups : logi [1:2] FALSE TRUE
- attr(*, "class")= chr "getAnywhere"


> str( getAnywhere("plot.Date")$objs[[1]] )
function (x, y, xlab = "", axes = TRUE,


frame.plot = axes, xaxt = par("xaxt"),
...)


> getAnywhere("plot.Date")$objs[[1]]
function (x, y, xlab = "", axes = TRUE,


frame.plot = axes, xaxt = par("xaxt"),
...)


{
axisInt <- function(x, main, sub, xlab, ylab, col, lty, lwd,


xlim, ylim, bg, pch, log, asp, ...) axis.Date(1, x, ...)
plot.default(x, y, xaxt = "n", xlab = xlab, axes = axes,


frame.plot = frame.plot, ...)
if (axes && xaxt != "n")


axisInt(x, ...)
}
<environment: namespace:graphics>


TODO: the following examples should be as simple as possible, just the function, with NO
optional arguments. A second example can be graphically more appealling, but the first
should be provides by readable code.
The “matplot” can plot several curves at the same time.
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x <- as.matrix( EuStockMarkets[1:50,] )
matplot(x, # By default: not lines,


main = "matplot", # but unconnected coloured numbers
xlab = "",
ylab = "")
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matplot(x,


type = "l", # Lines -- but I am not happy
lty = 1, # with the axes
xlab = "",
ylab = "",
main = "matplot")
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x <- as.matrix( EuStockMarkets )
matplot(time(EuStockMarkets),


x,
log = "y",
type = ’l’,
lty = 1,
ylab = "Closing price",
xlab = "Date",
main = "matplot",
axes = FALSE)


axis(1)
axis(2)
box()


The “pairs” command plots a “matrix of scatterplots” (aka “splom”, for ScatterPLOt Ma-
trix).
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pairs(longley,
gap=0,
diag.panel = function (x, ...) {
par(new = TRUE)
hist(x,


col = "light blue",
probability = TRUE,
axes = FALSE,
main = "")


lines(density(x),
col = "red",
lwd = 3)


rug(x)
})


The “stripchart” plots a 1-dimensional cloud of points.
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stripchart(longley$Unemployed)


The “hist” command plots a histogram.


Histogram of longley$Unemployed
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Histogram of longley$Unemployed
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hist(longley$Unemployed,
probability = TRUE, # Change the vertical units,


# to overlay a density estimation
col = "light blue")


lines(density(longley$Unemployed),
col = "red",
lwd = 3)


The “boxplot” command displays one or several box-and-whiskers diagram(s).
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boxplot(longley$Unemployed)
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Box−and−whiskers plot (boxplot)
boxplot(longley$Unemployed,


horizontal = TRUE,
col = "pink",
main = "Box-and-whiskers plot (boxplot)")
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data(InsectSprays)
boxplot(count ~ spray,


data = InsectSprays,
col = "pink",
xlab = "Spray",
ylab = "Count",
main = "Insect sprays")
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boxplot(count ~ spray,
data = InsectSprays,
col = "pink",
horizontal = TRUE,
las = 1, # Horizontal labels
xlab = "Count",
ylab = "Spray",
main = "Insect sprays")


The “contour” function displays a contour plot (I sometimes use it to look at a likelihood
function or a bidimensioinal density, estimated with the “kde2d” function).
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Contour plot
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N <- 50
x <- seq(-1, 1, length=N)
y <- seq(-1, 1, length=N)
xx <- matrix(x, nr=N, nc=N)
yy <- matrix(y, nr=N, nc=N, byrow=TRUE)
z <- 1 / (1 + xx^2 + (yy + .2 * sin(10*yy))^2)
contour(x, y, z,


main = "Contour plot")


The image function plots the same information, with colours.
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xlab = "",
ylab = "")


contour(x, y, z, lwd=3, add=TRUE)


The “persp” function draw a 3D surface.
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persp(z)
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perspective plot, theta=45, phi=30


op <- par(mar=c(0,0,3,0)+.1)
persp(x, y, z,


theta = 45, phi = 30,
shade = .5,
col = rainbow(N),
border = "green",
main = "perspective plot, theta=45, phi=30")


par(op)
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The sinc function


# From the manual: the sinc function
x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
op <- par(bg = "white", mar=c(0,2,3,0)+.1)
persp(x, y, z,


theta = 30, phi = 30,
expand = 0.5,
col = "lightblue",
ltheta = 120,
shade = 0.75,
ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)",
main = "The sinc function"


)
par(op)


4.1.2 Text


Here are a few ways of configuring those graphics.
You can add a title, change the name of the axes.
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n <- 100
x <- rnorm(n)
y <- 1 - x^2 + .3*rnorm(n)
plot(y ~ x,


xlab = ’X axis’,
ylab = "Y axis",
main = "Title")


You can also add the title and the axes names afterwards, with the “title” function.
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plot(y ~ x,
xlab = "",
ylab = "",
main = "")


title(main = "Title",
xlab = "X axis",
ylab = "Y axis")


The “text” function allows you to add text in the plot.
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set.seed(1)
plot.new()
plot.window(xlim=c(0,1), ylim=c(0,1))
box()
N <- 50
text(
runif(N), runif(N),
sample( # Random words...
scan("/usr/share/dict/cracklib-small", character(0)),
N


)
)


TODO: the “adj” and “pos” arguments...
The “mtext” function allows you to add text in the margin of the plot – for instance, if your
plot has a title and a subtitle, or if you need two different y axes, one on each side of the
plot.
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The "mtext" function                                                             


Line 0
Line 1
Line 2
Line 3


N <- 200
x <- runif(N, -4, 4)
y <- sin(x) + .5 * rnorm(N)
plot(x, y,


xlab = "", ylab = "",
main = paste("The \"mtext\" function",


paste(rep(" ", 60), collapse="")))
mtext("Line 0", 3, line=0)
mtext("Line 1", 3, line=1)
mtext("Line 2", 3, line=2)
mtext("Line 3", 3, line=3)
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Subtitle
Title


X axis
X axis subtitle


N <- 200
x <- runif(N, -4, 4)
y <- sin(x) + .5 * rnorm(N)
plot(x, y, xlab="", ylab="", main="")
mtext("Subtitle", 3, line=.8)
mtext("Title", 3, line=2, cex=1.5)
mtext("X axis", 1, line=2.5, cex=1.5)
mtext("X axis subtitle", 1, line=3.7)


Title
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N <- 200
x <- seq(-4,4, length=N)
y1 <- sin(x)
y2 <- cos(x)
op <- par(mar=c(5,4,4,4)) # Add some space in the right margin


# The default is c(5,4,4,2) + .1
xlim <- range(x)
ylim <- c(-1.1, 1.1)
plot(x, y1, col="blue", type="l",


xlim=xlim, ylim=ylim,
axes=F, xlab="", ylab="", main="Title")


axis(1)
axis(2, col="blue")
par(new=TRUE)
plot(x, y2, col="red", type="l",


xlim=xlim, ylim=ylim,
axes=F, xlab="", ylab="", main="")


axis(4, col="red")


mtext("First Y axis", 2, line=2, col="blue", cex=1.2)
mtext("Second Y axis", 4, line=2, col="red", cex=1.2)


4.1.3 Mathematical symbols


The text may contain mathematical symbols.
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++
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graph of the function f((x)) == 1 ++ x2


x <- seq(-5,5,length=200)
y <- sqrt(1+x^2)
plot(y~x, type=’l’,


ylab=expression( sqrt(1+x^2) ))
title(main=expression(
"graph of the function f"(x) == sqrt(1+x^2)


))


You can also start with such a formula and dynamically change a part of it – typically, to
insert the numeric value of a variable.
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graph of the function f((x)) == 1 ++ x2
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graph of the function f((x)) == 2 ++ x2
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graph of the function f((x)) == 3 ++ x2
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graph of the function f((x)) == 4 ++ x2


x <- seq(-5,5,length=200)
op <- par(mfrow=c(2,2))
for (i in 1:4) {
y <- sqrt(i+x^2)
plot(y ~ x,


type = ’l’,
ylim = c(0,6),
ylab = substitute(
expression( sqrt(i+x^2) ),
list(i=i)


))
title(main = substitute(
"graph of the function f"(x) == sqrt(i+x^2),
list(i=i)))


}
par(op)


Here are a few examples from the manual.
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text(...) examples
~~~~~~~~~~~~~~


R is GNU Â©, but not Â® ...
1:10


1:
10


Â«ISO−accentsÂ»: Â± Ã©Ã¨ Ã¸Ã¨ Ã¥<Ã… Ã¦<Ã†


the text is CENTERED around (x,y) = (6,2) by default


or Left/Bottom − JUSTIFIED at (2,1) by ‘adj = c(0,0)'


ββ̂ == ((XtX))−−1Xty
expression(hat(beta) == (X^t * X)^{−1} * X^t * y)


x == ∑∑
i==1


n xi


n


# From the manual
plot(1:10, 1:10, main = "text(...) examples\n~~~~~~~~~~~~~~",


sub = "R is GNU c©, but not R© ...")
mtext("�ISO-accents�: éè øØ å<Å æ<Æ", side=3)
points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")
text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",


cex = .8)
text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by ‘adj = c(0,0)’",


adj = c(0,0))
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)", cex = .75)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))


You can even write in Japanese.
?Japanese


example(Japanese)


using Hershey fonts


Hiragana


Katakana


Kanji


English


# From the manual
plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",


main= "example(Japanese)", xlab= "using Hershey fonts")
par(cex=3)
Vf <- c("serif", "plain")
text(4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont = Vf)
text(4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont = Vf)
text(4, 6, "\\#J467c\\#J4b5c", vfont = Vf)
text(4, 8, "Japan", vfont = Vf)
par(cex=1)
text(8, 2, "Hiragana")
text(8, 4, "Katakana")
text(8, 6, "Kanji")
text(8, 8, "English")
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Hiragana : \\#J24nn
\\#J2421
\\#J2422
\\#J2423
\\#J2424
\\#J2425
\\#J2426
\\#J2427
\\#J2428
\\#J2429
\\#J242a
\\#J242b
\\#J242c
\\#J242d
\\#J242e
\\#J242f
\\#J2430
\\#J2431
\\#J2432
\\#J2433
\\#J2434
\\#J2435
\\#J2436
\\#J2437
\\#J2438
\\#J2439


\\#J243a
\\#J243b
\\#J243c
\\#J243d
\\#J243e
\\#J243f
\\#J2440
\\#J2441
\\#J2442
\\#J2443
\\#J2444
\\#J2445
\\#J2446
\\#J2447
\\#J2448
\\#J2449
\\#J244a
\\#J244b
\\#J244c
\\#J244d
\\#J244e
\\#J244f
\\#J2450
\\#J2451
\\#J2452


\\#J2453
\\#J2454
\\#J2455
\\#J2456
\\#J2457
\\#J2458
\\#J2459
\\#J245a
\\#J245b
\\#J245c
\\#J245d
\\#J245e
\\#J245f
\\#J2460
\\#J2461
\\#J2462
\\#J2463
\\#J2464
\\#J2465
\\#J2466
\\#J2467
\\#J2468
\\#J2469
\\#J246a
\\#J246b


\\#J246c
\\#J246d
\\#J246e
\\#J246f
\\#J2470
\\#J2471
\\#J2472
\\#J2473


# Other example from the manual
# (it also contains katakana and kanji tables)
make.table <- function(nr, nc) {
opar <- par(mar=rep(0, 4), pty="s")
plot(c(0, nc*(10%/%nc) + 1), c(0, -(nr + 1)),


type="n", xlab="", ylab="", axes=FALSE)
invisible(opar)


}


get.r <- function(i, nr) i %% nr + 1
get.c <- function(i, nr) i %/% nr + 1
Esc2 <- function(str) paste("\\", str, sep="")


draw.title <- function(title, nc)
text((nc*(10%/%nc) + 1)/2, 0, title, font=2)


draw.vf.cell <- function(typeface, fontindex, string, i, nr, raw.string=NULL) {
r <- get.r(i, nr)


c <- get.c(i, nr)
x0 <- 2*(c - 1)
if (is.null(raw.string)) raw.string <- Esc2(string)
text(x0 + 1.1, -r, raw.string, col="grey")
text(x0 + 2, -r, string, vfont=c(typeface, fontindex))
rect(x0 + .5, -(r - .5), x0 + 2.5, -(r + .5), border="grey")


}


draw.vf.cell2 <- function(string, alt, i, nr) {
r <- get.r(i, nr)
c <- get.c(i, nr)
x0 <- 3*(c - 1)
text(x0 + 1.1, -r, Esc2(string <- Esc2(string)), col="grey")
text(x0 + 2.2, -r, Esc2(Esc2(alt)), col="grey", cex=.6)
text(x0 + 3, -r, string, vfont=c("serif", "plain"))
rect(x0 + .5, -(r - .5), x0 + 3.5, -(r + .5), border="grey")


}


tf <- "serif"
fi <- "plain"
nr <- 25
nc <- 4
oldpar <- make.table(nr, nc)
index <- 0
digits <- c(0:9,"a","b","c","d","e","f")
draw.title("Hiragana : \\\\#J24nn", nc)
for (i in 2:7) {
for (j in 1:16) {
if (!((i == 2 && j == 1) || (i == 7 && j > 4))) {
draw.vf.cell(tf, fi, paste("\\#J24", i, digits[j], sep=""),


index, nr)
index <- index + 1


}
}


}


4.1.4 Lines


You can choose the line colour,
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Lines in various colours
plot(runif(5), ylim=c(0,1), type=’l’)
for (i in c(’red’, ’blue’, ’green’)) {
lines( runif(5), col=i )


}
title(main="Lines in various colours")


their width,
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Varying the line thickness
plot(runif(5), ylim=c(0,1), type=’n’)
for (i in 5:1) {
lines( runif(5), col=i, lwd=i )


}
title(main = "Varying the line thickness")


their type,
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plot type 'p' (points)
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plot type 'l' (lines)
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plot type 'b' (both points and lines)
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plot type 's' (stair steps)
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plot type 'h' (histogram)
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plot type 'n' (no plot)
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op <- par(mfrow=c(3,2))
plot(runif(5), type = ’p’,


main = "plot type ’p’ (points)")
plot(runif(5), type = ’l’,


main = "plot type ’l’ (lines)")
plot(runif(5), type = ’b’,


main = "plot type ’b’ (both points and lines)")
plot(runif(5), type = ’s’,


main = "plot type ’s’ (stair steps)")
plot(runif(5), type = ’h’,


main = "plot type ’h’ (histogram)")
plot(runif(5), type = ’n’,


main = "plot type ’n’ (no plot)")
par(op)


the line type (lty),


lty = 1 (default, solid)


Index


lty = 2 (dashed)
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lty = 3 (dotted)


Index


lty = 4 (dot, dash)
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lty = 5 (longdash) lty = 6 (twodash)
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op <- par(mfrow=c(3,2), mar=c(3,1,5,1))
plot(runif(5), lty = 1,


axes = FALSE, type = "l", lwd = 3,
main = "lty = 1 (default, solid)")


plot(runif(5), lty = 2,
axes = FALSE, type = "l", lwd = 3,
main = "lty = 2 (dashed)")


plot(runif(5), lty = 3,
axes = FALSE, type = "l", lwd = 3,
main = "lty = 3 (dotted)")


plot(runif(5), lty = "dotdash",
axes = FALSE, type = "l", lwd = 3,
main = "lty = 4 (dot, dash)")


plot(runif(5), lty = "longdash",
axes = FALSE, type = "l", lwd = 3,
main = "lty = 5 (longdash)")


plot(runif(5), lty = "twodash",
axes = FALSE, type = "l", lwd = 3,
main = "lty = 6 (twodash)")


par(op)
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lty = 42


Index


lty = 14
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lty = 8222 lty = 82624222


ru
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f(
5)


# You can also cook up your own line type
# by providing the length of each segment and
# each space
op <- par(mfrow=c(2,2), mar=c(3,1,5,1))
for (lty in c("42", "14", "8222", "82624222")) {
plot(runif(5), lty = lty,


axes = FALSE, type = "l", lwd = 3,
main = paste("lty =", lty))


}
par(op)


the symbols used (pch) or their size (cex),


Available symbols


●
1 2 3 4 5


6 7 8 9
●
10


11 12
●
13 14 15


●
16 17 18


●
19


●
20


●
21 22 23 24 25


op <- par(mar=c(1,1,4,1)+.1)
plot(0,0,


xlim = c(1,5), ylim = c(-.5,4),
axes = F,
xlab = ’’, ylab = ’’,
main = "Available symbols")


for (i in 0:4) {
for (j in 1:5) {
n <- 5*i+j
points(j, i,


pch = n,
cex = 3)


text(j,i-.25, as.character(n))
}


}
par(op)


The “density” and “angle” options add shading lines.
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Histogram of longley$Unemployed


longley$Unemployed
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hist(longley$Unemployed, density=3, angle=45)


4.1.5 Splitting the screen


You can also put several graphics in a simgle picture. It might then be necessary to modify
the margins to leave some room for the title. The easiest way is through the “mfrow” or
“mfcol” argument of the “par” function. (With “mfrow”, the plots are first placed in the
first row, then the second, etc.; with “mfcol”, the plots are first placed in the first column,
the the second, etc.)
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Four plots, without enough room for this title op <- par(mfrow = c(2, 2))
for (i in 1:4)
plot(runif(20), runif(20),


main=paste("random plot (",i,")",sep=’’))
par(op)
mtext("Four plots, without enough room for this title",


side=3, font=2, cex=2, col=’red’)
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Four plots, with some room for this title
op <- par(mfrow = c(2, 2),


oma = c(0,0,3,0) # Outer margins
)


for (i in 1:4)
plot(runif(20), runif(20),


main=paste("random plot (",i,")",sep=’’))
par(op)
mtext("Four plots, with some room for this title",


side=3, line=1.5, font=2, cex=2, col=’red’)
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random plot (4)


Title
op <- par(mfrow = c(2, 2),


oma = c(0,0,3,0),
mar = c(3,3,4,1) + .1 # Margins
)


for (i in 1:4)
plot(runif(20), runif(20),


xlab = "", ylab = "",
main=paste("random plot (",i,")",sep=’’))


par(op)
mtext("Title",


side=3, line=1.5, font=2, cex=2, col=’red’)
par(op)


You can also superimpose several graphics, by playing with the “fig” graphical parameter.
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n <- 20
x <- rnorm(n)
y <- x^2 - 1 + .3*rnorm(n)
plot(y ~ x,


main = "The \"fig\" graphic parameter")
op <- par()
for (i in 2:10) {
done <- FALSE
while(!done) {
a <- c( sort(runif(2,0,1)),


sort(runif(2,0,1)) )
par(fig=a, new=T)
r <- try(plot(runif(5), type=’l’, col=i))
done <- !inherits(r, "try-error")


}
}
par(op)


Histogram of x
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n <- 1000
x <- rt(n, df=10)
hist( x,


col = "light blue",
probability = "TRUE",
ylim = c(0, 1.2*max(density(x)$y)))


lines(density(x),
col = "red",
lwd = 3)


op <- par(fig = c(.02,.4,.5,.98),
new = TRUE)


qqnorm(x,
xlab = "", ylab = "", main = "",
axes = FALSE)


qqline(x, col = "red", lwd = 2)
box(lwd=2)
par(op)


For slightly more complicated layouts, you can use the “layout” function.
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The "layout" function


op <- par(oma = c(0,0,3,0))
layout(matrix(c(1, 1, 1,


2, 3, 4,
2, 3, 4), nr = 3, byrow = TRUE))


hist( rnorm(n), col = "light blue" )
hist( rnorm(n), col = "light blue" )
hist( rnorm(n), col = "light blue" )
hist( rnorm(n), col = "light blue" )
mtext("The \"layout\" function",


side = 3, outer = TRUE,
font = 2, size = 1.2)


par(op)


There is also a “split.screen” function – completely incompatible with the above.


0 5 10 15 20


0.0 0.4 0.8 0 4 8 12 −10 0 10


random.plot <- function () {
N <- 200
f <- sample(list(rnorm,


function (x) { rt(x, df=2) },
rlnorm,
runif),


1) [[1]]
x <- f(N)
hist(x, col="light blue", main="", xlab="", ylab="", axes=F)
axis(1)


}
op <- par(bg="white", mar=c(2.5,2,1,2))
split.screen(c(2,1))
split.screen(c(1,3), screen = 2)
screen(1); random.plot()
#screen(2); random.plot() # Screen 2 was split into three screens: 3, 4, 5
screen(3); random.plot()
screen(4); random.plot()


screen(5); random.plot()
close.screen(all=TRUE)
par(op)


4.1.6 Overlaying graphical elements


You can add several graphical elements: either with certain commands, that do not start a
new graphic (“points”, “lines”, “segments”, “text”); or by adding “add=T” to commands
that normally start a new picture; or with “par(new=TRUE)” which asks NOT to start a
new picture.
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Overlaying points, segments, lines...
plot(runif(5), runif(5),


xlim = c(0,1), ylim = c(0,1))
points(runif(5), runif(5),


col = ’orange’, pch = 16, cex = 3)
lines(runif(5), runif(5),


col = ’red’)
segments(runif(5), runif(5), runif(5), runif(5),


col = ’blue’)
title(main = "Overlaying points, segments, lines...")


You can paint parts of the drawing area with the “polygon” command.
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The "polygon" function
my.col <- function (f, g, xmin, xmax, col, N=200,


xlab="", ylab="", main="") {
x <- seq(xmin, xmax, length = N)
fx <- f(x)
gx <- g(x)
plot(0, 0, type = ’n’,


xlim = c(xmin,xmax),
ylim = c( min(fx,gx), max(fx,gx) ),
xlab = xlab, ylab = ylab, main = main)


polygon( c(x,rev(x)), c(fx,rev(gx)),
col = ’red’, border = 0 )


lines(x, fx, lwd = 3)
lines(x, gx, lwd = 3)


}
op <- par(mar=c(3,3,4,1)+.1)
my.col( function(x) x^2, function(x) x^2+10*sin(x),


-6, 6,
main = "The \"polygon\" function")


par(op)


TODO: Example with two colours.
You can define colors with a number, a character string giving its English name (such as
“light blue” – the complete list in in the “rgb.txt” file) or with a character string containing
its RGB (or RGBA) code (such as ”#CC00FF”).
The “rainbow”, “heat.color”, etc. commands provide colour lists.
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5 10 15


color palettes;  n= 16


i


rainbow(n, start=.7, end=.1)


heat.colors(n)


terrain.colors(n)


topo.colors(n)


cm.colors(n)


# From the manual
ch.col <- c("rainbow(n, start=.7, end=.1)",


"heat.colors(n)",
"terrain.colors(n)",
"topo.colors(n)",
"cm.colors(n)")


n <- 16
nt <- length(ch.col)
i <- 1:n
j <- n/nt
d <- j/6
dy <- 2*d
plot(i, i+d,


type="n",
yaxt="n",
ylab="",
main=paste("color palettes; n=",n))


for (k in 1:nt) {


rect(i-.5, (k-1)*j+ dy, i+.4, k*j,
col = eval(parse(text=ch.col[k])))


text(2*j, k * j +dy/4, ch.col[k])
}


The “legend” command adds a legend to the graphic.
TODO:
Explain the "xjust" and "yjust" arguments.
In ALL the graphics of this document, use both arguments.
After that, proofread the HTML/PNG result to check the legend did
not disappear.
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x <- seq(-6,6,length=200)
y <- sin(x)
z <- cos(x)
plot(y~x, type=’l’, lwd=3,


ylab=’’, xlab=’angle’, main="Trigonometric functions")
abline(h=0,lty=3)
abline(v=0,lty=3)
lines(z~x, type=’l’, lwd=3, col=’red’)
legend(-6,-1, yjust=0,


c("Sine", "Cosine"),
lwd=3, lty=1, col=c(par(’fg’), ’red’),


)


To precisely set its position, you may use the picture limits.
xmin <- par(’usr’)[1]
xmax <- par(’usr’)[2]
ymin <- par(’usr’)[3]
ymax <- par(’usr’)[4]


TODO: Example using those
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One can also use keywords to identify a corner.
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plot(y~x, type=’l’, lwd=3,
ylab=’’, xlab=’angle’, main="Trigonometric functions")


abline(h=0,lty=3)
abline(v=0,lty=3)
lines(z~x, type=’l’, lwd=3, col=’red’)
legend("bottomleft",


c("Sine", "Cosine"),
lwd=3, lty=1, col=c(par(’fg’), ’red’),


)


The “inset” argument allows you to move the legend away from the plot.
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plot(y~x, type=’l’, lwd=3,
ylab=’’, xlab=’angle’, main="Trigonometric functions")


abline(h=0,lty=3)
abline(v=0,lty=3)
lines(z~x, type=’l’, lwd=3, col=’red’)
legend("bottomleft",


c("Sine", "Cosine"),
inset = c(.03, .03),
lwd=3, lty=1, col=c(par(’fg’), ’red’),


)


You can also put the legend outside the plot.
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op <- par(no.readonly=TRUE)
plot(y~x, type=’l’, lwd=3,


ylab=’’, xlab=’angle’, main="Trigonometric functions")
abline(h=0,lty=3)
abline(v=0,lty=3)
lines(z~x, type=’l’, lwd=3, col=’red’)
par(xpd=TRUE) # Do not clip to the drawing area
lambda <- .025
legend(par("usr")[1],


(1 + lambda) * par("usr")[4] - lambda * par("usr")[3],
c("Sine", "Cosine"),
xjust = 0, yjust = 0,
lwd=3, lty=1, col=c(par(’fg’), ’red’),


)
par(op)


labcurve in Hmisc : to put the name of the curve on the
curve (and not in a remote legend)


You can also add a grid behind a picture to ease its interpretation.
?grid


You can also draw the graphic on a background (a gradient a a pastel image): just save
the graphic as a PNG file (using the “png” function), with a transparent background, and
composite it with the picture you have chosen with the “composite” command (from Im-
ageMagick) – you are supposed to type this in a shell (if you are under Windoze, you are
on your own: it is too complicated for me).
composite faithful hist orig.png faithful600 light.jpg faithful hist.png
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4.1.7 par


TODO


4.1.8 User interaction


The “locator” command gives the coordinates of the position of the mouse when the user
clicked.
The “identify” gives the name of the plotted point nearest to the position of the mouse when
the user clicked.
For more interactivity, you can use Tk (a simple library to build GUI) or an external program
(we shall soon speak about ggobi).


4.1.9 Grid


The graphical functions we have just seen present a few problems. First, if you choose to
devide the screen to display several plots, you cannot go back to an already produced plot
to add to it – nor even to alter it. Second, you cannot nest those screen divisions.
Grid is a low-level graphics library that completely replaces the “standard” commands we
have just seen and address those problems. It is used, for instance, by the “lattice” library.
TODO: rewrite this section...
library(help=grid)
library(grid)
?Grid


The idea is to divide the drawing area into rectangular areas (which may overlap): the
Viewports.
The commands to draw segments, points, etc. are no longer the same: they are called
grid.lines, grid.points, etc.
> apropos("^grid\.")
[1] "grid.Call" "grid.Call.graphics" "grid.circle"
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[4] "grid.collection" "grid.copy" "grid.display.list"
[7] "grid.draw" "grid.edit" "grid.frame"
[10] "grid.get" "grid.grill" "grid.grob"
[13] "grid.layout" "grid.legend" "grid.lines"
[16] "grid.line.to" "grid.move.to" "grid.multipanel"
[19] "grid.newpage" "grid.pack" "grid.panel"
[22] "grid.place" "grid.plot.and.legend" "grid.points"
[25] "grid.polygon" "grid.pretty" "grid.prop.list"
[28] "grid.rect" "grid.segments" "grid.set"
[31] "grid.show.layout" "grid.show.viewport" "grid.strip"
[34] "grid.text" "grid.top.level.vp" "grid.xaxis"
[37] "grid.yaxis"


You no longer set/get graphical parameters with the “par” command but with “gpar”. To
modify one of these parameters, you just add the “gpar” command as an argument of the
graphic function you want to customize.
grid.rect(gp=gpar(fill="grey"))


The following lines start a new picture, paint it in grey, create a new viewport and enter it.
grid.newpage()
grid.rect(gp=gpar(fill="grey"))
push.viewport(...)
...
pop.viewport()


You can define a viewport with its width and height (with respect to the containing view-
port). You can also endow it with units (when drawing inside this new viewport, you will
either use the default units (width=height=1) or those user-defined units).
viewport(w = 0.9, h = 0.9, # width and height


xscale=c(xmin,xmax),
yscale=c(ymin,ymax),


)


Often, one adds some space inside the frame:
viewport(w = 0.9, h = 0.9,


xscale=c(xmin,xmax)+.05*c(-1,1),
yscale=c(ymin,ymax)+.05*c(-1,1),
)


Here is an example from the manual.
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library(grid)
grid.show.viewport(viewport(x=0.6, y=0.6,


w=unit(1, "inches"), h=unit(1, "inches")))


You can also define a viewport containing a table (or a matrix) or viewports.
viewport(layout=grid.layout(2, 2)))


Here is an example from the manual. The following command defines 8 viewports, repre-
sented by the blue rectangles (the white part will remain white).


(1, 1)1lines
1inches


(1, 2) 1lines
1inches


(2, 1)1lines (2, 2) 1lines
(3, 1)1lines (3, 2) 1lines


(4, 1)1null


1inches


(4, 2)


1inches


1null


grid.show.layout(grid.layout(4,2,
heights=unit(rep(1, 4),


c("lines", "lines", "lines", "null")),
widths=unit(c(1, 1), "inches")))


The following lines start a new picture, define a new viewport, divide it into four and put
something inside those four parts.
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dessine <- function () {
push.viewport(viewport(w = 0.9, h = 0.9,


xscale=c(-.1,1.1), yscale=c(-.1,1.1)))
grid.rect(gp=gpar(fill=rgb(.5,.5,0)))
grid.points( runif(50), runif(50) )
pop.viewport()


}
grid.newpage()
grid.rect(gp=gpar(fill=rgb(.3,.3,.3)))
push.viewport(viewport(layout=grid.layout(2, 2)))
for (i in 1:2) {
for (j in 1:2) {
push.viewport(viewport(layout.pos.col=i,


layout.pos.row=j))
dessine()
pop.viewport()


}
}


pop.viewport()


Among the examples from the manual, you will find:


whatever
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grid.multipanel(vp=viewport(0.5, 0.5, 0.8, 0.8))


But this function is NOT documented.
TODO: check that it is still the case in R 2.1.0


Yet, its code is worth insightful.
> grid.multipanel
function (x = runif(90), y = runif(90), z = runif(90), nrow = 2,
ncol = 5, nplots = 9, newpage = TRUE, vp = NULL)


{
# If requested, start a new picture
if (newpage)
grid.newpage()


# It the user said, in the arguments, that we were to
# go to a given viewport, we do so -- otherwise, we
# stay in the current viewport, i.e., the whole page.
# (In the example above, we had given this argument
# in order to create a margin around the picture.)
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if (!is.null(vp))
push.viewport(vp)


# We create a viewport, we divide it into a table of viewports.
# Here, we can see that the "grid.multipanel" has been written to
# serve as an illustration, for the user has to specify the number
# of rows and columns: we trust him, the pictures will be readable
# and the table will have a sufficient number of entries...
temp.vp <- viewport(layout = grid.layout(nrow, ncol))
push.viewport(temp.vp)
# User-land units:
# the x- and y-limits, plus 2.5% on each side
xscale <- range(x) + c(-1, 1) * 0.05 * diff(range(x))
yscale <- range(y) + c(-1, 1) * 0.05 * diff(range(y))
breaks <- seq(min(z), max(z), length = nplots + 1)
for (i in 1:nplots) {
col <- (i - 1)%%ncol + 1
row <- (i - 1)%/%ncol + 1
# We go to each entry of the table
panel.vp <- viewport(layout.pos.row = row, layout.pos.col = col)
# In each of those entries , we only plot a small part of the data:
# here, we select the points we want
panelx <- x[z >= breaks[i] & z <= breaks[i + 1]]
panely <- y[z >= breaks[i] & z <= breaks[i + 1]]
# We give all that to the grid.panel function, that does the
# actual job
grid.panel(panelx, panely, range(z),


c(breaks[i], breaks[i + 1]),
xscale, yscale,
axis.left = (col == 1),
axis.left.label = is.odd(row),
axis.right = (col == ncol || i == nplots),
axis.right.label = is.even(row),
axis.bottom = (row == nrow),
axis.bottom.label = is.odd(col),
axis.top = (row == 1),
axis.top.label = is.even(col),
vp = panel.vp)


}
# We use the grid.text command to name the axes.
grid.text("Compression Ratio",


unit(0.5, "npc"), unit(-4, "lines"),
gp = gpar(fontsize = 20),
just = "center", rot = 0)


grid.text("NOx (micrograms/J)",
unit(-4, "lines"), unit(0.5, "npc"),
gp = gpar(fontsize = 20),
just = "centre", rot = 90)


pop.viewport()
if (!is.null(vp))
pop.viewport()


}


Let us now browse through the code of the “grid.panel” function.
> grid.panel
function (x = runif(10), y = runif(10),


zrange = c(0, 1), zbin = runif(2),
xscale = range(x) + c(-1, 1) * 0.05 * diff(range(x)),
yscale = range(y) + c(-1, 1) * 0.05 * diff(range(y)),
axis.left = TRUE, axis.left.label = TRUE,
axis.right = FALSE, axis.right.label = TRUE,
axis.bottom = TRUE, axis.bottom.label = TRUE,
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axis.top = FALSE, axis.top.label = TRUE,
vp = NULL)


{
if (!is.null(vp))
push.viewport(vp)


# We divide the Viewport: one row on the top (for the level names)
# and the rest beneath.
temp.vp <- viewport(layout =
grid.layout(2, 1, heights = unit(c(1, 1), c("lines", "null"))))


push.viewport(temp.vp)
strip.vp <- viewport(layout.pos.row = 1, layout.pos.col = 1,


xscale = xscale)
push.viewport(strip.vp)
# The grid.strip command draws a bright orange rectangle,
# representing all the data, on top of which we add dark
# orange rectangle, representing the data plotted in this viewport.
grid.strip(range.full = zrange, range.thumb = zbin)
# A black frame
grid.rect()
if (axis.top)
grid.xaxis(main = FALSE, label = axis.top.label)


pop.viewport()


# On to the actual plot.
plot.vp <- viewport(layout.pos.row = 2, layout.pos.col = 1,


xscale = xscale, yscale = yscale)
push.viewport(plot.vp)
# Draw a grid
grid.grill()
# Plot the points
grid.points(x, y, gp = gpar(col = "blue"))
# A frame around the picture
grid.rect()
# The axes, if required
if (axis.left)
grid.yaxis(label = axis.left.label)


if (axis.right)
grid.yaxis(main = FALSE, label = axis.right.label)


if (axis.bottom)
grid.xaxis(label = axis.bottom.label)


pop.viewport(2)
if (!is.null(vp))
pop.viewport()


invisible(list(strip.vp = strip.vp, plot.vp = plot.vp))
}


here is another example:
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do.it <- function (x=runif(100), y=runif(100),
a=.9, b=.1,
col1=rgb(0,.3,0), col2=rgb(1,1,0)) {


xscale <- range(x) + c(-1,1)*.05
yscale <- range(y) + c(-1,1)*.05
grid.newpage()
grid.rect(gp=gpar(fill=col1, col=col1))
w1 <- a - b/2
w2 <- 1 - a - b/2
c1 <- b/3 + w1/2
c2 <- a + b/6 + w2/2
vp1 <- viewport(x=c1, y=c1, width=w1, height=w1,


xscale=xscale, yscale=yscale)
push.viewport(vp1)
grid.rect(gp=gpar(fill=col2, col=col2))
grid.points(x,y)
pop.viewport()
vp2 <- viewport(x=c1, y=c2, width=w1, height=w2,


xscale=xscale, yscale=c(0,1))
push.viewport(vp2)
grid.rect(gp=gpar(fill=col2, col=col2))
grid.points(x,rep(.5,length(x)))
pop.viewport()
vp3 <- viewport(x=c2, y=c1, width=w2, height=w1,


xscale=c(0,1), yscale=yscale)
push.viewport(vp3)
grid.rect(gp=gpar(fill=col2, col=col2))
grid.points(rep(.5,length(y)),y)
pop.viewport()


}
do.it()


Exercise: replace the scatterplots by box-and-whiskers plots.


4.2 LATEX


LATEX is a word processor extensively used in mathematics, computer science and theoretical
physics. Its typographic quality still surpasses that of mainstream word processors.
It looks like (and indeed is) a programming language: you describe the structure of you
document in a text file (“this is a chapter title”, “this is a section title”, “this is a quotation”,
“insert the table of contents here”, etc.); optionnally, you give some typographic instructions
(how the chapter heads should look like, etc.); and you compile the file to get a neat PDF
file.
If you want to use LATEX but are too accustomed to WYSIWYG word processors, have a
look at Lyx – which, strictly speaking, is not WYSIWYG but WYSIWYM (What You See
Is What You Mean).
http://www.mail-archive.com/r-help%40stat.math.ethz.ch/msg46946.html
http://www.ci.tuwien.ac.at/~leisch/Sweave/LyX
http://www.troubleshooters.com/lpm/200210/200210.htm


If you want to learn LATEX, have a look at
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf


If you just want to be impressed or to impress your friends/colleagues, have a look at the
ConTeXt web page (ConTeXt can be seen as a variant or a competitor to LATEX, but they
are both based on the underlying TeX typesetting system, so any argument in favour of one
is also in favour of the other).



http://www.mail-archive.com/r-help%40stat.math.ethz.ch/msg46946.html

http://www.ci.tuwien.ac.at/~leisch/Sweave/LyX

http://www.troubleshooters.com/lpm/200210/200210.htm

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf





CHAPTER 4. CUSTOMIZING GRAPHICS 352


http://www.pragma-ade.com/


4.2.1 xtable


The xtable package turns tables produced by R (in particular, the tables displaying the
anova results) into LATEX tables, to be included in an article.
> xtable(anova(lm.D9 <- lm(weight ~ group)))
% latex table generated in R 1.6.2 by xtable 1.0-11 package
% Fri Feb 28 18:47:58 2003
\begin{table}
\begin{center}
\begin{tabular}{lrrrrr}
\hline
& Df & Sum Sq & Mean Sq & F value & Pr($>$F) \\
\hline
group & 1 & 0.69 & 0.69 & 1.42 & 0.2490 \\
Residuals & 18 & 8.73 & 0.48 & & \\
\hline
\end{tabular}
\end{center}
\end{table}


> xtable(summary(lm(weight~group)))
% latex table generated in R 1.6.2 by xtable 1.0-11 package
% Fri Feb 28 18:57:00 2003
\begin{table}
\begin{center}
\begin{tabular}{rrrrr}
\hline
& Estimate & Std. Error & t value & Pr($>$$|$t$|$) \\
\hline
(Intercept) & 5.0320 & 0.2202 & 22.85 & 0.0000 \\
groupTrt & $-$0.3710 & 0.3114 & $-$1.19 & 0.2490 \\
\hline
\end{tabular}
\end{center}
\end{table}


See also the “latex” command in the “Hmisc” library (this is what I currently use).
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/latexFineControl.


pdf


TODO: give more details.


4.2.2 Sweave


Sweave allows you to include R code in LATEX documents; at each new LATEX compilation, R
will redo the computations and the drawings. It is very useful when you write R documen-
tation: you are certain that the code presented to the reader is correct and that it actually
produces the pictures. More generally, it is useful when you write statistical reports.



http://www.pragma-ade.com/

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/latexFineControl.pdf

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/latexFineControl.pdf
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library(tools)
?Sweave


http://www.ci.tuwien.ac.at/~leisch/Sweave


Here is an example:
\documentclass[a4paper,12pt]{article}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage[frenchb]{babel}
\parindent=0pt
\begin{document}


Computations whose code and results will not be printed:
<<results=hide,echo=FALSE>>=
y <- 1+1
y
@
(nothing appears in the PDF document, it is normal).


Computations whose results is not printed (but whose code is).
<<results=hide,echo=TRUE>>=
library("MASS")
ajoute <- function (a,b) {
a+b


}
x <- ajoute(1,2)
x
@


Computations with results:
<<results=verbatim>>=
n <- 100
x <- runif(n)
y <- 1 - x - x^2 + rnorm(n)
r <- lm(y~poly(x,5))
summary(r)
@


Computations whose results are "invisible" (a function that returns
nothing or an invisible object) but that prints (with the "cat"
command) LaTeX commands. (The "latex" or "xtable" commands
mentionned above use "cat" that way.)
<<results=tex>>=
cat("\\centerline{\\LaTeX}")
@


A graphic with its code:
<<fig=TRUE>>=
n <- 100
a <- rnorm(n)
b <- 1 - 2*a + rnorm(n)
plot(b~a)
abline(lm(b~a), col=’red’, lwd=3)
@


A graphic without its code (usually in a "figure" environment):
<<results=hide,echo=FALSE>>=
a <- function (x) {
round(x, digits=2)


}



http://www.ci.tuwien.ac.at/~leisch/Sweave
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@
It is also possible to use the result of some computations in the
text: ‘‘the coefficient of the first regression are
\Sexpr{a(r$coef[1])}, \Sexpr{a(r$coef[2])} and \Sexpr{a(r$coef[3])}’’.


\end{document}


It can be compiled as:
Sweave("tmp.Rnw")
system("pdflatex tmp.tex")
system("xpdf tmp.pdf")


here is the result:
SweaveExample.pdf


The options that appear in the code are detailled here:
?RweaveLatex


The most common problem is that functions from the “lattice” library do not seem to
produce any plot in Sweave. This is due to the fact that the plot is not produced by the
functions themselves but by the corresponding “print” method.
TODO: graphics and loops.
When I use Sweave, I start with the following file:
sweave_template.Rnw


4.3 Lattice (Treillis) plots


4.3.1 Lattice (slicing)


http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/


The idea behind Lattice (or Treillis – but the word “treillis” has been registered, so we
cannot use it any longer) plots is to plot a 3- (or more) dimensional point cloud, by cutting
the cloud into slices, and projecting those slices on a 2-dimensionnal space. You get one plot
for each slice.
You can also interpret those plots as plots in which you have partitionned the observations
into groups (the slices) and drawn a plot for each group.
library(help=lattice)
library(lattice)
?Lattice
?xyplot


4.3.2 xyplot


The following example (three quantitative variables) displays earthquake epicenters.



SweaveExample.pdf

sweave_template.Rnw

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/
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This is much more readable than the projection on one of the coordinate planes (because
we do not forget one of the variable, we just slice along it), on the three of them or even on
a “carefully chosen” plane (this is called Principal Component Analysis, we shall come back
on it later).
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library(scatterplot3d)
scatterplot3d(quakes[,1:3],


highlight.3d = TRUE,
pch = 20)


4.3.3 barchart


An example with a quantitative variable and 3 qualitative variables in which, if we fix the
qualitative variables, we have a single observation (this is sometimes called a “factorial
design”).
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data(barley)
barchart(yield ~ variety | year * site, data=barley)


The “scales” argument allows you to change the axes and their ticks (here, we avoid label
overlap).
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barchart(yield ~ variety | year * site, data = barley,
ylab = "Barley Yield (bushels/acre)",
scales = list(x = list(0, abbreviate = TRUE,


minlength = 5)))
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dotplot(yield ~ variety | year * site, data = barley)
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4.3.4 dotplot


We display the values of one of the qualitative variables by different colours or symbols
(for one of the farms, the yield increased: actually, the data for the two years have been
interchanged) with the “groups” argument.
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%%G 400 1000
data(barley)
## BUG in print dotplot...
dotplot(variety ~ yield | site, groups = year,


data = barley,
layout = c(1, 6), aspect = .5, pch = 16,
col.line = c("grey", "transparent"),
panel = "panel.superpose",
panel.groups = "panel.dotplot")


%--


4.3.5 bwplot, histogram, densityplot and stripplot


An example with a quantitative variable, qualitative variables, but for which we have several
observations in each class.
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data(bdf)
d <- data.frame( iq=bdf$IQ.perf, sex=bdf$sex, den=bdf$denomina )
d <- d[1:100,]
bwplot( ~ d$iq | d$sex + d$den )


d$iq


P
er


ce
nt


 o
f T


ot
al


0


10


20


30


40


6 8 10 12 14 16


0
1


1
1


0
2


0


10


20


30


40
1
2


0


10


20


30


40
0
3


6 8 10 12 14 16


1
3 histogram( ~ d$iq | d$sex + d$den )







CHAPTER 4. CUSTOMIZING GRAPHICS 361


d$iq


D
en


si
ty


0.00
0.05
0.10
0.15
0.20
0.25
0.30


0 5 10 15 20


●● ●●● ● ● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●● ●●● ●●●● ● ●●●● ●●●


0
1


●● ●● ●●● ●● ●●●●● ●● ●●● ● ●●●●●● ● ●●● ●●●●


1
1


●● ●●● ● ●●●●●


0
2


0.00
0.05
0.10
0.15
0.20
0.25
0.30


●● ●●●


1
2


0.00
0.05
0.10
0.15
0.20
0.25
0.30


●● ●●●


0
3


0 5 10 15 20


●●●


1
3 densityplot( ~ d$iq | d$sex + d$den )


stripplot( ~ d$iq | d$sex + d$den )


Other example: a quantitative variable as a fcuntion of another quantitative variable and a
qualitative variable (we turn the quantitative variable into a “single” with the “equal.count”
function).
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bwplot( ~ x | y + z, data=d )
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1
z densityplot( ~ x | y + z, data=d )


An example with only qualitative variables (we first compute the contingency table, with
the “table” function).
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d <- data.frame( x= (bdf$IQ.perf>11), y=bdf$sex, z=bdf$denomina )
d <- as.data.frame(table(d))
barchart( Freq ~ x | y * z, data=d )


4.3.6 Formulas


The formulas used by the “lattice” library may look a bit complex, at first sight.
x ~ y Plot x as a function of y (on a single plot)
x ~ y | z Plots x as a function of y after cutting the data


into slices for different values of z
x ~ y | z1 * z2 Idem, we cut with according the values of (z1,z2)
x~y|z, groups=t Idem, but we use a different symbol (or a


different colour) according to the values of t


But it also works with univariate data.
~ y
~ y | z
~ y | z1 * z2
~ y | z1 * z2, groups=t


If the variable used to cut the data into slices is qualitative, we ghget a slice for each
value. but if it is quantitative, it is better to consider intervals: this can be done with the
“equal.count” function, that will choose the intervals so that each contains the same number
of observations.


4.3.7 Position


At a lower level, the “lattice” package allows you to precisely specify the location of several
plots.
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n <- 200
x <- rnorm(n)
y <- x^3+rnorm(n)
plot1 <- xyplot(y~x)
plot2 <- bwplot(x)
# Beware, the order is xmin, ymin, xmax, ymax
print(plot1, position=c(0, .2, 1, 1), more=T)
print(plot2, position=c(0, 0, 1, .2), more=F)


But, actually, we could already do this with the the classical plotting functions and “par(fig=...)”.
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n <- 200
x <- rnorm(n)
y <- x^4+rnorm(n)
k <- .7
op <- par(mar=c(0,0,0,0))
# Attention : l’ordre est xmin, xmax, ymin, ymax
par(fig=c(0,k,0,k))
plot(y~x)
par(fig=c(0,k,k,1), new=T)
boxplot(x, horizontal=T)
par(fig=c(k,1,0,k), new=T)
boxplot(y, horizontal=F)
par(op)


TODO: Put this example above, when I was speaking of the “par” function?


4.3.8 Configuration


Actually, the “xyplot”, “dotplot”, “histogram”, “densityplot”, “stripplot” simply cut the
data into slices and delagate the actual plotting to other functions (“panel.xyplot”, etc.),
so that you can customize the plots. If you write such a function, you must not use the
standard plotting functions (“points”, “lines”, “segments”, “abline”, “polygon”) but those
of the “grid” package (“panel.points”, “panel.lines”, “panel.segments”, “panel.abline”, etc.)
%%G 600 1000
# From the manual
# BUG in print dotplot...
dotplot(variety ~ yield | site,
data = barley,
groups = year,
panel = function(x, y, subscripts, ...) {
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dot.line <- trellis.par.get("dot.line")
panel.abline(h = y,


col = dot.line$col,
lty = dot.line$lty)


panel.superpose(x, y, subscripts, ...)
},
key = list(
space = "right",
transparent = TRUE,
points = list(
pch = trellis.par.get("superpose.symbol")$pch[1:2],
col = trellis.par.get("superpose.symbol")$col[1:2]


),
text = list(c("1932", "1931"))


),
xlab = "Barley Yield (bushels/acre) ",
aspect = 0.5,
layout = c(1,6),
ylab = NULL


)
%--


The “treillis.par.get” is equivalent to the “par” function for standard plots: it gives you
the current values of the various graphical parameters. You can modify them with the
“treillis.par.set” function.
> str(trellis.par.get())
List of 23
$ background :List of 1
..$ col: chr "#909090"
$ add.line :List of 3
..$ col: chr "#000000"
..$ lty: num 1
..$ lwd: num 1
$ add.text :List of 3
..$ cex : num 1
..$ col : chr "#000000"
..$ font: num 1
$ bar.fill :List of 1
..$ col: chr "#00ffff"
$ box.dot :List of 4
..$ col : chr "#000000"
..$ cex : num 1
..$ font: num 1
..$ pch : num 16
$ box.rectangle :List of 3
..$ col: chr "#00ffff"
..$ lty: num 1
..$ lwd: num 1
$ box.umbrella :List of 3
..$ col: chr "#00ffff"
..$ lty: num 2
..$ lwd: num 1
$ dot.line :List of 3
..$ col: chr "#aaaaaa"
..$ lty: num 1
..$ lwd: num 1
$ dot.symbol :List of 4
..$ cex : num 0.8
..$ col : chr "#00ffff"
..$ font: num 1
..$ pch : num 16
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$ plot.line :List of 3
..$ col: chr "#00ffff"
..$ lty: num 1
..$ lwd: num 1


$ plot.symbol :List of 4
..$ cex : num 0.8
..$ col : chr "#00ffff"
..$ font: num 1
..$ pch : num 1


$ reference.line :List of 3
..$ col: chr "#aaaaaa"
..$ lty: num 1
..$ lwd: num 1


$ strip.background:List of 1
..$ col: chr [1:7] "#ffd18f" "#c8ffc8" "#c6ffff" "#a9e2ff" ...


$ strip.shingle :List of 1
..$ col: chr [1:7] "#ff7f00" "#00ff00" "#00ffff" "#007eff" ...


$ superpose.line :List of 3
..$ col: chr [1:7] "#00ffff" "#ff00ff" "#00ff00" "#ff7f00" ...
..$ lty: num [1:7] 1 1 1 1 1 1 1
..$ lwd: num [1:7] 1 1 1 1 1 1 1


$ regions :List of 1
..$ col: chr [1:100] "#FF80FF" "#FF82FF" "#FF85FF" "#FF87FF" ...


$ superpose.symbol:List of 4
..$ cex : num [1:7] 0.8 0.8 0.8 0.8 0.8 0.8 0.8
..$ col : chr [1:7] "#00ffff" "#ff00ff" "#00ff00" "#ff7f00" ...
..$ font: num [1:7] 1 1 1 1 1 1 1
..$ pch : chr [1:7] "o" "o" "o" "o" ...


$ axis.line :List of 4
..$ line: num 0
..$ col : chr "#000000"
..$ lty : num 1
..$ lwd : num 1


$ box.3d :List of 3
..$ col: chr "#000000"
..$ lty: num 1
..$ lwd: num 1


$ par.xlab.text :List of 3
..$ cex : num 1
..$ col : chr "#000000"
..$ font: num 1


$ par.ylab.text :List of 3
..$ cex : num 1
..$ col : chr "#000000"
..$ font: num 1


$ par.main.text :List of 3
..$ cex : num 1.2
..$ col : chr "#000000"
..$ font: num 2


$ par.sub.text :List of 3
..$ cex : num 1
..$ col : chr "#000000"
..$ font: num 2


The “show.setings” explains the meaning of all that.
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plot.[symbol, line] plot.shingle[plot.polygon] histogram[plot.polygon] barchart[plot.polygon]


superpose.polygon regions


show.settings()


The “panel.abline” plots lines (here, we use the “h” argument, so that the lines are horizontal,
but you can also get vertical lines with the “v” argument, lines given by their intercept and
slope (in this order) or even regression line (give an “lm” object)).
The “panel.superpose” uses different colours of different symbols depending on the value of
the variable.
The “key” argument specifies the legend.
Here is another example: we overlay histogram, density estimation and gaussian density.
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vitesse y <- cars$dist
x <- cars$speed
vitesse <- shingle(x, co.intervals(x, number=6))
histogram(~ x | vitesse, type = "density",


panel = function(x, ...) {
ps <- trellis.par.get(’plot.symbol’)
nps <- ps
nps$cex <- 1
trellis.par.set(’plot.symbol’, nps)
panel.histogram(x, ...)
panel.densityplot(x, col = ’brown’, lwd=3)
panel.xyplot(x = jitter(x), y = rep(0, length(x)), col=’brown’ )
panel.mathdensity(dmath = dnorm,


args = list(mean=mean(x),sd=sd(x)),
lwd=3, lty=2, col=’white’)


trellis.par.set(’plot.symbol’, ps)
})


Here is a list of the (high-level) functions you may want to use.
> apropos("^panel\..*")
[1] "panel.3dscatter" "panel.3dscatter.new" "panel.3dwire"
[4] "panel.abline" "panel.barchart" "panel.bwplot"
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[7] "panel.cloud" "panel.densityplot" "panel.dotplot"
[10] "panel.fill" "panel.grid" "panel.histogram"
[13] "panel.levelplot" "panel.linejoin" "panel.lmline"
[16] "panel.loess" "panel.mathdensity" "panel.pairs"
[19] "panel.parallel" "panel.qq" "panel.qqmath"
[22] "panel.qqmathline" "panel.splom" "panel.stripplot"
[25] "panel.superpose" "panel.superpose.2" "panel.tmd"
[28] "panel.wireframe" "panel.xyplot" "panel.smooth"


> apropos("^prepanel\..*")
[1] "prepanel.default.bwplot" "prepanel.default.cloud"
[3] "prepanel.default.densityplot" "prepanel.default.histogram"
[5] "prepanel.default.levelplot" "prepanel.default.parallel"
[7] "prepanel.default.qq" "prepanel.default.qqmath"
[9] "prepanel.default.splom" "prepanel.default.tmd"
[11] "prepanel.default.xyplot" "prepanel.lmline"
[13] "prepanel.loess" "prepanel.qqmathline"


Apart from the “panel.superpose” function (a replacement for the “panel.xyplot” function
when there is a “groups” argument), and perhaps “panel.smooth” (plots the points, as with
“xyplot”, and adds a regression curve), the names should be self-explanatory.


4.3.9 Banking


Whe you plot curves, you can more easily estimate and compare the slope of the tangents
when this slope is around 45 degrees. “Banking” refers to a choice of units on the axes so
that the slope is often around 45 degrees.
This is articularily useful for time series: in the second plot, it is obvious that the downwards
movement is slower. You may also see it in the first plot, if you have good eyes, and if you
know what you are looking for.
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data(sunspot.year)
sunspot <- sunspot.year[20 + 1:37]
xyplot(sunspot ~ 1:37 ,type = "l",


scales = list(y = list(log = TRUE)),
sub = "log scales")
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xyplot(sunspot ~ 1:37 ,type = "l", aspect="xy",
scales = list(y = list(log = TRUE)),
sub = "log scales")


4.3.10 Commented code


Exercice: take the code of one of those functions, for instance “xyplot” or “splom” and
comment it. (Beware: this is VERY long...)
TODO







Chapter 5


Factorial methods: Around
Principal Component Analysis
(PCA)


There are two kind of methods in multidimensional statistics: Factorial Methods, in which
we project the data on a vector space, trying to lose as little information as possible; and
Classification Methods, that try to cluster the points.
There are three main techniques among the Factorial Methods: Principal Component Anal-
ysis (PCA, with several quantitative variables), Correspondance Analysis (CA, two quanli-
tative variables, represented by a contingency table) and Multiple Correspondance Analysis
(MCA, more that two variables, all quantitative).
The following table summarizes this:
Method Quantitative variables Qualitative variables
----------------------------------------------------------
PCA several none
MDS several none
CA none two
MCA none several


There are other, non symetric, methods: one variable plays a special role, is given a different
emphasis than the others (usually, we try to predict or explain one variable from the others).
Method Quantitative v. Qualitative v. Variable to predict
----------------------------------------------------------------------------------
regression several several quantitative
anova none one quantitative
logistic regression several several binary
Poisson regression several several counting
logistic regression several several ordered (qualitative)
discriminant analysis several one
CART several several binary
...


5.1 Principal Component Analysis (PCA)


5.1.1 Introducing PCA


Here is a first presentation of PCA. We have a cloud of points in a high-dimensional space, too
large for us to see something in it. The PCA will give us a subspace of reasonable dimension
so that the projection onto this subspace retains “as much information as possible”, i.e., so
that the so that the projected cloud of points be as “dispersed” as possible. In other words,
it reduces the dimension of the cloud of points, it helps choose a point of view to look at
the cloud of points.
The algorithm is the following. We first translate the data so that its center of gravity be at
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the origin (always a good thing when you plan to use linear algebra). Then, we try to rotate
it so that the standard deviation of the first coordinate be as large as possible (and then
the second, third, etc.): this is equivalent to diagonalizing the variance-covariance matrix
(it is a (positive) real symetric matrix, hence it is diagonalizable in an orthonormal basis),
starting with the eigen vectors of largest eigen value. The first axis of this new coordinate
system corresponds to an approximation of the cloud of points by a 1-dimensional space; if
you want an approximation by a k-dimensional subspace, just take the first k eigen vectors.
To choose the dimension of that subspace, we can look (graphically) at the eigen values and
we stop when they start dropping (if they decrease slowly, we are in a bad situation: with
our linear goggles, the data is inherently high-dimensional).
One may also see PCA as an analogue of the least squares method to find a line that goes as
“near” the points as possible – to simplify, let us assume there are just two dimensions. But
while the least squares method is asymetric (the two variables play different roles: they are
not interchangeable, we try to predict one from the others, we measure the distance parallel
to one coordinate axis), the PCA is symetric (the distance is measured orthogonally to the
line we are looking for).
Here is yet another way of presenting PCA. We model the data as X = Y + E, where X is
the noisy data we have (in an n-dimensional space), Y is the real data (without the noise),
in a smaller, k-dimensional space, and E is an error term (the noise). We want to find the
k-dimensional space where Y lives.
You can also see PCA as a game on a table of numbers (it is not as childish as it seems: it is
actually a description of correspondance analysis). Thus, we can switch the role of rows and
columns: on the one hand, we try to find similarities or differences between subjects, on the
other, similarities or differences between variables. (There are two matrices to diagonalize,
A*t(A) and t(A)*A, but but it suffices to diagonalize one: they have the same non-zero
eigen values and the eigen vectors of one can easily be obtained from those of the other.)
We usually ask that the variables be centered (and, often, normalized). We can plot both
the variables on the same graph as the subjects: the variables will lie on the unit sphere;
thei projection on the subspace spanned by the first two eigen vectors is the “correlation
circle”.
After performing the PCA, we can add new subjects on the plot (test (out-of-sample) sub-
jects; fictitious sujbects, representative of certain classes of subjects): just use the “predict”
function. Dually, we can add variables (for explanatory reasons), Of those variables are
qualitative, we actually add an “average subject” for each value of this variable. This is
often called a “biplot”, because both subjects (in black) and variables (in red) appear on
the plot.
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data(USArrests)
p <- prcomp(USArrests)
biplot(p)


TODO: find a situation where you really want to add
variables and/or subjects.
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n <- 100 # Number of subjects
nn <- 10 # Number of out-of-sample subjects
k <- 5 # Number of variable
kk <- 3 # Number of new variables
x <- matrix(rnorm(n*k), nr=n, nc=k)
x <- t(rnorm(k) + t(x)) # Initial data
y <- matrix(rnorm(n*kk), nr=n, nc=kk) # New variables
z <- matrix(rnorm(nn*k), nr=nn, nc=k) # New subjects


r <- prcomp(x)
# I check that my change-of-base formulas were right
all(abs( t(r$center + t(x %*% r$rotation)) - r$x )<1e-8)
# Subjects coordinates
t(r$center + t(x %*% r$rotation))
# Out-of-sample subject coordinates
t(r$center + t(z %*% r$rotation))
# For each new variable, we add an "average" subject
# (more precisely: x %*% t(yy[1,]) = orthogonal projection of
# y[,1] on the subspace spanned by the columns of x).
yy <- t(lm(y~x-1)$coef)
t(r$center + t(yy %*% r$rotation))


Here are the eigen values. They are plummeting: this means that the PCA is meaningful
and that we can retain only the eigen vectors with the highest eigenvalues (here, the first:
we could have done a 1-dimensional plot (a histogram)).
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There is also a “prcomp” functions, that does the same computations, with a few more
limitations (namely, you should have more observations that variables): do not use it.
The vocabulary used with principal components analysis may surprise you: people speak of
“loadings” where you would expect “rotation matrix” and “scores” where you think “new
coordinates”.
In the preceeding plot, the old basis vectors are in red. There is the correlation circle – those
vectors lie on the unit sphere, which we project on the first two eigen vectors (it should not
be called a circle but a disc – the projection of a sphere is a disc, not a circle).
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a <- seq(0,2*pi,length=100)
plot( cos(a), sin(a),


type = ’l’, lty = 3,
xlab = ’comp 1’, ylab = ’comp 2’,
main = "Correlation circle")


v <- t(p$rotation)[1:2,]
arrows(0,0, v[1,], v[2,], col=’red’)
text(v[1,], v[2,],colnames(v))


Here is a situation where PCA is not relevant (my pupils’s marks, when I was a high school
teacher).
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# Copy-pasted with the help of the "deparse" command:
# cat( deparse(x), file=’foobar’)
notes <- matrix( c(15, NA, 7, 15, 11, 7, 7, 8, 11, 11, 13,
6, 14, 19, 9, 8, 6, NA, 7, 14, 11, 13, 16, 10, 18, 7, 7,
NA, 11, NA, NA, 6, 15, 5, 11, 7, 3, NA, 3, 1, 10, 1, 1,
18, 13, 2, 2, 0, 7, 9, 13, NA, 19, 0, 17, 8, 2, 9, 2, 5,
12, 0, 8, 12, 8, 4, 8, 0, 5, 5.5, 1, 12, 4, 13, 5, 11, 6,
0, 7, 8, 11, 9, 9, 9, 14, 8, 5, 8, 5, 5, 12, 6, 16.5,
13.5, 15, 3, 10.5, 1.5, 10.5, 9, 15, 7.5, 12, 13.5, 4.5,
13.5, 13.5, 6, 12, 7.5, 9, 6, 13.5, 13.5, 15, 13.5, 6, NA,
13.5, 4.5, 14, NA, 14, 14, 14, 8, 16, NA, 6, 6, 12, NA, 7,
15, 13, 17, 18, 5, 14, 17, 17, 13, NA, NA, 16, 14, 18, 13,
17, 17, 8, 4, 16, 16, 16, 10, 15, 8, 10, 13, 12, 14, 8,
19, 7, 7, 9, 8, 15, 16, 8, 7, 12, 5, 11, 17, 13, 13, 7,
12, 15, 8, 17, 16, 16, 6, 7, 11, 15, 15, 19, 12, 15, 16,
13, 19, 14, 4, 13, 13, 19, 11, 15, 7, 20, 16, 10, 12, 16,
14, 0, 0, 11, 9, 4, 10, 0, 0, 5, 11, 12, 7, 12, 17, NA, 6,
6, 9, 7, 0, 7, NA, 15, 3, 20, 11, 10, 13, 0, 0, 6, 1, 5,


6, 5, 4, 2, 0, 8, 9, NA, 0, 11, 11, 0, 7, 0, NA, NA, 7, 0,
NA, NA, 6, 9, 6, 4, 5, 4, 3 ), nrow=30)
notes <- data.frame(notes)
# These are not the real names
row.names(notes) <-
c("Anouilh", "Balzac", "Camus", "Dostoievski",
"Eschyle", "Fenelon", "Giraudoux", "Homer",
"Ionesco", "Jarry", "Kant", "La Fontaine", "Marivaux",
"Nerval", "Ossian", "Platon", "Quevedo", "Racine",
"Shakespeare", "Terence", "Updike", "Voltaire",
"Whitman", "X", "Yourcenar", "Zola", "27", "28", "29",
"30")


attr(notes, "names") <- c("C1", "DM1", "C2", "DS1", "DM2",
"C3", "DM3", "DM4", "DS2")


notes <- as.matrix(notes)
notes <- t(t(notes) - apply(notes, 2, mean, na.rm=T))
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# Get rid of NAs
notes[ is.na(notes) ] <- 0
# plots
plot(princomp(notes))
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biplot(princomp(notes))


Here, we gave the same weight to each mark and each subject; we could have give more
weight to some marks, to reflect their nature (test or homework) or the weight of the subjects
for the final exam (e.g., A-level): it is the same algorithm, only the scalar product on the
space changes.
The “biplot” command anly gives the first two dimensions: we can sometimes see more with
the “pairs” command.


Comp.1


−10 0


●


●


●
● ●


● ●
●


●
●


●


●
●


●


● ●
●


●


● ●
●


●


●


●


●


●


●


●


●●


●


●


●
● ●


●●
●


●
●


●


●
●


●


●●
●


●


● ●
●


●


●


●


●


●


●


●


● ●


−6 0 6


●


●


●
●●


●●
●


●
●


●


●
●


●


●●
●


●


● ●
●


●


●


●


●


●


●


●


●●


●


●


●
●●


● ●
●


●
●


●


●
●


●


●●
●


●


● ●
●


●


●


●


●


●


●


●


● ●


−6 0 4


●


●


●
●●


●●
●


●
●


●


●
●


●


● ●
●


●


●●
●


●


●


●


●


●


●


●


●●


●


●


●
● ●


● ●
●


●
●


●


●
●


●


●●
●


●


●●
●


●


●


●


●


●


●


●


●●


−2 2


●


●


●
●●


● ●
●


●
●


●


●
●


●


● ●
●


●


● ●
●


●


●


●


●


●


●


●


●●


−
20


0●


●


●
●●


● ●
●


●
●


●


●
●


●


●●
●


●


●●
●


●


●


●


●


●


●


●


●●


−
10


0


●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●●


●●
●


●
● ●
●


●●


Comp.2


●


●
●●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


● ●


● ●
●


●
● ●


●


● ● ●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


● ●


●●
●


●
●●


●


●● ●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●●


●●
●


●
●●


●


● ● ●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


● ●


●●
●
●


● ●
●


●● ●


●
●●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●●


● ●
●


●
●●


●


●● ●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●●


●●
●


●
● ●


●


●● ●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


● ●


● ●
●


●
●●


●


●●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●
●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


● Comp.3
●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


−
5


5


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●
●


●
●


●


●


●


●


●
●


●


●


−
6


0
6 ●


●


●


●●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


● ●
●


●
●


● ●


●


●


●


●
●


●


● ●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


●●
●


●
●


●●


●


●


●


●
●


●


● ●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


●●
●


●
●


● ●


●


●


● Comp.4


●
●


●


●●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


● ●
●


●
●


●●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


● ●
●


●
●


● ●


●


●


●


●
●


●


● ●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


● ●
●


●
●


●●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


● ●
●
●


●


● ●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


●●
●


●
●


●●


●


●


●


●


●


●


●
●


●


●


●
●●


●


●●


●


●
●


●


●
●


●


●


●
●


●
● ● ●


●
●


●
●


●


●


●
●


●


●


●
●●


●


●●


●


●
●
●


●
●


●


●


●
●


●
●●●


●
●


●
●


●


●


●
●


●


●


●
●●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●● ●
●


●


●
●


●


●


●
●


●


●


●
●●


●


● ●


●


●
●


●


●
●


●


●


●
●
●


●●●
●


●


●
Comp.5


●


●


●


●
●


●


●


●
● ●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●● ●


●
●


●
●


●


●


●
●


●


●


●
●●


●


● ●


●


●
●


●


●
●


●


●


●
●


●
●●●


●
●


●
●


●


●


●
●
●


●


●
● ●


●


● ●


●


●
●


●


●
●


●


●


●
●
●


●● ●
●


●


●


−
5


5●


●


●


●
●


●


●


●
●●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●●●


●
●


●


−
6


0
4


●


●


●


●


●


●
●


●
●


●


●


●


●


● ●


●
●


●


●
●


●


●


●


●●


●


●
●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


●●


●
●


●


●
●


●


●


●


●●


●


●
●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


● ●


●
●


●


●
●


●


●


●


● ●


●


●
●


● ●


●


●


●


●


●


●
●


●
●


●


●


●


●


● ●


●
●


●


●
●


●


●


●


●●


●


●
●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


●●


●
●


●


●
●


●


●


●


●●


●


●
●


● ● Comp.6
●


●


●


●


●


●
●


●
●


●


●


●


●


●●


●
●


●


●
●


●


●


●


●●


●


●
●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


●●


●
●


●


●
●


●


●


●


● ●


●


●
●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


●●


●
●
●


●
●


●


●


●


●●


●


●
●


●●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


● ●
●


● ●


●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●●
●


● ●


●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●●
●


●●


●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●●
●


● ●


●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●●
●


●●


●


●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●●
●


●●


●


Comp.7 ●


●●


●


●
●


●


●
●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●●
●


● ●


● −
4


0
4


●


●●


●


●
●


●


●
●


●


●


●
●
●
●


●


●
●


●


●
●


●


●


●


●●
●


●●


●


−
2


2


●


●


●


●


● ●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


●● ●


●


●


●


●


●●


●


●


●


●


●●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


●●●


●


●


●


●


●●


●


●


●


●


● ●


● ●


●


●


●


●


●
●


●


●


●
●


●


●


●


● ●●


●


●


●


●


● ●


●


●


●


●


●●


● ●


●


●


●


●


●
●


●


●


●
●


●


●


●


●●●


●


●


●


●


●●


●


●


●


●


●●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


●●●


●


●


●


●


● ●


●


●


●


●


● ●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


●● ●


●


●


●


●


●●


●


●


●


●


●●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


● ● ●


●


●


●


●


●●
Comp.8


●


●


●


●


●●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


● ●●


●


●


●


●


●●


−20 0


● ●


●


●


●


●


●
●●


●


●
●


●● ●


●


● ●


●●


●


●


●


●
●


● ●


● ●● ●●


●


●


●


●


●
●●


●


●
●


● ●●


●


●●


● ●


●


●


●


●
●


●●


● ●●


−5 5


● ●


●


●


●


●


●
●●


●


●
●


● ● ●


●


● ●


● ●


●


●


●


●
●


● ●


●● ● ●●


●


●


●


●


●
● ●


●


●
●


●● ●


●


● ●


● ●


●


●


●


●
●


●●


● ●●


−5 5


●●


●


●


●


●


●
●●


●


●
●


● ●●


●


● ●


● ●


●


●


●


●
●


●●


●● ● ●●


●


●


●


●


●
●●


●


●
●


● ●●


●


●●


●●


●


●


●


●
●


● ●


●●●


−4 0 4


● ●


●


●


●


●


●
●●


●


●
●


● ●●


●


●●


●●


●


●


●


●
●
●●


●●● ● ●


●


●


●


●


●
●●


●


●
●


●●●


●


●●


● ●


●


●


●


●
●


● ●


● ●●


−3 0 2


−
3


0
2


Comp.9


pairs(princomp(notes)$scores, gap=0)







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)375


Comp.1


−10 −5 0 5


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


−
20


−
10


0
5


10


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


−
10


−
5


0
5 ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●●


●


●


●


●


●


●
●


Comp.2


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


● ●


●


●


●


●


●


●
●


−20 −10 0 5 10


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


−5 0 5 10


−
5


0
5


10
Comp.3


pairs(princomp(notes)$scores[,1:3])


Comp.1


−10 −5 0 5


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


−
20


−
10


0
5


10


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


−
10


−
5


0
5 ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●●


●


●


●


●


●


●
●


Comp.2


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


● ●


●


●


●


●


●


●
●


−20 −10 0 5 10


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


−5 0 5 10


−
5


0
5


10


Comp.3


p <- princomp(notes)
pairs( rbind(p$scores, p$loadings)[,1:3],


col=c(rep(1,p$n.obs),rep(2, length(p$center))),
pch=c(rep(1,p$n.obs),rep(3, length(p$center))),


)


We leave it to the reader to add red arrows (instead of red points) for the variables – actually,
the “pairs” function is not very configurable: the different panels take as arguments the
coordinates of the points to draw, while one could want to plot, in the same panel, very
different things – but we do not even have the row and column numbers... The corresponding
function in the “lattice” library seems scarcely more configurable.
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library(lattice)
splom(as.data.frame(
princomp(notes)$scores[,1:3]


))


Here is another situation where one could want to use PCA: the classification of texts in
a corpus. The rows of the table (the subjects) are the texts, the columns are the words
(the vocabulary), the values are the number of occurrences of the words in the text. As the
dimension of the space (the number of columns) is rather high (several thousands), it is not
very easy to compute the covariance matrix, let alone diagonalize it. Yet, one can perform
the PCA, in an approximate way, with neural networks.
http://www.loria.fr/projets/TALN/actes/TALN/articles/TALN02.pdf


Here is another means of tackling the same problem, without PCA but still with geometry
in high-dimensional spaces:
http://www.perl.com/lpt/a/2003/02/19/engine.html


5.1.2 Principal Component Analysis: details


To understand what PCA really is, how it works, let us implement it ourselves. Here is one
possible implementation.
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ACP by hand
my.acp <- function (x) {
n <- dim(x)[1]
p <- dim(x)[2]
# Translation, to use linear algebra
centre <- apply(x, 2, mean)
x <- x - matrix(centre, nr=n, nc=p, byrow=T)
# diagonalizations, base changes
e1 <- eigen( t(x) %*% x, symmetric=T )
e2 <- eigen( x %*% t(x), symmetric=T )
variables <- t(e2$vectors) %*% x
subjects <- t(e1$vectors) %*% t(x)
# The vectors we want are the columns of the
# above matrices. To draw them, with the "pairs"
# function, we have to transpose them.
variables <- t(variables)
subjects <- t(subjects)
eigen.values <- e1$values
# Plot


plot( subjects[,1:2],
xlim=c( min(c(subjects[,1],-subjects[,1])),



http://www.loria.fr/projets/TALN/actes/TALN/articles/TALN02.pdf

http://www.perl.com/lpt/a/2003/02/19/engine.html
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max(c(subjects[,1],-subjects[,1])) ),
ylim=c( min(c(subjects[,2],-subjects[,2])),


max(c(subjects[,2],-subjects[,2])) ),
xlab=’’, ylab=’’, frame.plot=F )


par(new=T)
plot( variables[,1:2], col=’red’,


xlim=c( min(c(variables[,1],-variables[,1])),
max(c(variables[,1],-variables[,1])) ),


ylim=c( min(c(variables[,2],-variables[,2])),
max(c(variables[,2],-variables[,2])) ),


axes=F, xlab=’’, ylab=’’, pch=’.’)
axis(3, col=’red’)
axis(4, col=’red’)
arrows(0,0,variables[,1],variables[,2],col=’red’)
# Return the data
invisible(list(data=x, centre=centre, subjects=subjects,


variables=variables, eigen.values=eigen.values))
}


n <- 20
p <- 5
x <- matrix( rnorm(p*n), nr=n, nc=p )
my.acp(x)
title(main="ACP by hand")


To check we did not make any error in implementing the algorithm, we can compare the
result with that of the “printcomp” command.
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biplot(princomp(x))


Exercise: Add the subject names; the variable names; plot the first three dimensions of the
PCA (not just the first two), as with the “pairs” command; add new variables to the plot
(if it is a quantitative variable, apply the same base change, if it is a qualitative variable,
compute an average subject for each value of this variable and perform the base change).
Exercice: Modify the preceding code by replacing the “eigen” function by the “svd” com-
mand, that performs a Singular Value Decomposition.
TODO


5.1.3 Normalized and non-mormalized PCA


There are several kind of PCA: centered or not, normalized (based on the correlations
matrix) or not (based on the variance-covariance matrix).
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prcomp(x, center=TRUE, scale.=FALSE) # default


Let us first consider the centered non-normalized principal component analysis, i.e., that
based on the variance-covariance matrix.
TODO: This was written for the “princomp” function, not the “prcomp” one – actually, the
problems disappear.
d <- USArrests[,1:3] # Data
dd <- t(t(d)-apply(d, 2, mean)) # Centered data
m <- cov(d) # Covariances matrix
e <- eigen(m) # Eigen values and eigen vectors
p <- princomp( ~ Murder + Assault + UrbanPop, data = USArrests)


The change-of-base matrix is the same in both cases:
> e$vectors


[,1] [,2] [,3]
[1,] -0.04181042 -0.04791741 0.99797586
[2,] -0.99806069 -0.04410079 -0.04393145
[3,] -0.04611661 0.99787727 0.04598061


> unclass(p$loadings)
Comp.1 Comp.2 Comp.3


Murder -0.04181042 -0.04791741 0.99797586
Assault -0.99806069 -0.04410079 -0.04393145
UrbanPop -0.04611661 0.99787727 0.04598061


and so are the coordinates:
> p$scores[1:3,]


Comp.1 Comp.2 Comp.3
Alabama -64.99204 -10.660459 2.188264
Alaska -91.34472 -21.676617 -2.651214
Arizona -123.68089 8.979374 -4.437864


> (dd %*% p$loadings) [1:3,]
Comp.1 Comp.2 Comp.3


Alabama -64.99204 -10.660459 2.188264
Alaska -91.34472 -21.676617 -2.651214
Arizona -123.68089 8.979374 -4.437864


Let us now look at the normalized principal component analysis: we do not simply center
each column of the matrix, we normalize them.
d <- USArrests[,1:3]
dd <- apply(d, 2, function (x) { (x-mean(x))/sd(x) })


The variance-covariance matrix of this new matrix is the correlation matrix of the initial
matrix.
> cov(dd)


Murder Assault UrbanPop
Murder 1.00000000 0.8018733 0.06957262
Assault 0.80187331 1.0000000 0.25887170
UrbanPop 0.06957262 0.2588717 1.00000000


> cor(d)
Murder Assault UrbanPop


Murder 1.00000000 0.8018733 0.06957262
Assault 0.80187331 1.0000000 0.25887170
UrbanPop 0.06957262 0.2588717 1.00000000


Let us go on with the computations:
m <- cov(dd)
e <- eigen(m)
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p <- princomp( ~ Murder + Assault + UrbanPop, data = USArrests, cor=T)


We got the right change-of-base matrix:
> e$vectors


[,1] [,2] [,3]
[1,] 0.6672955 0.30345520 0.6801703
[2,] 0.6970818 0.06713997 -0.7138411
[3,] 0.2622854 -0.95047734 0.1667309


> unclass(p$loadings)
Comp.1 Comp.2 Comp.3


Murder 0.6672955 -0.30345520 0.6801703
Assault 0.6970818 -0.06713997 -0.7138411
UrbanPop 0.2622854 0.95047734 0.1667309


But the coordinates are not the same...
> p$scores[1:3,]


Comp.1 Comp.2 Comp.3
Alabama 1.2508055 -0.9341207 0.2015063
Alaska 0.8006592 -1.3941923 -0.6532667
Arizona 1.3542765 0.8368948 -0.8488785


> (dd %*% e$vectors) [1:3,]
[,1] [,2] [,3]


Alabama 1.2382343 0.9247323 0.1994810
Alaska 0.7926121 1.3801799 -0.6467010
Arizona 1.3406654 -0.8284836 -0.8403468


However, the error is always the same (up to the sign, which is meaningless):
> p$scores[1:3,] / (dd %*% e$vectors) [1:3,]


Comp.1 Comp.2 Comp.3
Alabama 1.010153 -1.010153 1.010153
Alaska 1.010153 -1.010153 1.010153
Arizona 1.010153 -1.010153 1.010153


The difference comes from the fact that there are two definitions of covariance, one in which
you divide ny n, another in which you divide by n-1.
> dim(d)
[1] 50 3
> sqrt(50/49)
[1] 1.010153


5.1.4 Example


TODO: this is not the right place.
Later, with LDA.


for i in ‘ls *.txt | cat rand | head -20‘
do
perl -n -e ’BEGIN {


foreach ("a".."z") { $a{$ }=0 }
};
y/A-Z/a-z/;
s/[^a-z]//g;
foreach (split("")) { $a{$ }++ }
END {
foreach("a".."z"){print "$a{$ } "}


}’ <$i
echo E


done > ling.txt
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# Then the same thing in a directory containing French texts
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b <- read.table(’ling.txt’)
names(b) <- c(letters[1:26], ’language’)
a <- b[,1:26]
a <- a/apply(a,1,sum)
biplot(princomp(a))
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kmeans.plot <- function (data, n=2, iter.max=10) {
k <- kmeans(data,n,iter.max)
p <- princomp(data)
u <- p$loadings
# The observations
x <- (t(u) %*% t(data))[1:2,]
x <- t(x)
# The centers
plot(x, col=k$cluster, pch=3, lwd=3)
c <- (t(u) %*% t(k$center))[1:2,]
c <- t(c)
points(c, col = 1:n, pch=7, lwd=3)
# A segment joining each observation to its group center
for (i in 1:n) {
for (j in (1:length(data[,1]))[k$cluster==i]) {
segments( x[j,1], x[j,2], c[i,1], c[i,2], col=i )


}
}


text( x[,1], x[,2], attr(x, "dimnames")[[1]] )
}
kmeans.plot(a,2)


# plot(lda(a,b[,27])) # Bug?
# plot(lda(as.matrix(a),b[,27])) # Newer bug?


5.1.5 PCA and linear algebra: Singular Value Decomposition (SVD)


Actually, computers do not perform Principal Component Analysis as we have just seen, by
computing the variance-covariance matrix and diagonalizing it.
TODO


5.1.6 Rank PCA


Principal component analysis assumes that the data is gaussian. If it is not, we can replace
the values by their rank. But then, the variables follow a uniform distribution; We can
transform those uniform data to get a gaussian distribution.
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n <- 100
v <- .1
a <- rcauchy(n)
b <- rcauchy(n)
c <- rcauchy(n)
d <- data.frame( x1 = a+b+c+v*rcauchy(n),


x2 = a+b-c+v*rcauchy(n),
x3 = a-b+c+v*rcauchy(n),
x4 = -a+b+c+v*rcauchy(n),
x5 = a-b-c+v*rcauchy(n),
x6 = -a+b-c+v*rcauchy(n) )


biplot(princomp(d))
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rank.and.normalize.vector <- function (x) {
x <- (rank(x)-.5)/length(x)
x <- qnorm(x)


}
rank.and.normalize <- function (x) {
if( is.vector(x) )
return( rank.and.normalize.vector(x) )


if( is.data.frame(x) ) {
d <- NULL
for (v in x) {
if( is.null(d) )
d <- data.frame( rank.and.normalize(v) )


else
d <- data.frame(d, rank.and.normalize(v))


}
names(d) <- names(x)
return(d)


}


stop("Data type not handled")
}
biplot(princomp(apply(d,2,rank.and.normalize)))


Let us check on the other components of the PCA.
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Comp.6


pairs( princomp(apply(d,2,rank.and.normalize))$scores )


5.1.7 Non linear PCA


For non-linear problems, we can first embed our space in a larger one, with an application
such as
(x,y) |--> (x^2, x*y, y^2).


In fact, as the PCA only involves scalar products, we do not really need to compute those
new coordinates: it suffices to replace all the occurrences of the scalar product <x,y> by
that of the new space (this function, that expresses the scalar product in the new space from
the coordinates in the old space, is called a kernel – and you can take any kernel).
TODO: an example


We shall reuse that idea later (to use a kernel to dive into a higher-dimensional space to
linearize a non-linear problem) when we speak of SVM (Support Vector Machines).
http://www.kernel-machines.org/papers/talk-dagm99_4.ps.gz


TODO:
library(kernlab)
?kpca


5.1.8 Projection Pursuit


Principal Component Analysis tries to find a plane (more generally, a subspace of reasonable
dimension) in which (the orthogonal projection of) the data is as dispersed as possible, the
dispersion being measured with the variance matrix.
Projection pursuit is a generalization of PCA in which one looks for a subspace which
maximizes some “interestingness” criterion – and everyone can define their own criterion.
For instance, it could be a measure of the dispersion of the data (based on the variance
matrix or on more robust dispersion estimators) or a measure of the non-gaussianity of the
data (kurtosis, skewness, etc.).
Those measures of interestingness are called “indices”.
The most common Projection Pursuits are PCA, ICA (Independant Component Analysis)m
and robust PCA (replace the 1-dimensional variance you are trying to maximize by a robust
equivalent).
http://www.r-project.org/useR-2006/Slides/Fritz.pdf
library(pcaPP)



http://www.kernel-machines.org/papers/talk-dagm99_4.ps.gz

http://www.r-project.org/useR-2006/Slides/Fritz.pdf
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There is also a function called “ppr” (projection pursuit regression) but it seems to do
something competely different: variable selection for linear regression, with several variables
to predict.


5.1.9 Robust PCA


TODO: Give an example


5.1.10 Spherical PCA


TODO


5.1.11 Grand tour, guided tour


The grand tour is an animation, a continuous family of projections of the cloud of points
onto a 2-dimensional space, obtained by interpolation between random projections: you are
supposed to look at it until you see something (clusters, artefacts, alignments, etc.).
GGobi can display grand tours.
http://www.ggobi.org/


The guided tour is a variant of the grand tour, where one interpolates between local maxima
of a projection pursuit function instead of random projections.
http://citeseer.ist.psu.edu/cook95grand.html


5.1.12 Independant Component Analysis (ICA)


At first sight, it looks very similar to Principal component analysis – but it is very differ-
ent. The general idea is that the variables we are looking at are linear combinations of
independant random variables; and we want to recover those random variables. The only
assumption is that the random variables we are looking for are independant (well, actually,
there is another assumption: those random variables have to be non-gaussian).
ICA has been mainly used in signal processing, the initial example being the cocktail party
problem: you have two microphones (or two ears) and you are hearing two conversations at
the same time; you want to separate them. Similarly, ICA has also been used to analyze
EEG (electroencephalograms).
TODO: 2-dimensional applications, image compression, feature extraction.
Let us see on an example how it differs with Principal Component Analysis: let us take two
random variables X1 and X2, uniformly distributed



http://www.ggobi.org/

http://citeseer.ist.psu.edu/cook95grand.html
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N <- 1000
X <- matrix(runif(2*N, -1, 1), nc=2)
plot(X)
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M <- matrix(rnorm(4), nc=2)
Y <- X %*% M
plot(Y)


We get a parallelogram. PCA would yield something close to its largest diagonal (red, in
the following plot); ICA would yield the image of the axes (blue), i.e., new axes parallel to
the sides of the parallelogram.
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Y[,1]


Y
[,2


]


plot(Y)
p <- prcomp(Y)$rotation
abline(0, p[2,1] / p[1,1], col="red", lwd=3)
abline(0, -p[1,1] / p[2,1], col="red", lwd=3)
abline(0, M[1,2]/M[1,1], col="blue", lwd=3)
abline(0, M[2,2]/M[2,1], col="blue", lwd=3)


Other examples:


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●
●


●
●●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●


●
●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●●


●●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●


●


●


●


●


●
●●


●
●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●
● ●


●
●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


● ●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●
●


●


●


●


●


●●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


−2 −1 0 1 2


−
1.


0
−


0.
5


0.
0


0.
5


1.
0


● ●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●
●


●


●


●●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●
●


●●


● ●


●


●


●
●


●●


●●


●


●●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


● ●


●


●
●


●


●●
●


●


●


●


●


●


●


●


●


●


●●


●
●


●
●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


● ●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●
●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●●


●


●


●


●
●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●●●


●


●
●


●


●


●


●


●
●


●


●


●
●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


−3 −2 −1 0 1 2 3


−
1.


0
−


0.
5


0.
0


0.
5


1.
0


●


●


● ●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●
●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


● ●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
● ●


●


●


●


●●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


−
0.


4
−


0.
2


0.
0


0.
2


0.
4


●


●


●


● ●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●
●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


● ● ●


●
●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


● ●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


−
1.


5
−


1.
0


−
0.


5
0.


0
0.


5
1.


0
1.


5


op <- par(mfrow=c(2,2), mar=c(1,1,1,1))
for (i in 1:4) {
N <- 1000
X <- matrix(runif(2*N, -1, 1), nc=2)
M <- matrix(rnorm(4), nc=2)
Y <- X %*% M
plot(Y, xlab="", ylab="")
p <- prcomp(Y)$rotation
abline(0, p[2,1] / p[1,1], col="red", lwd=3)
abline(0, -p[1,1] / p[2,1], col="red", lwd=3)
abline(0, M[1,2]/M[1,1], col="blue", lwd=3)
abline(0, M[2,2]/M[2,1], col="blue", lwd=3)


}
par(op)


The ICA yields the variables that were indeed used.
The main idea behind the algorithm is the fact that (from the central limit theorem) a linear
combination of non-gaussian random variables is “more gaussian”.







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)387


Histogram of X[, 1]


X[, 1]


F
re


qu
en


cy


−1.0 −0.5 0.0 0.5 1.0


0
40


80
12


0


Histogram of X[, 2]


X[, 2]


F
re


qu
en


cy
−1.0 −0.5 0.0 0.5 1.0


0
40


80
12


0


Histogram of Y[, 1]


Y[, 1]


F
re


qu
en


cy


−1.5 −0.5 0.5 1.5


0
40


80
12


0


Histogram of Y[, 2]


Y[, 2]


F
re


qu
en


cy


−1.5 −0.5 0.5 1.5


0
20


40
60


80


op <- par(mfrow=c(2,2))
hist(X[,1], col="light blue")
hist(X[,2], col="light blue")
hist(Y[,1], col="light blue")
hist(Y[,2], col="light blue")
par(op)


Therefore the algorithm goes as follows:
1. Normalize the data, so that they have a variance equal


to 1 and that the be uncorrelated.
2. Find (with the usual numeric optimization algorithms)


the linear transformation that maximizes the
non-gaussianity.


To this end, one can use several measures of non-gaussianity: the kurtosis (i.e., the fourth
moment), the entropy (integral of -f * log(f), where f is the pdf), mutual information, etc.
There are two implementations of this algorithm in R. The first one, “ica” in the “e1071”
package, does not give the expected results.
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library(e1071)
r <- ica(Y,.1)
plot(r$projection)


The second one, “mlica” in the “mlica” package, gives the expected result.
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Singular values
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library(mlica)
ICA <- function (x,...) {


prPCA <- PriorNormPCA(x);
prNCP <- proposeNCP(prPCA,0.1);
mlica(prNCP,...)


}


set.seed(1) # It sometimes crashes...
N <- 1000
X <- matrix(runif(2*N, -1, 1), nc=2)
M <- matrix(rnorm(4), nc=2)
Y <- X %*% M
r <- ICA(Y)
plot(r$S)


TODO: Give more interesting results.
See also:
http://www.cis.hut.fi/projects/ica/icademo/
http://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf


5.1.13 Factor analysis


Principal Component Analysis is about approximating a variance matrix. The simplest
approximation is a scalar matrix (a diagonal matrix with always the same element on the
diagonal), the next simplest is a diagonal matrix; then comes the PCA, which writes the
variance matrix as V = B B’ for some rectangular matrix B, with as many columns as you
want components. The matrix B can be characterized as the matrix that minimizes the
norm of V - B B’ (actually, it is not unique, but (a.s.) unique up to multiplication by an
orthogonal matrix). The next step is the factor model: we write V as B B’ + Delta, where
Delta is a diagonal matrix.
In R, this is obtained with the factanal() function.
r <- factanal(covmat = V, factors = k)
# The correlation matrix
v <- r$loadings %*% t(r$loadings) + diag(r$uniquenesses)
# The corresponding variance matrix
v <- diag(sqrt(diag(V))) %*% v %*% diag(sqrt(diag(V)))


This is used, for instance, in finance: we model stock returns as a multidimensional gaussian
distribution. A portfolio can be seen as a linear combination of stocks; the coefficients are
called the weights of the portfolio and are usually assumed to sum up to 1 (you might also
want them to be positive). If w is a portfolio and V the variance matrix of the distribution
of returns, then the returns of the portfolio are gaussian with variance w’ V w; the square
root of this variance is called the risk of the portfolio. Finding the portfolio with the
minimum risk possible sounds simple enough (it is an optimization problem), but you have
to estimate the variance matrix in the first place. If your universe contains thousands of
stocks, you actually want to estimate a 1000*1000 matrix: you will never have enough data
to do that! You need a way to reduce the number of quantities to estimate, you need a
way to more parsimoniously parametrize variance matrices. Principal Component Analysis
is the classical way of doing this, but it assumes that all the stocks respond to the same
few sources of randomness: this is not a reasonable assumption. Instead, we assume that
the stocks respond to a few “risk factors” (they could be interpreted as, e.g., oil prices,
comsumption indexes, interest rates, etc.) and an idiosyncratic component, specific to each
stock: this is a factor model. Such an estimation of the variance matrix of stock returns is



http://www.cis.hut.fi/projects/ica/icademo/

http://www.cs.helsinki.fi/u/ahyvarin/papers/NN00new.pdf





CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)389


called a risk model.
TODO: An example with actual computations (portfolio optimization?)


5.1.14 Factor models


TODO: Merge this section with the previous


TODO: Decide whether to put this section here or together with the
variance matrix (there is already a note about RMT somewhere)...


Principal Component analysis can also be seen as decomposition of a variance matrix, that
can also lead to a simplification of variance matrices (by discarding the eigenvectors with
low eigenvalues), to a parametrization of variance matrices with few parameters. Since large
variance matrices require a huge amount of data to be reliably estimated, PCA can allow
you to get a precise (but biased) estimation with little data.
Those parametrizations are often called “factor models”. They are used, for instance, in
finance: when you want to invest in stocks (or any other asset, actually), you do not buy
the stocks for which you have a positive view in equal quantities: some of those stocks can
be moving together. Consider for instance three stocks, A, B and C, on which you have a
positive view, where A and B tend to mode together and C moves independently from A and
B: it might not be a good idea to invest a third of your wealth in each of them – it might be
wiser to invest half in C, and a quarter in A and B. This reasoning can be formalized (and
justified) if one assumes that the returns of those three assets follow a gaussian distribution
with mean (mu, mu, mu) (where mu is the expected return of those assets – here we assume
they are equal) and correlation matrix


1 1/2 0
1/2 1 0
0 0 1


We want to find the portfolio (i.e., the combination of assets) with the lowest risk, i.e., the
lowest variance.
But where do we get this variance matrix in the first place? We have to estimate it with
historical data: for instance from the monthly returns of the stocks in the past three years.
But if you have 1000 stocks (that is a small number: in real life, it is usually between 1000
and 10,000), that is 36,000 data points to estimate around 500,000 parameters – this is not
reasonable.
The idea is to assume that the variance matrix has some simple form, i.e., that it can be
parametrized with a reasonable number of parameters. For instance, one can assume that
the correlations between the returns is due to their being correlated with a small number of
“factors”: then, we just have to give the “exposure” of the each stock to each factor, B and
the variance matrix of the factors, v. The variance matrix of the stock returns is then
V = B v B’


If one assumes that the factors are independant (and of variance 1), i.e., their variance
matrix is the identity matrix, v=1, and V = B B’.
But this is very similar to the decomposition of a variance matrix provided by PCA: if,
furthermore, we do not know the factors beforehand, we can simply select them as the first
eigenvectors.
This is called a noiseless statistical factor model.
TODO: Noiseless factor model
TODO: Scalar factor model
TODO: Approximate factor model
TODO: The double Procrustes problem?


5.1.15 Functional Principal Component Analysis (fPCA)


When the data you are modeling are functions (for instance, the evolution over time of some
quantity), you might realize that the principal components are noisy and try to smooth them.
Actually, this is not the optimal thing to do – by smoothing the principal components, you
run the risk of smoothing away the information they were supposed to contain. Instead, you
can put the smoothing inside the PCA algorithm.
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The first step is usually to express the functions to be studied in some basis – by doing so,
you already smooth them, but you should be careful not to discard the features of interest.
Using functions instead of series of points allows you to have a different number of points,
a different sampling frequency for each curve – or even, irregular sampling. Using a basis of
functions brings the problem back in the finite-dimensional realm and reduces it to a linear
algebra problem.
In the second step, one computes the mean of all those curves, usually using the same basis.
TODO: Do we add a smoothing penalty for the mean?
TODO: Formula...


In the third step, one actually performs the principal component analysis.
TODO: Explain how to introduce the smoothing penalties
TODO: Formulas
TODO: Implementation?


A few problems might occur.
For instance, the functions to estimate might have some very important properties: for
instance, we might know that they have to be increasing, in spite of error measurements.
We can enforce such a requirement by parametrizing the function via a differential equation.
For instance, to get an increasing function H (say, height, when studying child growth), one
just has to find a function w (without any restriction) such that H” = w H – w can be
interpreted as the “relative acceleration”.
Another problem is that the features in the various curves to study are not aligned: they
occur in the same order, but with different amplitudes and locations. In that situation, the
mean curve can fail to exhibit the very features we want to study – they are averaged out.
To palliate this problem, one can “align” the curves, by reparametrizing the curves (i.e., by
considering an alternate time: clock time versus physiological time in biology, clock time
versus market time or transaction time in finance, etc.). This is called “registration” or
”(dynamic) time warping”.
TODO: More details on time warping.


TODO:
1. Write the functions to study in some basis
2. Smoothed mean
3. Smoothed PCA


For more details, check:
Applied Functional Data Analysis, Methods and Case Studies
J.O. Ramsay and B.W. Silverman, Springer Verlag (2002)
http://www.stats.ox.ac.uk/~silverma/fdacasebook/


TODO: An online reference?


5.1.16 Varimax rotation


The components you get as the result of a principal component analysis are not always
directly interpretable: even if all the relevant information is in the first two principal com-
ponents, they are not as “pure” as you would like. But by rotating them, they can be easier
to interpret. Since you use the amplitude of the loadings of the PCA to interpret the prin-
cipal components, you can try to simplify them, as follows: find a rotation (not a rotation
of the whole space, but only a rotation of the subspace spanned by the first components)
that maximizes the variance of the loadings (contrary to PCA, you do not consider the
components one at a time, but all at the same time). This will actually try to make the
loadings either very large or very small, easing the interpretation of the components.
?varimax
?promax



http://www.stats.ox.ac.uk/~silverma/fdacasebook/
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5.1.17 Tensor approximation


When you apply Principal Component Analysis (PCA) to the pixels of a series of images,
you forget the 2-dimensional structure and hope that the PCA will somehow recover it, by
itself. Instead, one can try to retain that information by representing the data as matrices.
This can be generalized to higher-dimensional data with higher dimensional arrays (learned
people may call those arrays “tensors”).
Tensor algebra, motivations:
- Taylor expansion f(x+h) = f(x) + f’(x).h + f’’(x).h.h + ...
where f(x) is a number


f’(x) is a 1-form: it transforms a vector h into
a number f’(x).h


f’’(x) is a symetric 2-form: it takes a two
vectors h and k and turns them
into a number f’’(x).h.k


- Higher order statistics (HOS) (e.g., the autocorrelation
of x^2 is a fourth moment).


- [For category-theorists] The tensor algebra TV of a
vector space V is obtained from the adjoint of the
forgetful functor Alg --> Vect from the category of
R-algebras to that of R-vector spaces. Similarly, one can
define the symetric tensor algebra SV from the category of
commutative R-algebras. The alternating algebra AV is
often defined as AV=TV/SV.


- In mathematical physics, a tensor is a section of some
vector bundle built from the tangent buldle of a
manifold (if you do not know about manifolds, read "The
large scale structure of space-time" by S. Hawking et
al.). For instance:
- a section of the tangent bundle TX --> X is a field of
tangent vectors;


- a section of the cotangent bundle (the dual of the
tangent space) TX’ --> X is a (field of) 1-forms;


- a section of the maximum alternating power of the
cotangent bundle is an n-form, that you can use to
integrate a (real-valued) function on the manifold.


(You can also consider sections of other vector bundles,
e.g., the Levi-Civita connection -- some people call
those "holors" -- see "Theory of Holors : A Generalization
of Tensors", P. Moon and E. Spencer)


Tentative implementation:
# From "Out-of-code tensor approximation of
# multi-dimensional matrices of visual data"
# H. Wang et al., Siggraph 2005
http://vision.ai.uiuc.edu/~wanghc/research/siggraph05.html
http://vision.ai.uiuc.edu/~wanghc/papers/siggraph05_tensor_hongcheng.pdf


mode.n.vector <- function (A, n) { # aka "unfolding"
stopifnot( n == floor(n),


n >= 1,
n <= length(dim(A)) )


res <- apply(A, n, as.vector)
if (is.vector(res)) {
res <- matrix(res, nr=dim(A)[n], nc=prod(dim(A))/dim(A)[n] )


} else {
res <- t(res)


}
stopifnot( dim(res) == c( dim(A)[n], prod(dim(A))/dim(A)[n] ) )
res


}
n.rank <- function (A, n) {



http://vision.ai.uiuc.edu/~wanghc/research/siggraph05.html

http://vision.ai.uiuc.edu/~wanghc/papers/siggraph05_tensor_hongcheng.pdf
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sum( svd( mode.n.vector(A, n) )$d
>= 1000 * .Machine$double.eps )


}
n.ranks <- function (A) {
n <- length(dim(A))
res <- integer(n)
for (i in 1:n) {
res[i] <- n.rank(A, i)


}
res


}
# The norm is the same as usual: sqrt(sum(A^2))
n.mode.svd <- function (A) {
res <- list()
for (n in 1:length(dim(A))) {
res[[n]] <- svd( mode.n.vector(A, n) )


}
res


}
product <- function (A, B, i) {
# Multiply the ith dimension of the tensor A with the
# columns of the matrix B
stopifnot( is.array(A),


i == floor(i),
length(i) == 1,
i >= 1,
i <= length(dim(A)),
is.matrix(B),
dim(A)[i] == dim(B)[1]


)
res <- array( apply(A, i, as.vector) %*% B,


dim = c(dim(A)[-i], dim(B)[2]) )
N <- length(dim(A))
ind <- 1:N
ind[i] <- N
ind[ 1:N > i ] <- ind[ 1:N > i ] - 1
res <- aperm(res, ind)
stopifnot( dim(res)[-i] == dim(A)[-i],


dim(res)[i] == dim(B)[2] )
res


}


# A few tests...
A <- array(1:8, dim=c(2,2,2))
mode.n.vector(A, 1)
mode.n.vector(A, 2)
mode.n.vector(A, 3)
n.rank(A, 1)
n.rank(A, 2)
n.rank(A, 3)
n.ranks(A)


B1 <- matrix(round(10*rnorm(6)), nr=2, nc=3)
B2 <- matrix(round(10*rnorm(12)), nr=3, nc=4)
all( product(B1, B2, 2) == B1 %*% B2 )


# The main function...
tensor.approximation <- function (A, R) {
stopifnot( is.array(A),


length(dim(A)) == length(R),
is.vector(R),
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R == floor(R),
R >= 0,
R <= dim(A),
R <= n.ranks(A),
R <= prod(R)/R # If all the elements of R


# are equal, this is fine.
)


N <- length(R)
I <- dim(A)
U <- list()
for (i in 1:N) {
U[[i]] <- matrix( rnorm(I[i] * R[i]), nr = I[i], nc = R[i] )


}
finished <- FALSE
BB <- NULL
while (!finished) {
cat("Iteration\n")
Utilde <- list()
for (i in 1:N) {
Utilde[[i]] <- A
for (j in 1:N) {
if (i != j) {
Utilde[[i]] <- product( Utilde[[i]], U[[j]], j)


}
cat(" Utilde[[", i, "]]: ",


paste(dim(Utilde[[i]]),collapse=","),
"\n", sep="")


}
stopifnot( length(dim(Utilde[[i]])) == N,


dim(Utilde[[i]])[i] == dim(A)[i],
dim(Utilde[[i]])[-i] == R[-i] )


Utilde[[i]] <- mode.n.vector( Utilde[[i]], i )
cat(" Utilde[[", i, "]]: ",


paste(dim(Utilde[[i]]),collapse=","),
"\n", sep="")


}
for (i in 1:N) {
U[[i]] <- svd( Utilde[[i]] ) $ u [ , 1: R[i], drop=FALSE ]
#U[[i]] <- svd( Utilde[[i]] ) $ v
stopifnot( dim(U[[i]]) == c(I[i], R[i]) )


}
B <- A
for (j in 1:N) {
B <- product( B, U[[j]], j )


}
res <- B
for (j in 1:N) {
res <- product( res, t(U[[j]]), j )


}
cat("Approximating A:", sum((res - A)^2), "\n")
if (!is.null(BB)) {
eps <- sum( (B - BB)^2 )
cat("Improvement on B:", eps, "\n")
finished <- eps <= 1e-6


}
BB <- B


}
res <- B
for (j in 1:N) {
res <- product( res, t(U[[j]]), j )


}
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attr(res, "B") <- B
attr(res, "U") <- U
attr(res, "squared.error") <- sum( (A-res)^2 )
res


}
A <- array(1:24, dim=c(4,3,2))
x <- tensor.approximation(A, c(1,1,1))
x <- tensor.approximation(A, c(2,2,2))


5.2 Distance-based methods


The problem is now the following: given a set of points in an n-dimensional space, find their
coordinates kwnowing only their distances. Usually, you do not know the space dimension
either.


5.2.1 PCO (Distance Analysis)


This is very similar to Principal Component Analysis (PCA), with a few differences, though:
PCA looks for relations between the variables while PCO focuses on similarities between
the observations; you can interpret the PCA axes with the variables while you cannot with
PCO (indeed, there are no variables).
As PCA, PCO is linear and the computations are the same: in PCA, we start with the
variance-covariance matrix, i.e., a matrix whose entries are sums of squares; in distance
analysis, we consider a matrix of distances or a distance of squares of matrices, i.e., from
the pythagorean theorem, a matrix of sums of squares.
In other words, PCO is just PCA without its first step: the computation of the variance-
covariance (or “squared distances”) matrix.
?cmdscale
library(MASS)


5.2.2 MDS (Multi-Dimensional Scaling)


MDS is a non-linear equivalent of Principal Coordinate Analysis (PCO). We have a set of
distances between points and we try to assign coordinates to those points so as to minimize
a “stress function” – for instance, the sum of squares between the distances we have and the
distances obtained from the coordinates.
There are several R functions to perform those computations.
?cmdscale Principal coordinate analysis (metric, linear)
library(MASS)
?sammon (metric, non-linear)
?isoMDS (non-metric)


There was a comparison of them in RNews:
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf


5.2.3 xgvis


library(xgobi)
?xgvis


TODO: speak a little more of xgvis
xgvis slides and tutorial:
http://industry.ebi.ac.uk/%257Ealan/VisWorkshop99/XGvis_Talk/sld001.htm
http://industry.ebi.ac.uk/%257Ealan/VisWorkshop99/XGvis_Tutorial/index.html
(restart the MDS optimization with a different starting point to
avoid local minima ("scramble" button))
(one may change the parameters (euclidian/L1/Linfty distance,
removal of outliers, weights, etc.)



http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf

http://industry.ebi.ac.uk/%257Ealan/VisWorkshop99/XGvis_Talk/sld001.htm

http://industry.ebi.ac.uk/%257Ealan/VisWorkshop99/XGvis_Tutorial/index.html
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(one may ask for a 3D or 4D layout and the rotate it in xgobi)
(restart the MDS optimization with only a subset of the data --
interactivity)
What is a Shepard diagram ??? (change the power transformation)
MDS to get a picture of protein similarity
MDS warning: The global shape of MDS configurations is determined by
the large dissimilarities; consequently, small distances should be
in terpreted with caution: they may not reflect small
dissimilarities.


5.2.4 Applications


The applications are manifold, for instance:
1. Dimension reduction: we start with a set of points in a high-dimensional space, compute
their pairwise distances, and try to put the points in a space of smaller dimension while
retaining as much as possible the information (“proximity”) present in the distance matrix.
Thus, we can see MDS as a non-linear analogue of Principal Component Analysis (PCA).
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var 3


The points lie in a plane
n <- 100
v <- .1
# (Almost) planar data
x <- rnorm(n)
y <- x*x + v*rnorm(n)
z <- v*rnorm(n)
d <- cbind(x,y,z)
# A rotation
random.rotation.matrix <- function (n=3) {
m <- NULL
for (i in 1:n) {
x <- rnorm(n)
x <- x / sqrt(sum(x*x))
y <- rep(0,n)
if (i>1) for (j in 1:(i-1)) {
y <- y + sum( x * m[,j] ) * m[,j]


}
x <- x - y


x <- x / sqrt(sum(x*x))
m <- cbind(m, x)


}
m


}
m <- random.rotation.matrix(3)
d <- t( m %*% t(d) )
pairs(d)
title(main="The points lie in a plane")
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var 3


MDS
pairs(cmdscale(dist(d),3))
title(main="MDS")


Comp.1


−2 −1 0 1 2


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●
●


●


● ●●●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●


●


●


● ●


●


●
●


● ●


●


●


●
●


●


●
●


−
4


−
3


−
2


−
1


0
1


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●
●


●


● ●●●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●


●


●


●●


●


●
●


●●


●


●


●
●


●


●
●


−
2


−
1


0
1


2


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●
●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


Comp.2


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


● ●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●
●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


−4 −3 −2 −1 0 1


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


● ●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


●●●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


● ●●


●
●


●


●


●


●


●


●


●


●


●


−0.2 0.0 0.1 0.2 0.3


−
0.


2
0.


0
0.


1
0.


2
0.


3


Comp.3


Principal Component Analysis
pairs(princomp(d)$scores)
title(main="Principal Component Analysis")


2. Study of data with no coordinates, for instance protein similarity: we can tell when two
proteins are similar, we can quantify this similarity – but we have no coordinates, we cannot
think of a simple vector space whose points could be interpreted as proteins. MDS can help
build such a space and graphically represent the proximity relations among a set of proteins.
The same process also appears in psychology: we can ask test subjects to identify objects
(faces, Morse-coded letters, etc.) and count the number of confusions between two ob-
jects. This measures the similarity of these objects (a subjective similarity, that stems from
their representation in the human mind); MDS can assign coordinates to those objects and
represent those similarities in a graphical way.
Those misclassifications also appear in statistics: we can use MDS to study forecast errors
of a given statistical algorithm (logistic regression, neural nets, etc.) when trying to predict
a qualitative variable from quantitative variables.
TODO: speak about MDS when I tackle those algorithms...


3. MDS can also graphically represent variables (and not observations), after estimating the
“distances” between variables from their correlations.
TODO: such a plot when I speak about variable selection...
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4. We can also use MDS to plot graphs (the combinatorial objects we study in graph theory
– see the “graph” package), described by theiir vertices and edges.
Alternatively, you can use GraphViz,
http://www.graphviz.org/


outside R or from R – see the “sem” and “Rgraphviz” libraries.
TODO


5. Reconstruct a molecule, especially its shape, from the distance between its atoms.
For more details, see
http://www.research.att.com/areas/stat/xgobi/papers/xgvis.ps.gz


5.2.5 Minimum Spanning Tree (MST)


1. Put the points into 4 or 5 classes (e.g., by hierarchical
classification, or with the k-means algorithm).
2. Take the median point of those classes.
3. Is the Minimum Spanning Tree (MST) of those points ramified?


On our examples:
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# Data
n <- 200 # Number of patients, number of columns
k <- 10 # Dimension of the ambient space
nb.points <- 5
p <- matrix( 5*rnorm(nb.points*k), nr=k )
barycentre <- function (x, n) {
# Add number between the values of x in order to get a length n vector
i <- seq(1,length(x)-.001,length=n)
j <- floor(i)
l <- i-j
(1-l)*x[j] + l*x[j+1]


}
m <- apply(p, 1, barycentre, n)
data.broken.line <- t(m)
data.noisy.broken.line <- data.broken.line + rnorm(length(data.broken.line))
library(splines)
barycentre2 <- function (y,n) {
m <- length(y)


x <- 1:m
r <- interpSpline(x,y)
#r <- lm( y ~ bs(x, knots=m) )
predict(r, seq(1,m,length=n))$y


}
data.curve <- apply(p, 1, barycentre2, n)
data.curve <- t(data.curve)
data.noisy.curve <- data.curve + rnorm(length(data.curve))
data.real <- read.table("Tla z.txt", sep=",")
r <- prcomp(t(data.real))
data.real.3d <- r$x[,1:3]


library(cluster)
library(ape)
mst.of.classification <- function (x, k=6, ...) {
x <- t(x)
x <- t( t(x) - apply(x,2,mean) )
r <- prcomp(x)



http://www.graphviz.org/

http://www.research.att.com/areas/stat/xgobi/papers/xgvis.ps.gz
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y <- r$x
u <- r$rotation
r <- kmeans(y,k)
z <- r$centers
m <- mst(dist(z))
plot(y[,1:2], ...)
points(z[,1:2], col=’red’, pch=15)
w <- which(m!=0)
i <- as.vector(row(m))[w]
j <- as.vector(col(m))[w]
segments( z[i,1], z[i,2], z[j,1], z[j,2], col=’red’ )


}
set.seed(1)
mst.of.classification(data.curve, 6)
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mst.of.classification(data.curve, 6)
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mst.of.classification(data.broken.line, k, axes=F)
box()


}
par(op)







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)400


●
●


●
●●


●


●


●


●


●
●●


●


●


●


●


●
● ●


●


●
●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●●
●


●


●


●
●
●


●


●
●


●


●


●


●
●


●
●


●


●


●


●●
●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●●●
●


●●
●


●


●


●●●


●


●


●


●


● ●
●


●


●●
●
●


●
●


●


●
●


●


●


●


●


●●
●


●


●
● ●


●


●
●●


●


●


●


● ●●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●●
●


●


●


●
●


●


●


●


●
●


●


●


●
●


●●
●


●
●●●


●●


●


●


●


●


●


●


●


●


●


●


PC1


●
●


●
●●


●


●


●


●


●
●●


●


●


●


●


●
● ●


●


●
●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●●
●


●


●


●
●
●


●


●
●


●


●


●


●
●


●
●


●


●


●


●●
●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●●●
●


●●
●


●


●


●●●


●


●


●


●


● ●
●


●


●●
●
●


●
●


●


●
●


●


●


●


●


●●
●


●


●
● ●


●


●
●●


●


●


●


● ●●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●●
●


●


●


●
●


●


●


●


●
●


●


●


●
●


●●
●


●
●●●


●●


●


●


●


●


●


●


●


●


●


●


PC1


P
C


2


●
●


●
●●


●


●


●


●


●
●●


●


●


●


●


●
● ●


●


●
●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●●
●


●


●


●
●
●


●


●
●


●


●


●


●
●


●
●


●


●


●


●●
●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●●●
●


●●
●


●


●


●●●


●


●


●


●


● ●
●


●


●●
●
●


●
●


●


●
●


●


●


●


●


●●
●


●


●
● ●


●


●
●●


●


●


●


● ●●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●●
●


●


●


●
●


●


●


●


●
●


●


●


●
●


●●
●


●
●●●


●●


●


●


●


●


●


●


●


●


●


● ●
●


●
●●


●


●


●


●


●
●●


●


●


●


●


●
● ●


●


●
●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●●
●


●


●


●
●
●


●


●
●


●


●


●


●
●


●
●


●


●


●


●●
●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●●●
●


●●
●


●


●


●●●


●


●


●


●


● ●
●


●


●●
●
●


●
●


●


●
●


●


●


●


●


●●
●


●


●
● ●


●


●
●●


●


●


●


● ●●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●●
●


●


●


●
●


●


●


●


●
●


●


●


●
●


●●
●


●
●●●


●●


●


●


●


●


●


●


●


●


●


●


P
C


2


op <- par(mfrow=c(2,2),mar=.1+c(0,0,0,0))
for (k in c(4,6,10,15)) {
mst.of.classification(data.noisy.broken.line, k, axes=F)
box()


}
par(op)


With real data, it does not work that well:
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mst.of.classification(data.real, k, axes=F)
box()


}
par(op)


Details:
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op <- par(mfrow=c(3,3),mar=.1+c(0,0,0,0))
for (k in c(4:6)) {
for (i in 1:3) {
mst.of.classification(data.real, k, axes=F)
box()


}
}
par(op)
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op <- par(mfrow=c(3,3),mar=.1+c(0,0,0,0))
for (k in c(7:9)) {
for (i in 1:3) {
mst.of.classification(data.real, k, axes=F)
box()


}
}
par(op)
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op <- par(mfrow=c(3,3),mar=.1+c(0,0,0,0))
for (k in c(10:12)) {
for (i in 1:3) {
mst.of.classification(data.real, k, axes=F)
box()


}
}
par(op)
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op <- par(mfrow=c(3,5),mar=.1+c(0,0,0,0))
for (k in c(13:15)) {
for (i in 1:3) {
mst.of.classification(data.real, k, axes=F)
box()


}
}
par(op)
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5.2.6 Minimum Spanning Tree (MST)
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library(ape)
my.plot.mst <- function (d) {
r <- mst(dist(t(d)))
d <- prcomp(t(d))$x[,1:2]
plot(d)
n <- dim(r)[1]
w <- which(r!=0)
i <- as.vector(row(r))[w]
j <- as.vector(col(r))[w]
segments( d[i,1], d[i,2], d[j,1], d[j,2], col=’red’ )


}
my.plot.mst(data.broken.line)
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my.plot.mst(data.noisy.broken.line)
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my.plot.mst(data.curve)
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my.plot.mst(data.noisy.curve)







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)405


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


−30 −20 −10 0 10 20 30


−
20


−
10


0
10


20


PC1


P
C


2


my.plot.mst(data.real)
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my.plot.mst(t(data.real.3d))
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# Gives the list of the oaths from the branching nodes to the leaves
chemins.vers.les.feuilles <- function (G) {
nodes <- which(apply(G,2,sum)>2)
leaves <- which(apply(G,2,sum)==1)
res <- list()
for (a in nodes) {
for (b in which(G[a,]>0)) {
if (! b %in% nodes) {
res <- append(res,list(c(a,b)))


}
}


}
chemins.vers.les.feuilles.suite(G, nodes, leaves, res)


}
# Last coordinate of a vector
end1 <- function (x) {
n <- length(x)
x[n]


}
# Last two coordinates of a vector
end2 <- function (x) {
n <- length(x)
x[c(n-1,n)]


}
chemins.vers.les.feuilles.suite <- function (G, nodes, leaves, res) {
new <- list()
done <- T
for (ch in res) {
if( end1(ch) %in% nodes ) {
# Pass


} else if ( end1(ch) %in% leaves ) {
new <- append(new, list(ch))


} else {
done <- F
a <- end2(ch)[1]
b <- end2(ch)[2]
for (x in which(G[b,]>0)) {
if( x != a ){
new <- append(new, list(c( ch, x )))


}
}


}
}
if(done) {
return(new)


} else {
return(chemins.vers.les.feuilles.suite(G,nodes,leaves,new))


}
}


G <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,0, 0,1,0,0), nr=4)
chemins.vers.les.feuilles(G)


# Compute the length of a path
longueur.chemin <- function (chemin, d) {
d <- as.matrix(d)
n <- length(chemin)
i <- chemin[ 1:(n-1) ]
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j <- chemin[ 2:n ]
if (n==2) {
d[i,j]


} else {
sum(diag(d[i,][,j]))


}
}


G <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,0, 0,1,0,0), nr=4)
d <- matrix(c(0,2,4,3, 2,0,2,1, 4,2,0,3, 3,1,3,0), nr=4)
chemins <- chemins.vers.les.feuilles(G)
chemins
l <- sapply(chemins, longueur.chemin, d)
l
stopifnot( l == c(2,2,1) )


elague <- function (G0, d0) {
d0 <- as.matrix(d0)
G <- G0
d <- d0
res <- 1:dim(d)[1]
chemins <- chemins.vers.les.feuilles(G)
while (length(chemins)>0) {
longueurs <- sapply(chemins, longueur.chemin, d)
# Number of the shortest path
i <- which( longueurs == min(longueurs) )[1]
cat(paste("Removing", paste(res[chemins[[i]]],collapse=’ ’), "length =", longueurs[i],"\n"))
# Nodes to remove
j <- chemins[[i]] [-1]
res <- res[-j]
G <- G[-j,][,-j]
d <- d[-j,][,-j]
cat(paste("Removing", paste(j), "\n" ))
cat(paste("", paste(res, collapse=’ ’), "\n"))
chemins <- chemins.vers.les.feuilles(G)


}
res


}


library(ape)
my.plot.mst <- function (x0) {
cat("Plotting the points\n")
x <- prcomp(t(x0))$x[,1:2]
plot(x)
cat("Computing the distance matrix\n")
d <- dist(t(x0))
cat("Computing the MST (Minimum Spanning Tree)\n")
G <- mst(d)
cat("Plotting the MST\n")
n <- dim(G)[1]
w <- which(G!=0)
i <- as.vector(row(G))[w]
j <- as.vector(col(G))[w]
segments( x[i,1], x[i,2], x[j,1], x[j,2], col=’red’ )
cat("Pruning the tree\n")
k <- elague(G,d)
cat("Plotting the pruned tree\n")
x <- x[k,]
G <- G[k,][,k]
n <- dim(G)[1]
w <- which(G!=0)
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i <- as.vector(row(G))[w]
j <- as.vector(col(G))[w]
segments( x[i,1], x[i,2], x[j,1], x[j,2], col=’red’, lwd=3 )


}


my.plot.mst(data.noisy.broken.line)
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my.plot.mst(data.noisy.curve)
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my.plot.mst(data.real)
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my.plot.mst(t(data.real.3d))


Remark: in image analysis, we sometimes us a simplification of this algorithm (still called
“pruning” to get rid of the ramifications in the skeleton of an image: we just gnaw two of
three segments from each leaf.
TODO: a reference


5.2.7 Isomap


TODO: reference
TODO: explain
Let us first construct the graph.
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# k: each point is linked to its k nearest neighbors
# eps: each point is linked to all its neighbors within a radius eps


isomap.incidence.matrix <- function (d, eps=NA, k=NA) {
stopifnot(xor( is.na(eps), is.na(k) ))
d <- as.matrix(d)
if(!is.na(eps)) {
im <- d <= eps


} else {
im <- apply(d,1,rank) <= k+1
diag(im) <- F


}
im | t(im)


}
plot.graph <- function (im,x,y=NULL, ...) {
if(is.null(y)) {
y <- x[,2]
x <- x[,1]


}
plot(x,y, ...)
k <- which( as.vector(im) )
i <- as.vector(col(im))[ k ]
j <- as.vector(row(im))[ k ]
segments( x[i], y[i], x[j], y[j], col=’red’ )


}
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d <- dist(t(data.noisy.curve))
r <- princomp(t(data.noisy.curve))
x <- r$scores[,1]
y <- r$scores[,2]


plot.graph(isomap.incidence.matrix(d, k=5), x, y)


So far, there is a problem: the resulting grah need not be connected – this is a problem if
we want to compute distances...
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plot.graph(isomap.incidence.matrix(d, eps=quantile(as.vector(d), .05)),
x, y)


The graph is connected if and only if it contains the Minimum Spanning Tree (MST): thus,
we shall just add the edges of this MST taht are not already there.
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isomap.incidence.matrix <- function (d, eps=NA, k=NA) {
stopifnot(xor( is.na(eps), is.na(k) ))
d <- as.matrix(d)
if(!is.na(eps)) {
im <- d <= eps


} else {
im <- apply(d,1,rank) <= k+1
diag(im) <- F


}
im | t(im) | mst(d)


}
plot.graph(isomap.incidence.matrix(d, eps=quantile(as.vector(d), .05)),


x, y)


TODO: distance in this graph. It is a classical problem: shortest path in a graph.
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inf <- function (x,y) { ifelse(x<y,x,y) }
isomap.distance <- function (im, d) {
d <- as.matrix(d)
n <- dim(d)[1]
dd <- ifelse(im, d, Inf)
for (k in 1:n) {
dd <- inf(dd, matrix(dd[,k],nr=n,nc=n) + matrix(dd[k,],nr=n,nc=n,byrow=T))


}
dd


}


isomap <- function (x, d=dist(x), eps=NA, k=NA) {
im <- isomap.incidence.matrix(d, eps, k)
dd <- isomap.distance(im,d)
r <- list(x,d,incidence.matrix=im,distance=dd)
class(r) <- "isomap"
r


}


r <- isomap(t(data.noisy.curve), k=5)
xy <- cmdscale(r$distance,2) # long: around 30 seconds
plot.graph(r$incidence.matrix, xy)


In an orthonormal basis:
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plot.graph(r$incidence.matrix, xy, ylim=range(xy))


TODO:
Other ways of representing the results:
1. Initial data, graph
2. MDS
3. Initial coordinates, graph, colors for the first coordinate of


the MDS.
4. The curve?


TODO: apply this to our data.
TODO: Choosing the parameters (eps or k)
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5.3 SOM (Self-Organizing Maps)


5.3.1 Idea


Kohonen networks (or SOM, Self-Organizing Maps) are a qualitative, non-linear equivalent
of Principal Component (or Coordinate) Analysis (PCA, PCO): we try to classify observa-
tions in several classes (unknown classes) and to organize those classes into a spacial layout.
For instance, we can want the classes to be aligned:
* * * * * * * * * *


or to form a grid:
* * * * * * * * * *


* * * * * * * * * *


* * * * * * * * * *


* * * * * * * * * *


* * * * * * * * * *


* * * * * * * * * *


We start with a cloud of points in an n-dimensional space, whose coordinates will be
written (x1,x2,...,xi,...,xn) and we try to find, for each element j of the grid, coordinates
(w(1,j),w(2,j),...,w(i,j),...,w(n,j)).
In other words, we try to embed the grid in this n-dimensional space, so that it comes as
close as possible to the points (as if the points were magnetic and were attracting the grid
vertices) and so that it retains its grid shape (as if the grid edges were springs).
1. Choose random values for the w(i,j).
2. Take a point x = (x1,...,xn) in the cloud.
2a. Consider the point j on the gris whose coordinates are the closest from x:
j = ArgMin Sum( (x i - w(i,j))^2 )


i


2b. Compute the error vector:
d i = x i - w(i,j)


2c. For each point k of the grid in the neighbourhood of j, replace the value of w(i,k):
w(i,k) <- w(i,k) + h * d i.


3. Go back to point 2, with a smaller neighbourhood and a smaller value for the learning
coefficient h.


5.3.2 Remark


You can replace the notion of neighbourhood by a “neighbourhood function”:
w(i,k) <- w(i,k) + h * v(i,k) * d i


where v(i,i) = 1 and v(i,k) decreases when k goes away from i. Iteration after iteration, you
will replace the function one with a more and more visible peak.


5.3.3 Remark


You can choose the grid geometry: often, a table of dimension 1, 2 or 3, but it could also
be a circle, a cylinder, a torus, etc.
In that sense, we can say that Kohonen networks are non-linear (a would be tempted to say
“homotopically non-linear”).
You can also interpret Kohonen networks as a mixture of Principal Component Analysis
(finding a graphical representation, in the plane, of a cloud of points) and unsupervised
classification (assign the points to classes, a priori unknown).
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5.3.4 Remark


You can assess the quality of the result by looking at the error, i.e., the average of the
Sum( (x i - w(i,j))^2 )
i


when x runs over the points to classify and where j is the class that minimizes this sum (i.e.,
j is the class to which x i is assigned):
MSE = Mean Min Sum (x i - w(i,j))^2


x j i


5.3.5 Remark


Kohonen networks are often presented as a special case of neural networks: if the doodles
used to explain them are similar, trying hard to see a neural network in a Kohonen network
might slow your understanding of the subject (the weights are completely different, there is
no transfer function, etc.).


5.3.6 Graphical representation


You can plot each class j by a disc or a square, and put, in each square, its coordinates
w(1,j),...,w(n,j), as a star plot or as a parallel plot.


5.3.7 Examples


Under R, there are two functions to compute Kohonen maps, in the “class” and “som”
packages (if you hesitate, choose “som”).
The following examples use a Kohonen map to describe the palette (i.e., the colors) of an
image (this is supposed to be a landscape: an island in the middle of a river).
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n=270 n=384 n=583 n=241 n=685


n=221 n=12 n=73 n=71 n=260


n=270 n=13 n=21 n=47 n=295


n=233 n=47 n=40 n=34 n=290


n=1431 n=671 n=543 n=265 n=500


library(pixmap)
x <- read.pnm("photo1.ppm")
d <- cbind( as.vector(x@red),


as.vector(x@green),
as.vector(x@blue) )


m <- apply(d,2,mean)
d <- t( t(d) - m )
s <- apply(d,2,sd)
d <- t( t(d) / s )
library(som)
r1 <- som(d,5,5)
plot(r1)
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x <- r1$code.sum$x
y <- r1$code.sum$y
n <- r1$code.sum$nobs
co <- r1$code # Is it in the same order that x, y and n?
co <- t( t(co) * s + m )
plot(x, y,


pch=15,
cex=5,
col=rgb(co[,1], co[,2], co[,3])
)
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x <- r1$code.sum$x
y <- r1$code.sum$y
n <- r1$code.sum$nobs
co <- r1$code # Is it in the same order that x, y and n?
co <- t( t(co) * s + m )
plot(x, y,


pch=15,
cex=5*n/max(n),
col=rgb(co[,1], co[,2], co[,3])
)


library(class)
r2 <- SOM(d)
plot(r2)
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x <- r2$grid$pts[,1]
y <- r2$grid$pts[,2]
n <- 1 # Where???
co <- r2$codes
co <- t( t(co) * s + m )
plot(x, y,


pch=15,
cex=5*n/max(n),
col=rgb(co[,1], co[,2], co[,3])
)


You will notice that the result is not always the same:


op <- par(mfrow=c(2,2))
for (i in 1:4) {
r2 <- SOM(d)
plot(r2)


}
par(op)


5.3.8 Other graphical representation


You may want to plot the vertex coordinates: you can use one colour per coordinate. This
allows you to graphically choose which variables to use: you can eliminate those that play
little role in the classification and those that bring the same information as already selected
variables.
In the first example, the first coordinate is informative (it coincides with one of the map
coordinates). The two others contain the same information (we can get rid of one) and
correspond to a diagonal direction on the map.
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x <- r1$code.sum$x
y <- r1$code.sum$y
v <- r1$code


op <- par(mfrow=c(2,2), mar=c(1,1,1,1))
for (k in 1:dim(v)[2]) {
m <- matrix(NA, nr=max(x), nc=max(y))
for (i in 1:length(x)) {
m[ x[i], y[i] ] <- v[i,k]


}
image(m, col=rainbow(255), axes=F)


}
par(op)


x <- r2$grid$pts[,1]
y <- r2$grid$pts[,2]
v <- r2$codes


op <- par(mfrow=c(2,2), mar=c(1,1,1,1))
for (k in 1:dim(v)[2]) {
m <- matrix(NA, nr=max(x), nc=max(y))
for (i in 1:length(x)) {
m[ x[i], y[i] ] <- v[i,k]


}
image(m, col=rainbow(255), axes=F)


}
par(op)


5.3.9 Other graphical representation


The vertex coordinates define a map from the plane (the space in which the Kohonen map
lives) towards Rˆn (the space in which our cloud of points lives): we can plot this application
(or, more precisely, its image), especially when the space Rˆn is of low dimension – if the
dimension is high, you would resort to high-dimensional visualization tools, such as ggobi.
TODO: plot


5.3.10 Graphical representation


TODO: shards plot, to represent the differences between a
cell and its neighbours.


library(klaR)
?shardsplot
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TODO: sammon plot, to see how distorted the map is.
TODO: colouring a SOM; one can use another, 1-dimensional, SOM to choose the colours
(it can be a colour ring or a colour segment).


5.3.11 Other graphical representation


One can plot the grid and visualize how well it fits the cloud of points using a grand tour –
for instance, using ggobi.


5.3.12 Application areas


Image analysis (medicine: echography, etc.; handwriting): an n*m image can be seen as a
point an an n*m-dimensional space. The euclidian distance is not the most adequate one,
but it works pretty well nonetheless.
You can also use Kohonen maps to forecast time series: usually, we try to write
y[n+1] = f( y[n], y[n-1], ..., y[n-k] )


for a “well-chosen” k and a map f to be determined (for example, by a linear regression,
a non-linear regression, a Principal Component Analysis (PCA), a Curvilinear Component
Analysis (CCA), etc.). Instead of this, you can build a Kohonen map with ( y[n], y[n-1], ...,
y[n-k] ) and look at the values of y[n+1] at each vertex of the map. You could also use (
y[n+1], y[n], y[n-1], ..., y[n-k] ) to build the map.
TODO: develop this example, either here or in the Time
Series chapter


You can use Kohonen maps to measure the colours in an image (for instance, to convertr
it from 16 bits to 8 bits, or to convert it to an indexedd format, that limits the number
of colors but lets you choose those colours): the vertex coordinates will be the quantified
colors.
http://www.cis.hut.fi/~lendasse/pdf/esann00.pdf


5.3.13 Supervised Learning (Feature map)


You can also use Kohonen maps for supervised learning: you still start with a cloud of points,
but this time, each point already belongs to a class – in other words, we have quantitative
predictive variables, as before, and a further qualitative variable, to predict/explain.
We run the algorithm on the predictive variables and we associate one (or several) class(es)
to each node of the map: the classes of a node are the classes of the points it contains.
Vertices with several classes are in a “clash state”.
The interest is twofold: first, you can use the mao to predict the class of new observations,
second, you get a graphical representation of the qualitative variable to predict, i.e., you
have a notion of proximity, similarity, between the classes.


5.3.14 Size of the SOM


We said above that Kohonen maps were not very stable: it you change a few points in the
cloud of points, or simply if you change the initialization of the map, you get completely
different results.
However, small maps (3x3) are rather stable – actually, the fact is more general: unsuper-
vised learning methods give reproducible results up to 10 classes, but not above.
However, you can simplify a large Kohonen map in the following way: if you colour the map
vertices with the number of points it contains, you can apply image processing algorithms
(mathematical morphology), such as the opening (to get rid of noise, i.e., small elements)
or the watershed (that divides the image in several bassins of attraction).
TODO: translate the last word...


TODO: what about the hierarchical algorithm: a 3x3 SOM,
then a 3x3 SOM in each of its cells, etc.? Do I mention
it later?



http://www.cis.hut.fi/~lendasse/pdf/esann00.pdf
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5.3.15 Geometric interpretation of SOMs


You can model the situation described by a SOM (i.e., simulate data that will be efficiently
analyzed by a SOM) as follows. To get a cloud of points:
1. Take a point at random in the plane, following some distribution. One of the aims of the
SOM algorithm is to recover this distribution.
2. Apply a transformation (one other aim of the SOM distribution is to recover this transfor-
mation) to send our point in an n-dimensional space. Our point is then on a 2-dimensional
submanifold (a submanifold is like a subspace, but it need not be “straight”, it may be
“curved”) of Rˆn.
3. Add some noise.
The Kohonen map is an estimation of the distribution of the first step: the rows and
columns correspond to the coordinates in the plane; the number of points in each vertex is
an estimation of the density.
The coordinates w(i,j) of the vertices are an estimation of the submanifold in step 2.
In those estimations, the plane Rˆ2 and the submanifold of Rˆn have been discretized.
Generative Topographic Mappings (GTM) are a possible replacement of SOM that formalize
this geometric description of Kohonen maps.
http://research.microsoft.com/~cmbishop/downloads/Bishop-GTM-Ncomp-98.pdf


5.4 Simple Correspondance Analysis (CA)


TODO: introduction
TODO: proofread the following paragraph.


5.4.1 Around Principal Component Analysis


The following methods are all based on principal component analysis: we start with a table
of numbers (the values of our variables for PCA, a contingency table for CA), we consider
its columns as points in an n-dimensional space (same for the rows), and we look for the
2-dimensional subspace of Rˆn (the space in which the columns live – and we would do the
same for that in which the rows live) on which we can see “as much information as possible”
(we project the cloud of points onto it, orthogonally with respect to the canonical scalar
product or another scalar product, more appropriate to the problem at hand.


5.4.2 Simple correspondances


Correspondance analysis focuses on contingency tables, i.e., qualitative variables. Let us
first consider the case of two variables.
TODO: recall what a contingency table is...


We first transform the contingency table into two tables: that of row-profiles (the sum of
the elements in a row is always 1 (or 100%)) and that of column-profiles.
TODO: define f(i,*) and f(*,j)


If the two variables are independant, we have f(i,j)=f(i,*)f(*,j). You can use Pearson’s Chiˆ2
test to compare the distributions of f(i,j) and f(i,*)f(*,j).
From a technical point of vue, Correspondance Analysis analysis looks like Principal Compo-
nent Analysis. We try to find a graphical representation of the rows and colums of the table,
as points in some space; we want the points to reflect the information contained in the table
as faithfully as possible (technically, we try to maximize the variance of the resulting cloud
of points). Correspondance Analysis proceeds in a similar way, the only difference being
that the distance is not given by the canonical scalar product but is the “Chiˆ2 distance”.



http://research.microsoft.com/~cmbishop/downloads/Bishop-GTM-Ncomp-98.pdf
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library(MASS)
data(HairEyeColor)
x <- HairEyeColor[,,1]+HairEyeColor[,,2]
biplot(corresp(x, nf = 2))
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biplot(corresp(t(x), nf = 2))
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# ???
plot(corresp(x, nf=1))


If there are more variables, we can add them, a posteriori, on the plot, with the predict.mca
function.
Other examples
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n <- 100
m <- matrix(sample(c(T,F),n^2,replace=T), nr=n, nc=n)
biplot(corresp(m, nf=2), main="Correspondance Analysis of Random Data")
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vp <- corresp(m, nf=100)$cor
plot(vp, ylim=c(0,max(vp)), type=’l’,


main="Correspondance Analysis of Random Data")
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n <- 100
x <- matrix(1:n, nr=n, nc=n, byrow=F)
y <- matrix(1:n, nr=n, nc=n, byrow=T)
m <- abs(x-y) <= n/10
biplot(corresp(m, nf=2),


main=’Correspondance Analysis of "Band" Data’)
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vp <- corresp(m, nf=100)$cor
plot(vp, ylim=c(0,max(vp)), type=’l’,


main=’Correspondance Analysis of "Band" Data’)


You can also check the “ca” function.
library(multiv)
?ca


5.4.3 Example: using correspondance analysis to reorder a table


We start with a table, containing 0s and 1s, with a very simple form
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n <- 100
x <- matrix(1:n, nr=n, nc=n, byrow=F)
y <- matrix(1:n, nr=n, nc=n, byrow=T)
m <- abs(x-y) <= n/10
plot.boolean.matrix <- function (m) { # Voir aussi levelplot
nx <- dim(m)[1]
ny <- dim(m)[2]
x <- matrix(1:nx, nr=nx, nc=ny, byrow=F)
y <- matrix(1:ny, nr=nx, nc=ny, byrow=T)
plot( as.vector(x)[ as.vector(m) ], as.vector(y)[ as.vector(m) ], pch=16 )


}
plot.boolean.matrix(m)


But someone changed (or forgot to give us) the order of the rows and columns – if the data
is experimental, we might not have any a priori clue as to the order.
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ox <- sample(1:n, n, replace=F)
oy <- sample(1:n, n, replace=F)
reorder.matrix <- function (m,ox,oy) {
m <- m[ox,]
m <- m[,oy]
m


}
m2 <- reorder.matrix(m,ox,oy)
plot.boolean.matrix(m2)


We can reorder rows and columns as follows:


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


0 20 40 60 80 100


0
20


40
60


80
10


0


as.vector(x)[as.vector(m)]


as
.v


ec
to


r(
y)


[a
s.


ve
ct


or
(m


)]


a <- corresp(m2)
o1 <- order(a$rscore)
o2 <- order(a$cscore)
m3 <- reorder.matrix(m2,o1,o2)
plot.boolean.matrix(m3)


Had we started with random data, the result could have been:
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n <- 100
p <- .05
done <- F
while( !done ){
# We often get singular matrices
m2 <- matrix( sample(c(F,T), n*n, replace=T, prob=c(1-p, p)), nr=n, nc=n )
done <- det(m2) != 0


}
plot.boolean.matrix(m2)
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a <- corresp(m2)
o1 <- order(a$rscore)
o2 <- order(a$cscore)
m3 <- reorder.matrix(m2,o1,o2)
plot.boolean.matrix(m3)


5.4.4 Simple Correspondance Analysis: Details


The idea is very simple. We start with a contingency table (for two qualitative variables), we
transform it into a frequency table, we compute the marginal frequencies and the frequencies
we would have had if the two variables had been independant, we compute the difference, so
as to get a “centered” matrix, that describes the lack of independance of the two variables.
We then perform a Principal Component Analysis, but not with the canonical distance:
instead, we use a weighted distance between row-profiles (resp. column-profiles) so that
each column (resp. row) have the same importance. This is called the Chiˆ2 distance.
# Euclidian Distance
sum ( f {i,j} - f {i’,j} )^2


# Euclidian distance between the row-profiles
f {i,j} f {i’,j}


sum ( --------- - ---------- )^2
j f {i,.} f {i’,.}
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# Chi^2 distance
1 f {i,j} f {i’,j}


sum --------- ( --------- - ---------- )^2
j j {.,j} f {i,.} f {i’,.}


We choose this metric because it has the following property: we can group some values
of a variable without changing the result. (For instance, we could replace one of the two
variables, X, whose values are A, B, C, D, E, F, by another variable X’ with values A, BC,
D, E, F, in the obvious way, if we think that the differences between B and C are not that
relevant.)
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# Correspondance Analysis
my.ac <- function (x) {
if(any(x<0))
stop("Expecting a contingency matrix -- with no negative entries")


x <- x/sum(x)
nr <- dim(x)[1]
nc <- dim(x)[2]
marges.lignes <- apply(x,2,sum)
marges.colonnes <- apply(x,1,sum)
profils.lignes <- x / matrix(marges.lignes, nr=nr, nc=nc, byrow=F)
profils.colonnes <- x / matrix(marges.colonnes, nr=nr, nc=nc, byrow=T)
# Do not forget to center the matrix: we compute the frequency matrix
# we would have if the variables were independant and we take the difference.
x <- x - outer(marges.colonnes, marges.lignes)
e1 <- eigen( t(x) %*% diag(1/marges.colonnes) %*% x %*% diag(1/marges.lignes) )
e2 <- eigen( x %*% diag(1/marges.lignes) %*% t(x) %*% diag(1/marges.colonnes) )
v.col <- solve( e2$vectors, x )
v.row <- solve( e1$vectors, t(x) )


v.col <- t(v.col)
v.row <- t(v.row)
if(nr<nc)
valeurs.propres <- e1$values


else
valeurs.propres <- e2$values


# Dessin
plot( v.row[,1:2],


xlab=’’, ylab=’’, frame.plot=F )
par(new=T)
plot( v.col[,1:2], col=’red’,


axes=F, xlab=’’, ylab=’’, pch=’+’)
axis(3, col=’red’)
axis(4, col=’red’)
# Return the data
invisible(list(donnees=x, colonnes=v.col, lignes=v.row,


valeurs.propres=valeurs.propres))
}


nr <- 3
nc <- 5
x <- matrix(rpois(nr*nc,10), nr=nr, nc=nc)
my.ac(x)


Let us compare our result with that of the “corresp” function.
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plot(corresp(x,nf=2))


Exercice: Modify the code above so that it uses the “svd” function instead of “eigen” (this is
a real problem: as the matrix is no longer symetric, numeric computations can yield non-real
eigen values).
On the plot representing the first variable, we can add the points corresponding to the
second: we just take the barycenters of the first points, weighted by the corresponding (row-
or column-) profile. We can do the same thing of the plot for the second variable: up to the
scale, we should get the same result – it is this property that justifies the superposition of
both plots.
TODO: both plots


The barycenter also allows us to add new variables to the plots.


5.4.5 Detrended Correspondence Analysis (DCA)


TODO


5.4.6 TODO


library(CoCoAn)
library(multiv)
library(ade4)


5.5 Multiple Correspondance Analysis


5.5.1 Introduction


Simple Correspondance Analysis tackled the problem of two qualitative variables; multiple
correspondance analysis caters to more than two variables. Usually, the data are not given
as a contingency matrix (or “hypermatrix”: if there are n variables, it should be an n-
dimensional table), because this matrix would have a huge number of elements, most of
them null. We use a table similar to that used to quantitative variables:


Hair Eye Sex
1 Blond Blue Male
2 Brown Brown Female
3 Brown Blue Female
4 Red Brown Male
5 Red Brown Female
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6 Brown Brown Female
7 Brown Brown Female
8 Black Brown Male
9 Brown Blue Female
10 Blond Blue Male
...


Here is the example from the manual.
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library(MASS)
data(farms)
farms.mca <- mca(farms, abbrev=TRUE)
farms.mca
plot(farms.mca)


Let us consider again the eye and hair colour data set. As the data are given by a contingency
hypermatrix, we first have to transform it.


−0.03 −0.02 −0.01 0.00 0.01 0.02


−
0.


01
0.


00
0.


01
0.


02
0.


03


1234567891011121314151617181920212223242526272829303132


3334353637383940414243444546474849505152535455565758596061626364656667686970


71727374757677787980


818283
8485868788899091929394


9596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144


145146147148149150151152153154


155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184


185186187188189190191192193194


195196197198199200201202203204205206207208209210211212213214215216217218219


220221222223224225226


227228229230231
232233234


235236237238239240241242243244245246247248249


250251252253254255256


257258259260261262263264


265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300


301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381


382383384385386387388389390391392393394395396397


398399400401
402403404405406407408409410


411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444


445446447448449450451


452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515


516517518519520


521522523524525526527528529530531532533534535536537538539540541542543544545546547548549


550551552553554555556


557558559560561
562563


564565566567568569570571572573574575576577


578579580581582583584


585586587588589590591592


593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624


625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662


663664665666667668669670671672


673674675
676677678679680681682683684685686


687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736


737738739740741742743744745746


747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776


777778779780781782783784785786


787788789790791792793794795796797798799800801802803804805806807808809810811


812813814815816817818


819820821822823
824825826


827828829830831832833834835836837838839840841


842843844845846847848


849850851852853854855856


857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892


893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973


974975976977978979980981982983984985986987988989


990991992993
994995996997998999100010011002


1003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036


1037103810391040104110421043


1044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107


11081109111011111112


11131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141


1142114311441145114611471148


11491150115111521153
11541155


11561157115811591160116111621163116411651166116711681169


1170117111721173117411751176


11771178117911801181118211831184


Hair.Black


Hair.Brown


Hair.Red


Hair.Blond


Eye.Brown


Eye.Blue


Eye.Hazel


Eye.Green


Sex.Male


Sex.Female


# Not pretty
my.table.to.data.frame <- function (a) {
r <- NULL
d <- as.data.frame.table(a)
n1 <- dim(d)[1]
n2 <- dim(d)[2]-1
for (i in 1:n1) {
for (j in 1:(d[i,n2+1])) {
r <- rbind(r, d[i,1:n2])


}
row.names(r) <- 1:dim(r)[1]


}
r


}
r <- my.table.to.data.frame(HairEyeColor)
plot(mca(r))


We can also add mor subjects or variables, afterwards, with the “predict.mca” function.
?predict.mca


If there are only two variables, we can perform a simple or multiple correspondance analysis:
the result is not exactly the same, but remains very similar.
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x <- HairEyeColor[,,1]+HairEyeColor[,,2]
op <- par(mfcol=c(1,2))
biplot(corresp(x, nf = 2),


main="Simple Correspondance Analysis")
plot(mca(my.table.to.data.frame(x)), rows=F,


main="Multiple Correspondance Analysis")
par(op)


5.5.2 Multiple Correspondance Analysis: Details


We first transform the data, to turn it into a “disjunctive table”:
HairBlack HairBrown HairRed HairBlond EyeBrown EyeBlue EyeHazel EyeGreen


SexMale SexFemale
[1,] 0 0 0 1 0 1 0 0


1 0
[2,] 0 1 0 0 1 0 0 0


0 1
[3,] 0 1 0 0 0 1 0 0


0 1
[4,] 0 0 1 0 1 0 0 0


1 0
[5,] 0 0 1 0 1 0 0 0


0 1
[6,] 0 1 0 0 1 0 0 0


0 1
[7,] 0 1 0 0 1 0 0 0


0 1
[8,] 1 0 0 0 1 0 0 0


1 0
[9,] 0 1 0 0 0 1 0 0


0 1
[10,] 0 0 0 1 0 1 0 0


1 0


Then we do an “analysis” (this term is used to describe the common part of the PCA, CA,
MCA algorithms): the observations all have the same weight, the variables are weighted as
for Simple Correspondance Analysis. We remark that 1 is always an eigenvalue: we shall
remove the corresponding vector.
TODO: explain where this "1" comes from and explain why we remove it.


It comes from the fact that we did not center the data:


We have a cloud of points, not centered, and we try to find a line
through the origin that "fits" the cloud as tightly as
possible. This is the line through the center of gravity of the
cloud. It is not relevant (it does not really depend on the cloud of
points, but rather on the position of the origin), so we discard
it.
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Here is a bit of code that performs that kind of computation.


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


−0.003 −0.001 0.000 0.001 0.002 0.003 0.004


−
0.


00
4


−
0.


00
2


0.
00


0
0.


00
2


A1


A2


A3


B1


B2


C1


C2


C3


C4


C5


−0.010 −0.005 0.000 0.005 0.010


−
0.


01
0


−
0.


00
5


0.
00


0
0.


00
5


# Multiple Correspondance Analysis
tableau.disjonctif.vecteur <- function (x) {
y <- matrix(0, nr=length(x), nc=length(levels(x)))
for (i in 1:length(x)) {
y[i, as.numeric(x[i])] <- 1


}
y


}
tableau.disjonctif <- function (x) {
if( is.vector(x) )
y <- tableau.disjonctif.vecteur(x)


else {
y <- NULL
y.names <- NULL
for (i in 1:length(x)) {
y <- cbind(y, tableau.disjonctif.vecteur(x[,i]))
y.names <- c( y.names, paste(names(x)[i], levels(x[,i]), sep=’’) )


}


}
colnames(y) <- y.names
y


}
my.acm <- function (x, garder.un=F) {
# x is a data.frame that contains only factors
# y is a boolean matrix (it only contains 0s and 1s)
y <- tableau.disjonctif(x)
# Number of observations
n <- dim(y)[1]
# Number of variables
s <- length(x)
# Number of columns in the disjunctive table
p <- dim(y)[2]
# The matrix and the weights
F <- y/(n*s)
Dp <- diag(t(y)%*%y) / (n*s)
Dn <- rep(1/n,n)
# Let us perform the analysis
# Do NOT forget to remove 1 as an eigenvalue!!!
# (it comes from the fact that we did not center the matrix)
e1 <- eigen( t(F) %*% diag(1/Dn) %*% F %*% diag(1/Dp) )
e2 <- eigen( F %*% diag(1/Dp) %*% t(F) %*% diag(1/Dn) )
variables <- t(e2$vectors) %*% F
individus <- t(e1$vectors) %*% t(F)
variables <- t(variables)
individus <- t(individus)
valeurs.propres <- e1$values
if( !garder.un ) {
variables <- variables[,-1]
individus <- individus[,-1]
valeurs.propres <- valeurs.propres[-1]


}
plot( jitter(individus[,2], factor=5) ~ jitter(individus[,1], factor=5),


xlab=’’, ylab=’’, frame.plot=F )
par(new=T)
plot( variables[,1:2], col=’red’,


axes=FALSE, xlab=’’, ylab=’’, type=’n’ )
text( variables[,1:2], colnames(y), col=’red’)
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axis(3, col=’red’)
axis(4, col=’red’)
j <- 1
col = rainbow(s)
for (i in 1:s) {
jj <- j + length(levels(x[,i])) - 1
print( paste(j,jj) )
lines( variables[j:jj,1], variables[j:jj,2], col=col[i] )
j <- jj+1


}
invisible(list( donnees=x, variables=variables, individus=individus,


valeurs.propres=valeurs.propres ))
}


random.data.1 <- function () {
n <- 100
m <- 3
l <- c(3,2,5)
x <- NULL
for (i in 1:m) {
v <- factor( sample(1:l[i], n, replace=T), levels=1:l[i] )
if( is.null(x) )
x <- data.frame(v)


else
x <- data.frame(x, v)


}
names(x) <- LETTERS[1:m]
x


}
r <- NULL
while(is.null(r)) {
x1 <- random.data.1()
try(r <- my.acm(x1))


}


On the preceding plot, the three variables are well separated, a telltale sign that they are
independant. Here is what happens if they are dependant.


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●● ●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


−0.002 0.000 0.002 0.004


−
0.


00
4


−
0.


00
2


0.
00


0
0.


00
2


0.
00


4


A1


A2


A3


B1


B2


C1


C2


C3


−0.010 −0.005 0.000 0.005


−
0.


00
5


0.
00


0
0.


00
5


0.
01


0


my.random.data.2 <- function () {
n <- 100
m <- 3
l <- c(3,2,3)
x <- NULL
for (i in 1:m) {
v <- factor( sample(1:l[i], n, replace=T), levels=1:l[i] )
if( is.null(x) )
x <- data.frame(v)


else
x <- data.frame(x, v)


}
x[,3] <- factor( ifelse( runif(n)>.8, x[,1], x[,3] ), levels=1:l[1])
names(x) <- LETTERS[1:m]
x


}
r <- NULL
while(is.null(r)) {


x2 <- my.random.data.2()
try(r <- my.acm(x2))


}
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Let us compare our result with that of the “mca” command.
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At first, I had forgotten to remove the 1 eigenvalue, and I got this.
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5.5.3 Mixing quantitative and qualitative variables (it does not
work)


(What follows are a few mindless tests – none actually worked.)
One could try to analyse a set of qualitative and quantitative variables by mixing Principal
Component Analysis (PCA) and Multiple Correspondance Analysis (MCA): we just put the
two tables side by side and concatenate the weight vectors of the columns. Let us look at
the results.
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tableau.disjonctif.vecteur <- function (x) {
if( is.factor(x) ){
y <- matrix(0, nr=length(x), nc=length(levels(x)))
for (i in 1:length(x)) {
y[i, as.numeric(x[i])] <- 1
}
return(y)


} else
return(x)


}
tableau.disjonctif <- function (x) {
if( is.vector(x) )
y <- tableau.disjonctif.vecteur(x)


else {
y <- NULL
y.names <- NULL
for (i in 1:length(x)) {
y <- cbind(y, tableau.disjonctif.vecteur(x[,i]))


if( is.factor(x[,i]) )
y.names <- c( y.names, paste(names(x)[i], levels(x[,i]), sep=’’) )


else
y.names <- c(y.names, names(x)[i])


}
}
colnames(y) <- y.names
y


}
my.am <- function (x) {
y <- tableau.disjonctif(x)
# Number of observations
n <- dim(y)[1]
# Number of variables
s <- length(x)
# Number of columns of the disjunctive table
p <- dim(y)[2]


# The matrix and the weights
# Each variable weight is 1, but for the qualitative variables
# that are "split" into several "subvariables", it is the sum of
# those "subvariable" weights that is 1.
Dp <- diag(t(y)%*%y) / n
j <- 1
for(i in 1:s){
if( is.factor(x[,i]) )
j <- j + length(levels(x[,i]))


else {
Dp[j] <- 1
j <- j+1


}
}
Dn <- rep(1,n)
# It if not a good idea to center the variable...
f <- ne.pas.centrer(y)
# We perform the analysis...
e1 <- eigen( t(f) %*% diag(1/Dn) %*% f %*% diag(1/Dp) )
e2 <- eigen( f %*% diag(1/Dp) %*% t(f) %*% diag(1/Dn) )
variables <- t(e2$vectors) %*% f
individus <- t(e1$vectors) %*% t(f)
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variables <- t(variables)
individus <- t(individus)
valeurs.propres <- e1$values
# Sometimes, because of rounding errors, the matrix becomes
# non-diagonalizable in R. We then end up with complex eigenvalues
# and (worse) complex eigenvectors. That is why it is a better
# idea to use the SVD, that always yields real results.
if( any(Im(variables)!=0) | any(Im(individus)!=0) |


any(Im(valeurs.propres)!=0) ){
warning("Matrix not diagonalizable on R!!!")
variables <- Re(variables)
individus <- Re(individus)
valeurs.propres <- Re(valeurs.propres)


}
plot( jitter(individus[,2], factor=5) ~ jitter(individus[,1], factor=5),


xlab=’’, ylab=’’, frame.plot=F )
par(new=T)
plot( variables[,1:2], col=’red’,


axes=FALSE, xlab=’’, ylab=’’, type=’n’ )
text( variables[,1:2], colnames(y), col=’red’)
axis(3, col=’red’)
axis(4, col=’red’)
col = rainbow(s)
j <- 1
for (i in 1:s) {
if( is.factor(x[,i]) ){
jj <- j + length(levels(x[,i])) - 1
print( paste(j,jj) )
lines( variables[j:jj,1], variables[j:jj,2], col=col[i] )
j <- jj+1


} else {
arrows(0,0,variables[j,1],variables[j,2],col=col[i])
j <- j+1


}
}


}
ne.pas.centrer <- function (y) { y }


n <- 500
m <- 3
p <- 2
l <- c(3,2,5)
x <- NULL
for (i in 1:m) {
v <- factor( sample(1:l[i], n, replace=T), levels=1:l[i] )
if( is.null(x) )
x <- data.frame(v)


else
x <- data.frame(x, v)


}
x <- cbind( x, matrix( rnorm(n*p), nr=n, nc=p ) )
names(x) <- LETTERS[1:(m+p)]
x1 <- x
my.am(x1)


If the variables are dependant, we can see that the qualitative variables are linked (as
with multiple correspondance analysis), but there is nothing obvious with the quantitative
variable...
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n <- 500
m <- 3
p <- 2
l <- c(3,2,5)
x <- NULL
for (i in 1:m) {
v <- factor( sample(1:l[i], n, replace=T), levels=1:l[i] )
if( is.null(x) )
x <- data.frame(v)


else
x <- data.frame(x, v)


}
x <- cbind( x, matrix( rnorm(n*p), nr=n, nc=p ) )
names(x) <- LETTERS[1:(m+p)]
x[,3] <- factor( ifelse( runif(n)>.8, x[,1], x[,3] ), levels=1:l[1])
x[,5] <- scale( ifelse( runif(n)>.9, as.numeric(x[,1]), as.numeric(x[,2]) )) + .1*rnorm(n)
x2 <- x
my.am(x2)


If we center the matrix, the results are meaningless (however, we can center the columns for
the quantitative variables).
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ne.pas.centrer <- function (y) {
centre <- apply(y, 2, mean)
y - matrix(centre, nr=n, nc=dim(y)[2], byrow=T)


}
my.am(x1)
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5.5.4 Mixing qualitative and quantitative variables (a solution)


To plot, on the same graph, qualitative and quantitative variables, a simple solution is to
turn the quantitative variables into qualitative variables.
People will tell you that this is always a bad idea: you lose “some” information. And indeed,
there is not much to be seen: this is rather unhelpful...
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to.factor.numeric.vector <- function (x, number) {
resultat <- NULL
intervalles <- co.intervals(x,number,overlap=0)
for (i in 1:number) {
if( i==1 ) intervalles[i,1] = min(x)
else
intervalles[i,1] <- intervalles[i-1,2]


if( i==number )
intervalles[i,2] <- max(x)


}
for (valeur in x) {
r <- NA
for (i in 1:number) {
if( valeur >= intervalles[i,1] & valeur <= intervalles[i,2] )
r <- i


}
resultat <- append(resultat, r)


}


factor(resultat, levels=1:number)
}
to.factor.vector <- function (x, number) {
if( is.factor(x) )
return(x)


else
return(to.factor.numeric.vector(x,number))


}
to.factor <- function (x, number=4 ) {
y <- NULL
for (a in x) {
aa <- to.factor.vector(a, number)
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if( is.null(y) )
y <- data.frame(aa)


else
y <- data.frame(y,aa)


}
names(y) <- names(x)
y


}
my.am(to.factor(x1))


Let us cut the quantitative variables into three pieces instead of four.
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my.am(to.factor(x1, number=3))


With dependant variables.
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my.am(to.factor(x2, number=3))


5.5.5 TODO


Check the “ade4” package.


5.6 Log-linear model (Poisson Regression)


The log-linear model has a role similar to that of multiple correspondance analysis – with
the added advantage that, as with any regression, we can perform tests. We start with a
contingency table t {i,j} and we try to write
log t {i,j} = a 0 + a 1(i) + a 2(j) + a 3(i,j).


This can be immediately generalized in higher dimensions (but the notations become unread-
able); usually we only consider interactions of two or three variables, not more, otherwise
we woud have too many parameters for the number of observations at hand.
With R, it is simply the “glm” function, with the “family=poisson” argument. .
m <- data.frame(table(random.data.1()))
y <- m[,4]
x1 <- m[,1]
x2 <- m[,2]
x3 <- m[,3]
summary(glm( y ~ x1 + x2 + x3, family=poisson ))


It yields:
> summary(glm( y ~ x1 + x2 + x3, family=poisson ))


Call:
glm(formula = y ~ x1 + x2 + x3, family = poisson)


Deviance Residuals:
Min 1Q Median 3Q Max


-2.6060 -0.8723 -0.2724 0.4264 3.2634


Coefficients:
Estimate Std. Error z value Pr(>|z|)


(Intercept) 9.981e-01 2.965e-01 3.366 0.000762 ***
x12 3.314e-01 2.476e-01 1.338 0.180799
x13 1.643e-01 2.568e-01 0.640 0.522302
x22 -4.000e-02 1.999e-01 -0.200 0.841418
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x32 5.129e-02 3.203e-01 0.160 0.872784
x33 5.057e-09 3.244e-01 1.56e-08 1.000000
x34 1.001e-01 3.163e-01 0.316 0.751674
x35 1.001e-01 3.166e-01 0.316 0.751912
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for poisson family taken to be 1)


Null deviance: 38.794 on 29 degrees of freedom
Residual deviance: 36.735 on 22 degrees of freedom
AIC: 139.11


Number of Fisher Scoring iterations: 4


TODO: understand this result
TODO: explain how to add/remove some interaction terms


> r1 <- glm( y ~ x1 + x2 + x3 + x1*x2 + x2*x3 + x1*x3, family=poisson )
> r2 <- glm( y ~ x1 + x2 + x3, family=poisson )
> anova(r1,r2)
Analysis of Deviance Table


Model 1: y ~ x1 + x2 + x3 + x1 * x2 + x2 * x3 + x1 * x3
Model 2: y ~ x1 + x2 + x3
Resid. Df Resid. Dev Df Deviance


1 8 6.9906
2 22 13.1344 -14 -6.1438


5.7 Discriminant Analysis


TODO: Introduction


TODO: This is supervised learning, it should make up a separate chapter.


5.7.1 Discriminant Analysis


We try to predict a qualitative variable, such as “has the patient just had a heart attack?”,
with quantitative variables, corresponding to potential risk factors (blood pressure, daily
calory intake, workout, weight, etc.). We try to determine which factors are the most
prevalent, i.e., which variables determine best the qualitative.
We can also use discriminant factor analysis in a predictive way, i.e., to answer the question
“will the patient have a heart attack?”.
TODO: explain how we do this.
More precisely, the variable to predict clusters the subjects into
several classes and we are looking for a linear combination of the
predictive variables on which we can see the separation between the
clusters.


TODO: check what follows.


I guess we try to maximize the quotient of the
mean of the variances of this linear combination in each group
and its global variance (as for anova).


???
For a binary variable:
Normalize the predictive variables
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Compute their variance-covariance matrix A
Compute the vector w of the means of the differences for both groups
One can show that (?) A w = d
w = A^-1 * d, these are the weights we were looking for


(It is a good idea to plot the observations -- in dimension higher
than two, you can use ggobi to rotate the figure.)


Diagnostics:
Confusion matrix: rows: real values


columns: predicted values,
entries: number of cases


From the confusion matrix, we can build more than a dozen
different measures of the relevance of those results.
http://149.170.199.144/multivar/da4.htm


We can first try to predict the dimension, for instance, with a
principal component analysis.


One can also perform a stepwise discriminant analysis.


LD1


−5 0 5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


−2 0 2 4


−
5


0
5


10


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


3 4


5


1


2


3


4


5


1


2


34


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


34


5


1


2


34


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


34


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


3
4


5


1


2


34


5


1


2


34


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


3
4


5


1


2


34


5


1


2


3 4


5


1


2


3
4


5


1


2


3 4


5


1


2


34


5


1


2


34


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


3


4


5


1


2


34


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


3
4


5


1


2


34


5


1


2


34


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


3


4


5


1


2


34


5


1


2


3 4


5


1


2


3


4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2


34


5


1


2


34


5


1


2


3 4


5


1


2


3


4


5


1


2


3 4


5


1


2


34


5


1


2


34


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


34


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3 4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


−
5


0
5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5
1


2
3
4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


2
3


4


5 1


23


4


5


1


23


4


5


1


23


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5
1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5 1


2
3


4


5
1


23


4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5
1


2


3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5
1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5
1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


23


4


5


1


23


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


23


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5 LD2


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5
1


2
3


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


2
3


4


51


23


4


5


1


23


4


5


1


23


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5
1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


51


2
3


4


5
1


23


4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5
1


2


3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5
1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5
1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


23


4


5


1


23


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


23


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5
1


2
3


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


2
3


4


51


23


4


5


1


23


4


5


1


23


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5
1


2 3


4


5


1


2


3


4


5


1


2


3


4


5


1


2 3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


51


2
3


4


5
1


23


4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5
1


2


3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5
1


2


3


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5
1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


23


4


5


1


23


4


5


1


23


4


5


1


2


3


4


5


1


23


4


5


1


23


4


5


1


23


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2
3


4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1


23


4


5


1


2
3


4


5


1
2


3


45 1
2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5


1


2


3


4


5 1 2


3


45


1
2


3


45


1


2


3


4


5


1
2


3


4
5 1


2


3


4


5


1 2


3


4


5


1


2


3


4


5
1 2


3


45
1


2


3


4
5


1


2


3


45


1


2


3


4


5


1
2


3


4


5
1


2


3


4


5


1


2


3


45


1


2


3


45
1


2


3


4


5 1


2


3


4
5


1 2


3


4


5 1
2


3


4


5 1


2


3


4


5
1


2


3


45


1


2


3


4


5


1 2


3


4


5


1
2


3


4


5


1


2


3


4


5


1


2


3


4
5 1


2


3


4
5


1
2


3


4


5
1


2


3


4


5


1
2


3


4
5 1


2


3


4


5


1


2


3


45
1 2


3


4
5 1 2


3


4


5


1
2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5
1 2


3


4


5


1


2


3


45 1
2


3


4


5


1


2


3


4


5


1 2


3


4


5


1


2


3


4


5


1


2
3


4


5 1 2


3


4


5 1


2


3


4
5


1
2


3


4


5


1


2


3


4
5 1 2


3


4
5


1


2


3


4


5


1


2


3


4


5


1
2


3


4


5
1


2


3


4
5


1 2


3


4


5


1
2


3


45


1


2


3


4


5


1
2


3


4


5


1


2


3


4


5


1
2


3


45
1


2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5 1


2


3


4


5


1


2


3


4
5


1


2


3


4


5 1


2


3


4


5


1


2


3


4
5 1


2


3


4


5


1


2


3


4
5


1


23


4


5
1


2


3


4


5
1 2


3


4
5


1


2


3


4


5
1 2


3


4


5


1


2


3


4


5
1


2


3


4
5


1
2


3


4


5


1
2


3


4


5
1


2


3


4


5
1


2


3


4


5


1


2


3


4


5


1


2


3


4


5 1
2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5 1


2


3


4


5 1
2


3


4


5


1
2


3


4


5
1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


1
2


3


451
2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5


1


2


3


4


51 2


3


45


1
2


3


45


1


2


3


4


5


1
2


3


4
51


2


3


4


5


1 2


3


4


5


1


2


3


4


5
1 2


3


45
1


2


3


4
5


1


2


3


45


1


2


3


4


5


1
2


3


4


5
1


2


3


4


5


1


2


3


45


1


2


3


45
1


2


3


4


51


2


3


4
5


1 2


3


4


51
2


3


4


51


2


3


4


5
1


2


3


45


1


2


3


4


5


1 2


3


4


5


1
2


3


4


5


1


2


3


4


5


1


2


3


4
51


2


3


4
5


1
2


3


4


5
1


2


3


4


5


1
2


3


4
51


2


3


4


5


1


2


3


45
1 2


3


4
51 2


3


4


5


1
2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5
1 2


3


4


5


1


2


3


451
2


3


4


5


1


2


3


4


5


1 2


3


4


5


1


2


3


4


5


1


2
3


4


51 2


3


4


51


2


3


4
5


1
2


3


4


5


1


2


3


4
51 2


3


4
5


1


2


3


4


5


1


2


3


4


5


1
2


3


4


5
1


2


3


4
5


1 2


3


4


5


1
2


3


45


1


2


3


4


5


1
2


3


4


5


1


2


3


4


5


1
2


3


45
1


2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


51


2


3


4


5


1


2


3


4
5


1


2


3


4


51


2


3


4


5


1


2


3


4
51


2


3


4


5


1


2


3


4
5


1


2 3


4


5
1


2


3


4


5
1 2


3


4
5


1


2


3


4


5
1 2


3


4


5


1


2


3


4


5
1


2


3


4
5


1
2


3


4


5


1
2


3


4


5
1


2


3


4


5
1


2


3


4


5


1


2


3


4


5


1


2


3


4


51
2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


51


2


3


4


51
2


3


4


5


1
2


3


4


5
1


2


3


4


5


1


2


3


4


5


1


2
3


4


5 LD3


−
6


−
2


2
4


1
2


3


4 51
2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5


1


2


3


4


51 2


3


4 5


1
2


3


4 5


1


2


3


4


5


1
2


3


4
51


2


3


4


5


1 2


3


4


5


1


2


3


4


5
12


3


45
1


2


3


4
5


1


2


3


4 5


1


2


3


4


5


1
2


3


4


5
1


2


3


4


5


1


2


3


4 5


1


2


3


4 5
1


2


3


4


51


2


3


4
5


12


3


4


51
2


3


4


51


2


3


4


5
1


2


3


4 5


1


2


3


4


5


1 2


3


4


5


1
2


3


4


5


1


2


3


4


5


1


2


3


4
51


2


3


4
5


1
2


3


4


5
1


2


3


4


5


1
2


3


4
51


2


3


4


5


1


2


3


45
1 2


3


4
51 2


3


4


5


1
2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


5
1 2


3


4


5


1


2


3


4 51
2


3


4


5


1


2


3


4


5


1 2


3


4


5


1


2


3


4


5


1


2
3


4


51 2


3


4


51


2


3


4
5


1
2


3


4


5


1


2


3


4
51 2


3


4
5
1


2


3


4


5


1


2


3


4


5


1
2


3


4


5
1


2


3


4
5


1 2


3


4


5


1
2


3


4 5


1


2


3


4


5


1
2


3


4


5


1


2


3


4


5


1
2


3


4 5
1


2


3


4


5


1


2


3


4


5
1


2


3


4


5


1
2


3


4


51


2


3


4


5


1


2


3


4
5


1


2


3


4


51


2


3


4


5


1


2


3


4
51


2


3


4


5


1


2


3


4
5


1


2 3


4


5
1


2


3


4


5
1 2


3


4
5


1


2


3


4


5
12


3


4


5


1


2


3


4


5
1


2


3


4
5


1
2


3


4


5


1
2


3


4


5
1


2


3


4


5
1


2


3


4


5


1


2


3


4


5


1


2


3


4


51
2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


51


2


3


4


51
2


3


4


5


1
2


3


4


5
1


2


3


4


5


1


2


3


4


5


1


2
3


4


5


−5 0 5 10


−
2


0
2


4


1


2


3


4
5 1


2


3


4
5


1


2


3


4


5


1


2


34


5


1


2
3


4


5


1 2


3
4


5


1


2


3


4


5


1


2


3


4
5


1


2
3


4


5


1


2
3


4


5


1


2


3 4


5


1
234


5


1


2


3


4
5


1 2


3


4


5


1
2


3


4


5


1


2


3


4


5


1


2


34


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1 23


4


5


1


2


34


5


1


2


3
4


5


1


2


3


4


5


1 2
34


5


1


2
3


4
5


1


2


3


4


5


1


2


3


4


5


1


2
34


5


1


2


3
4


5


1


2


34


5
1


2


3


4


5


1


2


3
4


5


1
23


4


5


1


2


3


4
5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2
345


1 2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


34


5


1


2


3


4
5


1


2
3


4


5


1


2


3
4


5


1


2
3


4


5


1


2


34
5


1


23
4


5


1


2


3


4


5


1


2


3
4


5


1


2
3


45 1


2


3


4
5


1


2


3


4


5


1


2


3


4


5


1 23


4


5


1


2


3


4


5


1


2


34


5


1


234
5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2
3


4


5


1


2


34


5


1


2


34


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2
3
4


5


1


2


3
4


5


1


2
3
4


5


1


2


3


4
5


1 2
3


4


5


1 2


34


5


1


2


345


1


2
3


4


5


1


2


3


4


5


1
2


3


45


1


23
4


5


1


2


3


4
5


1


2


3
4


5


1


2
3


4


5


1


2


3
4


5


1


2


3


4


5


1


2


34


5


1


2


3
4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1
2


3
4


5 1


2


3


4
51


2


3


4
5


1


2


3


4


5


1


2


3 4


5


1


2
3


4


5


1 2


3
4


5


1


2


3


4


5


1


2


3


4
5


1


2
3


4


5


1


2
3


4


5


1


2


3 4


5


1
2 3 4


5


1


2


3


4
5


1 2


3


4


5


1
2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


1 2 3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1 2
3 4


5


1


2
3


4
5


1


2


3


4


5


1


2


3


4


5


1


2
3 4


5


1


2


3
4


5


1


2


3 4


5
1


2


3


4


5


1


2


3
4


5


1
2 3


4


5


1


2


3


4
5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2
3 45


1 2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3


4
5


1


2
3


4


5


1


2


3
4


5


1


2
3


4


5


1


2


3 4
5


1


2 3
4


5


1


2


3


4


5


1


2


3
4


5


1


2
3


451


2


3


4
5


1


2


3


4


5


1


2


3


4


5


1 23


4


5


1


2


3


4


5


1


2


3 4


5


1


2 3 4
5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2
3


4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2
3


4


5


1


2


3
4


5


1


2
3


4
5


1


2


3


4
5


1 2
3


4


5


1 2


3 4


5


1


2


3 45


1


2
3


4


5


1


2


3


4


5


1
2


3


45


1


23
4


5


1


2


3


4
5


1


2


3
4


5


1


2
3


4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1
2


3
4


5


−6 −2 2 4


1


2


3


4
51


2


3


4
5


1


2


3


4


5


1


2


3 4


5


1


2
3


4


5


12


3
4


5


1


2


3


4


5


1


2


3


4
5


1


2
3


4


5


1


2
3


4


5


1


2


3 4


5


1
23 4


5


1


2


3


4
5


12


3


4


5


1
2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


23


4


5


1


2


3


4


5


1


2


3


4


5


123


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


12
3 4


5


1


2
3


4
5


1


2


3


4


5


1


2


3


4


5


1


2
3 4


5


1


2


3
4


5


1


2


3 4


5
1


2


3


4


5


1


2


3
4


5


1
23


4


5


1


2


3


4
5


1


2


3
4


5


1


2


3
4


5


1


2


3
4


5


1


2
3 45


1 2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3


4


5


1


2


3 4


5


1


2


3


4
5


1


2
3


4


5


1


2


3
4


5


1


2
3


4


5


1


2


3 4
5
1


23
4


5


1


2


3


4


5


1


2


3
4


5


1


2
3


451


2


3


4
5


1


2


3


4


5


1


2


3


4


5


123


4


5


1


2


3


4


5


1


2


3 4


5


1


23 4
5


1


2


3
4


5


1


2


3


4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2
3


4


5


1


2


3 4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3


4


5


1


2


3
4


5


1


2


3
4


5


1


2
3


4


5


1


2


3
4


5


1


2
3


4
5


1


2


3


4
5


12
3


4


5


12


3 4


5


1


2


3 45


1


2
3


4


5


1


2


3


4


5


1
2


3


45


1


23
4


5


1


2


3


4
5


1


2


3
4


5


1


2
3


4


5


1


2


3
4


5


1


2


3


4


5


1


2


3 4


5


1


2


3
4


5


1


2


3


4


5


1


2
3


4


5


1


2


3


4


5


1


2


3


4


5


1
2


3
4


5 LD4


library(MASS)
n <- 100
k <- 5
x1 <- runif(k,-5,5) + rnorm(k*n)
x2 <- runif(k,-5,5) + rnorm(k*n)
x3 <- runif(k,-5,5) + rnorm(k*n)
x4 <- runif(k,-5,5) + rnorm(k*n)
x5 <- runif(k,-5,5) + rnorm(k*n)
y <- factor(rep(1:5,n))
plot(lda(y~x1+x2+x3+x4+x5))


We can choose to retain only the first two dimensions.



http://149.170.199.144/multivar/da4.htm
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plot(lda(y~x1+x2+x3+x4+x5), dimen=2)


Or even, just the first.
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op <- par(mar=c(4,4,0,2)+.1)
plot(lda(y~x1))
par(op)


As for Principal Component Analysis, we choose the number of dimension to retain from
the eigen values.
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plot(lda(y~x1+x2+x3+x4+x5)$svd, type=’h’)


Linear discriminant analysis (LDA) can be sensitive to heteroskedasticity problems: of the
two groups you are trying to separate have different variances (sizes), the boundary will be
shifted to the most compact one.


5.7.2 Quadratic discriminant analysis


The “qda” and “predict.qda” has the same role, but in a non-linear (quadratic) setting.
?qda


Also check the “mda” package.


5.7.3 Bayesian Discriminant Factor Analysis


It is the same, but we know the probabilities
P ( Y == i ),


i.e., the size of the various clusters.
(We still use the “lda” function, with one more argument.)
TODO: Example


5.8 Canonical analysis


5.8.1 Canonical Analysis


We consider qualitative variables X1, X2, ..., Xp, Y1, Y2, ..., Yq and we look for a linear
combination Xa of the Xi and a linear combination Yb of the Yj so that Xa and Yb be as
correlated as possible.
library(ade4)
?cca


See for example part 4 of
http://www.cg.ensmp.fr/%7Evert/talks/021205inria/inria.pdf


5.8.2 Co-inertia analysis


Instead of using the correlation, one can use the covariance.



http://www.cg.ensmp.fr/%7Evert/talks/021205inria/inria.pdf
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TODO


5.8.3 Partial Least Squares


TODO: Explain the relations/differences between PLS and CA.


5.9 Kernel methods


5.9.1 Principal Component Analysis and kernel methods


TODO: rewrite the introduction


Methods such as Principal Component Analysis (PCA) can reduce the
dimension of the cloud of points but, as they are linear, they will
not enable us to "untangle" the data: it will remain curved, it will
not become a straight segment.


One idea to straighten the curve is to embed our space (which can already be of unreasonably
high dimension) into a higher-dimensional space, in a non-linear way. By applying linear
methods on this higher-dimensional space, we can hope to see phenomena that were non-
linear in the first space.
Here is an example of such an embedding:
(x,y) ---> (x^2, x*y, y^2).


It might sound unreasonnable to embed a space whose dimension is already problematic
into an even larger one. It would indeed be the case if we needed to compute (and store)
the coordinates of the points in this new space – but actually, we only need to be able to
compute scalar products.
More precisely, principal component analysis (and other similar techniques) play with the
variance-covariance matrix
t(m) %*% m


In our new space, this becomes:


var 1
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# Data
n <- 200 # Number of patients, number of columns
k <- 10 # Dimension of the ambient space
nb.points <- 5
p <- matrix( 5*rnorm(nb.points*k), nr=k )
library(splines)
barycentre2 <- function (y,n) {
m <- length(y)
x <- 1:m
r <- interpSpline(x,y)
#r <- lm( y ~ bs(x, knots=m) )
predict(r, seq(1,m,length=n))$y


}
data.curve <- apply(p, 1, barycentre2, n)
data.curve <- t(data.curve)
pairs(t(data.curve))
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m <- data.curve
mm <- apply(m, 2, function (x) { x %o% x } )
r <- princomp(t(mm))
plot(r)
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Nothing exciting...
Let us try with a higher degree.
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# Degree 1 kernel ("noyau" is the French word for "kernel")
noyau1 <- function (x,y) { sum(x*y) }
m <- data.curve
m <- t(t(m) - apply(m,2,mean))
k <- dim(m)[1]
wrapper <- function(x, y, my.fun, ...) {
sapply(seq(along=x), FUN = function(i) my.fun(x[i], y[i], ...))


}
mm <- outer(1:k, 1:k, wrapper, function (i,j) { noyau1(m[,i],m[,j]) })


# Degree 2 kernel
noyau2 <- function (x,y) {
a <- x*y
n <- length(a)
i <- gl(n,1,n^2)
j <- gl(n,n,n^2)
i <- as.numeric(i)
j <- as.numeric(j)


w <- which( i <= j & j <= k )
i <- i[w]
j <- j[w]
sum(a[i]*a[j])


}
stopifnot( noyau2(1:2,2:1) == 12 )


# Degree 3 kernel
noyau3 <- function (x,y) {
a <- x*y
n <- length(a)
i <- gl(n,1,n^3)
j <- gl(n,n,n^3)
k <- gl(n,n^2,n^3)
i <- as.numeric(i)
j <- as.numeric(j)
k <- as.numeric(k)
w <- which( i <= j & j <= k )
i <- i[w]
j <- j[w]
k <- k[w]
sum(a[i]*a[j]*a[k])


}
stopifnot( noyau3(1:2,2:1) == 32 )


wrapper <- function(x, y, my.fun, ...) {
sapply(seq(along=x), FUN = function(i) my.fun(x[i], y[i], ...))


}
k <- dim(m)[1]
mm <- outer(1:k, 1:k, FUN=wrapper, my.fun = function (i,j) { noyau3(m[,i],m[,j]) })


r <- princomp(covmat=mm)
plot(r)
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#pairs(r$scores[,1:5])
plot((t(m) %*% r$loadings) [,1:2])
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0 data.noisy.curve <- data.curve + rnorm(length(data.curve))


k <- dim(data.noisy.curve)[1]
mm <- outer(1:k, 1:k, FUN=wrapper, my.fun = function (i,j) {
noyau3(data.noisy.curve[,i],data.noisy.curve[,j])


})
r <- princomp(t(data.noisy.curve), covmat=mm)
plot(r)
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plot(y1,y2)
lines(y1,y2, col=’red’)
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Let us try to combine those kernels.
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noyau <- function (x,y) {
noyau1(x,y) + noyau2(x,y) + noyau3(x,y)


}
mm <- outer(1:k, 1:k, FUN=wrapper, my.fun = function (i,j) {
noyau(data.curve[,i],data.curve[,j])


})
r <- princomp(covmat=mm)
plot(r)
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Comp.5


pairs((t(m) %*% r$loadings) [,1:5])


Well, in the end it is not very conclusive...


5.9.2 kernlab


Actually, there is already a package to perform those computations.
TODO: Examples


5.10 Neural networks


5.10.1 Introduction


TODO...


5.10.2 Perceptron


A perceptron is a neural network with no hidden layer and binary output(s).
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Perceptron learning
perceptron learn <- function (input, output,


max iterations = 100) {
stopifnot( is.matrix(input),


is.matrix(output),
is.numeric(input),
is.logical(output) )


stopifnot( dim(input)[2] == dim(output)[2] )
input <- rbind(input, rep(1, N)) # Biases
N <- dim(input)[2]
dim input <- dim(input)[1]
dim output <- dim(output)[1]
W <- matrix(rnorm(dim input) * rnorm(dim output),


nc = dim input, nr = dim output)
hardlim <- function (x) ifelse( x > 0, 1, 0 )
finished <- FALSE
remaining iterations <- max iterations
while (! finished) {
W previous <- W
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for (i in 1:N) {
forecast <- hardlim( W %*% input[,i] )
error <- output[,i] - forecast
W <- W + error %*% input[,i]


}
remaining iterations <- remaining iterations - 1
finished <- remaining iterations <= 0 |


sum(abs(W - W previous)) < 1e-6
}
attr(W, "converged") <- all(W == W previous)
dimnames(W) <- list(output=NULL, input=NULL)
class(W) <- "perceptron"
W


}
perceptron predict <- function (W, input) {
input <- as.matrix(input)
N <- dim(input)[2]
input <- rbind(input, rep(1, N)) # Biases
stopifnot( dim(W)[2] == dim(input)[1] )
W %*% input


}


# Test
k <- 2 # BUG: It does not work with other values...
N <- 50
set.seed(1)
centers <- matrix(rnorm(2*k), nc=2)
output <- sample(1:k, N, replace=T)
input <- t(matrix(
rnorm(k*N, mean=centers[output,], sd=.1),


nc=2))
output <- t(output == 1)
w <- perceptron learn(input, output)


plot(t(input), col=1+output,
xlab="", ylab="", main="Perceptron learning")


abline(-w[3]/w[2], -w[1]/w[2], lwd=3, lty=2)


%%G
# It is not designed to work if the clusters overlap:
# It will fail to converge...
N <- 50
set.seed(2)
centers <- matrix(rnorm(2*k), nc=2)
output <- sample(1:k, N, replace=T)
input <- t(matrix(
rnorm(k*N, mean=centers[output,], sd=1),


nc=2))
output <- t(output == 1)
w <- perceptron learn(input, output)


plot(t(input), col = 1 + output,
xlab = "", ylab = "",
main = "Perceptron failing to converge")


abline(-w[3]/w[2], -w[1]/w[2], lwd=3, lty=2)
%--
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library(MASS)
z <- output[1,]
x <- input[1,]
y <- input[2,]
r <- lda( z ~ x + y )
n <- 200
x <- rep(seq(-2,2,length=n), each=n)
y <- rep(seq(-2,2,length=n), n)
z <- predict(r, data.frame(x, y))
z <- c(rgb(.7,.7,.7), rgb(1,.7,.7))[ as.numeric(z$class) ]
plot(x, y, col=z, pch=15,


xlab="", ylab="",
main="Non-converging perceptron and LDA")


points(t(input), col = 1 + output)
abline(-w[3]/w[2], -w[1]/w[2], lwd=3, lty=2)
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Non−converging perceptron and SVM
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library(e1071)
y <- as.factor(output[1,])
x <- t(input)
r <- svm(x, y)
n <- 200
x <- cbind( rep(seq(-2,2,length=n), each=n),


rep(seq(-2,2,length=n), n) )
z <- predict(r, x)
z <- c(rgb(.7,.7,.7), rgb(1,.7,.7))[ as.numeric(z) ]
plot(x, col=z, pch=15,


xlab="", ylab="",
main="Non-converging perceptron and SVM")


points(t(input), col = 1 + output)
abline(-w[3]/w[2], -w[1]/w[2], lwd=3, lty=2)


Perceptrons should not be used if the cloud of points is not separable: in this case, prefer
logistic regression, linear discriminant analysis (LDA) or support vector machines (SVM).


5.10.3 Linear filter neuron


TODO
In the statistical community, this is known as "(least
squares) linear regression".


5.10.4 Neural networks: TO SORT


Windrow-Hoff learning rule: gradient descent for linear
filter neurons -- i.e., for least squares linear
regression.


Back-propagation: gradient descent algorithm for
multi-layer networks.
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The tricky point is to compute the gradient (there are too
many variables to do this by applying a general method):
this is what the back-propagation algorithm provides.


Feed-forward neural network: this is the classical 3-layer
(i.e., with one hidden layer) neural net, fitted by
back-propagation.


Batch training: for each update of the weights, you use
all the data.
Incremental training, on-line learning: you only use one
observation to update the weights.


Variants of gradient descent:


Gradient descent with momentum (this increases the
convergence speed; it is not too dissimilar to tabu
search).


Variable learning rate: if the previous move did not
decrease the error, i.e., if we went too far in the
direction of the gradient, decrease the learning rate by
30%, if not, increase it by 5%.


Resilient back-propagation (Rprop): since sigmoid
function tend to squash their inputs, even very wrong
weights can induce a small change in the result -- this
leads to a very slow convergence toward the optimal
weights. Resilient back-propagation only uses the sign
of the derivative. The amplitude of the change is
controled by another parameter that increases if there
have been two successive changes in the same direction
and decreases if there have been two successive changes
in opposite directions.


Conjugate gradient:
Look in the direction of the (opposite of the) gradient
and perform a line search in this direction.
The next direction is not the opposite of the gradient
but a linear combination of the opposite of the gradient
and the previous search direction.
new direction = - gradient + beta * old direction


where (Fletcher-Reeves update)
norm(current gradient) ^ 2


beta = -----------------------------
norm(previous gradient) ^ 2


or (Polak-Ribiere update)
< current gradient - previous, current >


beta = -------------------------------------------
norm( previous gradient ) ^ 2


From time to time (e.g., after as many iterations as
there are parameters, or when the angle between two
successive gradients becomes too high (Powel Beale
restarts)), reset the direction to the opposite of the
gradient.


Quasi-newton: The newton method is very fast, but it
requires second derivatives (hessian matrices), which
are too expensive to compute for neural networks.
Quasi-newton algorithms try to approximate it without
the second derivative computational overhead.
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BFGS quasi-Newton algorithm: an approximation of the
hessian matrix is stored and updated at each iteration,
using the gradient. (details?)


One-step secant quasi-Newton algorithm: idem, but
assumes that the previous estimation of the hessian was
the identity matrix -- hence, there is no need to store
it.


Levenberg-Maquardt: This is yet another quasi-Newton
method.s
x[k+1] = x[k] - (J’ + mu I)^-1 J’ error


where
x: parameters to be estimated
J = d error / d weights
gradient = J’ error
hessian = J’ J (approximately)
mu = 0: this is Newton’s method, with an approximate


hessian
mu >> 0: this is a gradient method with a small step


size


Reduced-memory Levenberg-Maquardt: the matrix J is huge
(its number of rows is the number of training sets). If
ot does not fit in memory, you can cut it into blocks.10


Line search routines (for conjugate gradient methods):
Quadratic interpolation
Golden section search
Brent’s search (hydrid of qquadratic interpolation and
the golden section search)


Hybrid bisection-cubic search
Charalambous search
Backtracking search


Avoiding overfitting:
Stop the algorithm when the performance on a validation
sample starts to decrease (it may sound reasonable, but
this is apprtoximately a baysian fit with the initial
(random) weights as a prior...). And you must be careful
not to choose too fast an algorithm...
Choose a network small enough
Add a penalty (the sum of the squares of the weights) to
the objective function, to shrink the weights towards
zero (try to have inputs, outputs and weights of the
same order of magnitude, say in [-1,1]).
Objective = lambda * Mean Square Error +


(1 - lambda) * Mean Square Weight


5.10.5 Neural networks and dimension reduction


You can reduce the dimension of a cloud of points with a 5-layer neural network: an input
layer (with the data), a (non-linear) compression layer, a (linear) layer representing the data
in the low-dimensional space, a (non-linear) uncompression layer, and an output layer (on
which we expect to get the initial data back).
I do not think that such networks are already implemented in R, so we shall do it ourselves
– we shall be EXTREMELY careful with convergence problems.
As I do not really know neural networks (I was superficially interested in the subject 10
years ago), I browse the net to understand them
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http://www.willamette.edu/%7Egorr/classes/cs449/backprop.html


and I write the following code.
TODO: start with a smaller example, on which the computations will
be faster and for which we know waht kind of result we should
expect. For instance, a 2-dimensional cloud in a 3-dimensional
space. with only linear neurons and only two neurons in the middle
layer.


Problem: in this case, the intermediary layers are useless and
may unstabilize the algorithm.


# x: matrix whose columns are the vectors to learn
# n: number of neurons in the middle layer
# m: number of neurons in the two other hidden layers
# (you should have m>n)
drnn <- function (M, n, m, e=.1, N=100) {
# Activation fucntions
id <- function (t) { t }
f1 <- tanh
f2 <- id
f3 <- tanh
f4 <- id
# Number of neurons in each layer
n0 <- dim(M)[1]
n1 <- m
n2 <- n
n3 <- m
n4 <- n0
# The weights -- initialized by random values
w1 <- matrix( rnorm(n0*n1), nc=n0, nr=n1 )
w2 <- matrix( rnorm(n1*n2), nc=n1, nr=n2 )
w3 <- matrix( rnorm(n2*n3), nc=n2, nr=n3 )
w4 <- matrix( rnorm(n3*n4), nc=n3, nr=n4 )
# Les biais
b1 <- rnorm(n1)
b2 <- rnorm(n2)
b3 <- rnorm(n3)
b4 <- rnorm(n4)
# The algorithm (backpropagation)
r <- list()
err <- rep(0, N)
for (i in 1:N) {
cat(paste("Iteration", i, "\n"))
res <- matrix(NA, nr=n, nc=dim(M)[2])
for (j in 1:dim(M)[2]) {
x <- M[,j]
# Computing the valu of the nodes
y0 <- x
y1 <- f1( w1 %*% y0 + b1 )
y2 <- f2( w2 %*% y1 + b2 )
y3 <- f3( w3 %*% y2 + b3 )
y4 <- f4( w4 %*% y3 + b4 )
# Computing the errors
d4 <- x - y4
d3 <- (t(w4) %*% d4) * (1 - y3^2)
d2 <- (t(w3) %*% d3) * 1
d1 <- (t(w2) %*% d2) * (1 - y1^2)
# Updating the weights and the biases
dw4 <- d4 %*% t(y3)
dw3 <- d3 %*% t(y2)



http://www.willamette.edu/%7Egorr/classes/cs449/backprop.html
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dw2 <- d2 %*% t(y1)
dw1 <- d1 %*% t(y0)
w4 <- w4 + e * dw4
w3 <- w3 + e * dw3
w2 <- w2 + e * dw2
w1 <- w1 + e * dw1
b4 <- b4 + e * d4
b3 <- b3 + e * d3
b2 <- b2 + e * d2
b1 <- b1 + e * d1
res[,j] <- y2
err[i] <- err[i] + sum(d4^2)


}
r[[i]] <- res


}
list(scores=res, errors=err, r=r)


}


r <- drnn(data.curve, 1, 4, N=30, e=.02)
plot(r$err, ylim=range(c(0,r$err)), type=’l’)
%--


i <- order(drop(r$scores))
plot(t(data.curve)[,1:2])
lines(t(data.curve)[,1:2][i,], col=’red’)
%--


Well, it is not exactly what we were expecting. But it is still better than nothing...
op <- par(mfrow=c(2,2))
for (k in c(1, 3, 7, 30)) {
i <- order(drop(r$r[[k]]))
plot(t(data.curve)[,1:2], main=paste("after",k,"iteration(s)"))
lines(t(data.curve)[,1:2][i,], col=’red’)


}
par(op)
%--


Changing the order in which we give the points to the network has no significant effect.
op <- par(mfrow=c(2,4))
for (i in 1:4) {
m <- data.curve[,sample(1:dim(data.curve)[2])]
r <- drnn(m, 1, 4, N=30, e=.02)
plot(r$err, ylim=range(c(0,r$err)), type=’l’)
i <- order(drop(r$scores))
plot(t(m)[,1:2])
lines(t(m)[,1:2][i,], col=’red’)


}
par(op)
%--


The plot of the error is VERY worrying: the error is supposed to decrease at each iteration
– it sometimes increases. Do not use this code unless you really understand it and think it
is correct.
Let us try with two neurons in the middle layer.
i <- sample(1:dim(data.curve)[2])
m <- data.curve[,i]
r <- drnn(m, 2, 8, N=30, e=.02)
plot(r$err, ylim=range(c(0,r$err)), type=’l’)
plot(t(r$scores)[i,], type=’l’)
%--
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(Yes, it is supposed to be a curve...)
TODO: look more precisely what happens when we change one of the
parameters. Each time, display at least 4 plots: the error (that
should be decreasing), the first path, the last path.


TODO: Check that my implementation is correct.
The evolution of the error term suggest there IS a problem.


5.10.6 Neural networks and dimension reduction: examples


Neural networks can help increase the coverage and the precision of OS fingerprinting (this
could apply to any rules-based classifier):
http://actes.sstic.org/SSTIC06/Fingerprinting_par_reseaux_neuronaux/


5.11 Dimension reduction: TODO: Rewrite/Remove this
section


0. Data
1. Kernels
2. Neural networks
3. k-means + MST
4. Isomap
5. Optimisation
6. pruned MST
7. TSP
8. SVM


5.11.1 Problem


Let us consider a cloud of (40) points in a space of reasonable dimension (10) or of less
reasonable dimension (7000). The points are more or less aligned on a curve we are trying
to describe.
The real situation was the following. With DNA array, we examined the expression of 7000
genes in 40 patients, representing different stages of a single disease. We can see this pattern
by a Principal Component Analysis (PCA) (or via other dimension reduction techniques):
the points give the impression of forming a curve. In dimension two, the curve may seem
singular, it seem to cross itself, but in higher dimension, it looks smooth. With the expression
of those genes (all of them or, rather, just a subset of them), we would like to define an
“index” indicating the position on the curve and, thus, the current stage of the disease.
We shall first describe the data (both simulated data and real data), apply various clas-
sical dimension reduction techniques (PCA, PCA after non-linear transformations, neural
networks), some less classical ones (based on optimization problems such as the traveling
salesman problem) and we shall compare all those methods.


5.11.2 Data


Simulated data: broken line.



http://actes.sstic.org/SSTIC06/Fingerprinting_par_reseaux_neuronaux/
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var 10


n <- 200 # Number of patients, number of columns
k <- 10 # Dimension of the ambient space
nb.points <- 5
p <- matrix( 5*rnorm(nb.points*k), nr=k )
barycentre <- function (x, n) {
# Add number between the values of x in order to get a length n vector
i <- seq(1,length(x)-.001,length=n)
j <- floor(i)
l <- i-j
(1-l)*x[j] + l*x[j+1]


}
m <- apply(p, 1, barycentre, n)
data.broken.line <- t(m)
pairs(t(data.broken.line))
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Simulated data: noisy broken line
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data.noisy.broken.line <- data.broken.line + rnorm(length(data.broken.line))
pairs(princomp(t(data.noisy.broken.line))$scores[,1:5])


Simulated data: curve – we just change our “barycentre” function.







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)460
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library(splines)
barycentre2 <- function (y,n) {
m <- length(y)
x <- 1:m
r <- interpSpline(x,y)
#r <- lm( y ~ bs(x, knots=m) )
predict(r, seq(1,m,length=n))$y


}


k <- 5
y <- sample(1:100,k)
x <- seq(1,k,length=100)
plot(barycentre2(y,100) ~ x)
lines(y, col=’red’, lwd=3, lty=2)


var 1
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pairs(princomp(t(data.noisy.curve))$scores[,1:5])


Let us think about the shape of the curve we would expect. If the disease is lethal (or if, for
all the patients of the study, it evolves towards death), we can expect a segment, curved,
one end representing healthy people, the other dead patients.
If the disease is benign, we would expect the points to form a (deformed) circle, representing
the successives stages of the disease, until a once-again healthy patient.
If the disease is sometimes lethal, sometimes not, we could expect a mixture of both: the
reunion of a circle and a segment.
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x


random.rotation.matrix <- function (n=3) {
m <- NULL
for (i in 1:n) {
x <- rnorm(n)
x <- x / sqrt(sum(x*x))
y <- rep(0,n)
if (i>1) for (j in 1:(i-1)) {
y <- y + sum( x * m[,j] ) * m[,j]


}
x <- x - y
x <- x / sqrt(sum(x*x))
m <- cbind(m, x)


}
m


}


n <- 200
k <- 10


x <- seq(0,2*pi,length=n)
data.circle <- matrix(0, nr=n, nc=k)
data.circle[,1] <- cos(x)
data.circle[,2] <- sin(x)
data.circle <- data.circle %*% random.rotation.matrix(k)
data.circle <- t( t(data.circle) + rnorm(k) )
pairs(data.circle[,1:3])







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)464


x


−1.2 −0.8 −0.4 0.0


●


●
●


●
●


●


●


●
●


●


●●
●


●


●


●


●


●


●


●


●


●
●


●●
●


●


●●


●●


●


● ●


●


●
●


●●


●


●


●
● ●


●
●


●
●


●


●


●●●


●● ●
●


●
●
●


●
●
●


●


● ●


●


●


●
●


●●


●


●


●● ●


●
●


●


●


●
●


●


●
●


● ●


●●


●


●


●


●


●


●●


●


●


●


●


●
●


●


● ●
●


●


●


●
●


●●
●


●
●


●●
●


●


●
●


●


●
●


●
●


●
●


●
●●


●
●


●
● ●


● ●●


●
●


●
●


●


●


●


●


●
●


●


●
●


●


●●


●


●
●


●


●


● ●●●
●


● ●
●


●●


●


●


●
●


●


●


●
●


●


●
●


●


●
●


●


●


●


●


●
●


●


●
●


●
●


●
●●


●


0.
2


0.
6


1.
0


1.
4


●


●
●


●
●


●


●


●
●


●


●●
●


●


●


●


●


●


●


●


●


●
●


● ●
●


●


● ●


● ●


●


●●


●


●
●


●●


●


●


●
●●
●


●
●


●
●


●


●● ●


●● ●
●


●
●


●


●
●


●
●


●●


●


●


●
●


● ●


●


●


●● ●


●
●


●


●


●
●


●


●
●
●●


● ●


●


●


●


●


●


●●


●


●


●


●


●
●


●


● ●
●


●


●


●
●


●●
●


●
●


●●
●


●


●
●


●


●
●


●
●


●
●


●
●●


●
●


●
●●


● ●●


●
●


●
●


●


●


●


●


●
●


●


●
●


●


●●


●


●
●


●


●


●●● ●
●


●●
●


●●


●


●


●
●


●


●


●
●


●


●
●


●


●
●


●


●


●


●


●
●
●


●
●


●
●


●
●●


●


−
1.


2
−


0.
8


−
0.


4
0.


0


●
●●


●


●


●


●


●●


●


●●


●
● ●


●


●


●


●


●●
●


●
●


●


●


●
●● ●


●


●


●


●


●


●


●


●
●


●
● ●


●


●


●
●


●


●


● ●


●●
●


●
●


●


●
● ●● ●


●●
●


●


●


●
●


●


●
●


●
●


●
●


●


●


●
● ●


●


●


● ●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


● ●●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●
●


●


●
●


●
●


●


●●
●


●


●


●
●


●●


●


●


●
●●


●●


●


●


●


●


●


●


●
●


●
●


● ●


●


●


●●
●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


● ●


●


●●
●


●●


●


●
●


●
●●


●
●●


●


●


x


●
●●


●


●


●


●


● ●


●


●●


●
●●


●


●


●


●


● ●
●


●
●


●


●


●
● ●●


●


●


●


●


●


●


●


●
●


●
●●


●


●


●
●


●


●


● ●


●● ●


●
●


●


●
● ●● ●


●●
●


●


●


●
●


●


●
●


●
●


●
●


●


●


●
●●


●


●


●●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●●●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●
●


●


●
●


●
●


●


●●
●


●


●


●
●


●●


●


●


●
●●


●●


●


●


●


●


●


●


●
●


●
●


● ●


●


●


● ●
●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


● ●


●


●●
●


● ●


●


●
●


●
●●


●
●●


●


●


0.2 0.6 1.0 1.4


●


●●


●●


●


●


●


●
●


●●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●
●●


●


●


●
●●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●●


●


●●


●


●


●


●
●● ●
●●


●
●


●


●


●
●


●
●


●


●
●


● ●
●


●


● ●


● ●
●


●


●


●
● ●●


●


●●
● ●


●●


●


●


●●


●


●


●


●


●
●


●


●●
●●


●


●


●
●


●●


●


●●


●


●


●
●


●


●


●


●
●


●
●


●
●


●


●


●
●


●


●
●


●


●
●


●
●


●
●


●●


●


●
●


●


●


●
●


●


●
●


●


●
●


●●


●
●
●


●
●


●
●


●
●


●
●●
●


●


●
●●


●
●


●


●


●


● ●
●●● ●


●
●


● ●


●


●●


●●


●


●


●


●
●


●●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●
● ●


●


●


●
●●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●●


●


●●


●


●


●


●
●●●
●●


●
●


●


●


●
●


●
●


●


●
●


●●
●


●


●●


● ●
●


●


●


●
●● ●


●


● ●
● ●


●●


●


●


● ●


●


●


●


●


●
●


●


●●
●●


●


●


●
●


●●


●


●●


●


●


●
●


●


●


●


●
●


●
●


●
●


●


●


●
●


●


●
●


●


●
●


●
●


●
●


●●


●


●
●


●


●


●
●
●


●
●


●


●
●


● ●


●
●


●


●
●


●
●


●
●


●
●●
●


●


●
●●


●
●


●


●


●


● ●
●●●●


●
●


● ●


−2.5 −2.0 −1.5


−
2.


5
−


2.
0


−
1.


5
x


data.circle <- data.circle + .1*rnorm(n*k)
pairs(data.circle[,1:3])
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pairs(princomp(data.circle)$scores[,1:3])


TODO: The other example


Real data:
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sd


ev


data.real <- read.table("Tla z.txt", sep=",")
data.real.group <- factor(substr(names(data.real),0,1))
r <- prcomp(t(data.real))
plot(r$sdev, type=’h’)
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data.real.3d <- r$x[,1:3]
pairs(data.real.3d, pch=16, col=as.numeric(data.real.group))


To see more clearly what happens, let us add an ellipse for each group of points.







CHAPTER 5. FACTORIAL METHODS: AROUND PRINCIPAL COMPONENT ANALYSIS (PCA)466


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


−30 −20 −10 0 10 20 30


−
20


−
10


0
10


20


PC1


P
C


2


h
l
n
t


draw.ellipse <- function (
x, y=NULL, N=100,
method=lines, ...


) {
if (is.null(y)) {
y <- x[,2]
x <- x[,1]


}
centre <- c(mean(x), mean(y))
m <- matrix(c(var(x),cov(x,y),


cov(x,y),var(y)),
nr=2,nc=2)


e <- eigen(m)
r <- sqrt(e$values)
v <- e$vectors
theta <- seq(0,2*pi, length=N)
x <- centre[1] + r[1]*v[1,1]*cos(theta) +


r[2]*v[1,2]*sin(theta)


y <- centre[2] + r[1]*v[2,1]*cos(theta) +
r[2]*v[2,2]*sin(theta)


method(x,y,...)
}
draw.star <- function (x, y=NULL, ...) {
if (is.null(y)) {
y <- x[,2]
x <- x[,1]


}
d <- cbind(x,y)
m <- apply(d, 2, mean)
segments(m[1],m[2],x,y,...)


}
my.plot <- function (


d, f=rep(1,dim(d)[1]),
col=rainbow(length(levels(f))),
variables=NULL, legend=T, legend.position=1,
draw=draw.ellipse, ...) {


xlim <- range(d[,1])
ylim <- range(d[,2])
if(!is.null(variables)){
xlim <- range(xlim, variables[,1])
ylim <- range(ylim, variables[,2])


}
plot(d, col=col[as.numeric(f)], pch=16,


xlim=xlim, ylim=ylim, ...)
for (i in 1:length(levels(f))) {
try(
draw(d[ as.numeric(f)==i, ], col=col[i])


)
}
if(!is.null(variables)){
arrows(0,0,variables[,1],variables[,2])
text(1.05*variables,rownames(variables))


}
abline(h=0,lty=3)
abline(v=0,lty=3)
if(legend) {
if(legend.position==1) {
l=c( par(’usr’)[1],par(’usr’)[4], 0, 1 )
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} else if (legend.position==2) {
l=c( par(’usr’)[2],par(’usr’)[4], 1, 1 )


} else if (legend.position==3) {
l=c( par(’usr’)[1],par(’usr’)[3], 0, 0 )


} else if (legend.position==4) {
l=c( par(’usr’)[2],par(’usr’)[3], 1, 0 )


} else {
l=c( mean(par(’usr’)[1:2]),


mean(par(’usr’)[1:2]), .5, .5 )
}
legend(l[1], l[2], xjust=l[3], yjust=l[4],


levels(f),
col=col,
lty=1,lwd=3)


}
}
my.plot(data.real.3d[,1:2], data.real.group)
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op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))
plot.new();
my.plot(data.real.3d[,c(2,1)], data.real.group,


xlab=’’,ylab=’’,axes=F,legend=F)
box()
my.plot(data.real.3d[,c(3,1)], data.real.group,


xlab=’’,ylab=’’,axes=F,legend=F)
box()


my.plot(data.real.3d[,c(1,2)], data.real.group,
draw=draw.star,
xlab=’’,ylab=’’,axes=F,legend=F)


box()
plot.new()
my.plot(data.real.3d[,c(3,2)], data.real.group,


xlab=’’,ylab=’’,axes=F,legend=F)
box()


my.plot(data.real.3d[,c(1,2)], data.real.group,
draw=draw.star,
xlab=’’,ylab=’’,axes=F,legend=F)


box()
my.plot(data.real.3d[,c(2,3)], data.real.group,


draw=draw.star,
xlab=’’,ylab=’’,axes=F,legend=F)


box()
plot.new()
par(op)


You can also turn the plot to see it from various angles.
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set.seed(66327)
random.rotation.matrix <- function (n=3) {
m <- NULL
for (i in 1:n) {
x <- rnorm(n)
x <- x / sqrt(sum(x*x))
y <- rep(0,n)
if (i>1) for (j in 1:(i-1)) {
y <- y + sum( x * m[,j] ) * m[,j]


}
x <- x - y
x <- x / sqrt(sum(x*x))
m <- cbind(m, x)


}
m


}
op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))
for (i in 1:9) {


#plot( (data.real.3d %*% random.rotation.matrix(3))[,1:2],
# pch=16, col=as.numeric(data.real.group),
# xlab=’’, ylab=’’, axes=F )
my.plot((data.real.3d %*% random.rotation.matrix(3))[,1:2],


data.real.group,
draw=draw.ellipse,
xlab=’’,ylab=’’,axes=F,legend=F)


box()
}
par(op)


5.11.3 Other idea


5.11.4 TODO


Some time ago, I have seen an article about dimension reduction (in
Rnews, or a vignette). Read it.


Implement Isomap
(easy: use MST)


Other articles
google: dimensionality reduction


5.11.5 Other idea (bad)


We can formulate our problem as an optimization problem: we are looking for the coordi-
nates of 5 points A1, A2, A3, A4, A5 in order to minimize the sum of the (squares of the)
distances of the points in the cloud to the broken line A1-A2-A3-A4-A5.
TODO: To check that this algorithm, first give it:
- a single segment to find, in dimension 1
- a single segment to find, in dimension 2
- a curve (a flat parabola) with 1 segment
- a curve (parabola) with two segments
- only then our data.


distance.broken.line <- function (point, ligne) {
# point: vector containing the coordinates of the point (from the


cloud) whose distance to the broken line is to be computed.
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# ligne: coordinates, in columns, of the points defining the broken line.


# Distance to the vertices of the broken line
d.points <- apply( (ligne-point)^2, 2, sum )


# Position of the projection of the point on each of the segments
# of the broken line
v <- t(apply(ligne,1,diff)) # Vectors A(i)A(i+1)
w <- -ligne + point # Vectors A(i)M
w <- w[, -dim(w)[2]] # Remove the last
lambda <- apply(v*w, 2, sum) / apply(v^2,2,sum)
lambda[ is.nan(lambda) ] <- 0


# Distance to the segments of the broken line
d.segments <- apply( (w - t(lambda*t(v)))^2, 2, sum )
d.segments <- d.segments[ lambda>0 & lambda<1 ]


min(c( d.points, d.segments ))
}


# Tests: the following distances ar close to zero
stopifnot( distance.broken.line(p[,1], p) < 1e-6 )
stopifnot( distance.broken.line(.5*p[,1]+.5*p[,2], p) < 1e-6 )
# There is a BIG speed problem: in the following example, we need
# two seconds to compute the distance...
sum(apply(data.noisy.broken.line, 2, distance.broken.line, p))


broken.line <- function (
d, # data
np=4, # Number of segments in the broken line
deb = as.vector(d[,sample(1:dim(d)[2], np)])


# starting values: broken line through np poins of the cloud, at
random.


) {
f <- function (x) {
sum(apply(d, 2, distance.broken.line, matrix(x, nc=np) ))


}
# Very, very long...
r <- optim(deb, f, control=list(trace=1, maxit=50)) # Default: 500 iterations
list(par=r$par, method="optim", value=r$value, deb=deb, np=np, r=r)


}


r <- broken.line(data.noisy.broken.line)
pc <- princomp(t(data.noisy.broken.line))
plot(pc$scores[,1:2])


lines( (t(matrix(r$deb,nc=r$np) - pc$center) %*% pc$loadings)[,1:2], col=’red’,lwd=3,lty=3)
lines((t(matrix(r$par,nc=r$np) - pc$center) %*% pc$loadings)[,1:2], col=’blue’,lwd=3,lty=2)
%--


# Example: a segment, in dimension 1
l <- c(-5, 3, 2, -1)
deb <- c(1,2,3,4)
d <- rbind( seq(l[1],l[2],length=10), seq(l[3],l[4],length=10) )
r <- broken.line(d, np=2, deb=deb)
plot(t(d), xlim=c(-10,10), ylim=c(-10,10))
# Be careful about the order of the parameters to estimate...
for (i in 1:100) { lines(matrix(sample(r$par), nr=2) ) }
%--


# Starting values: some points of the cloud, at random
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op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))
for (i in 1:9) {
l <- runif(4, -8,8)
d <- rbind( seq(l[1],l[2],length=10), seq(l[3],l[4],length=10) )
r <- broken.line(d, np=2)
plot(t(d), xlim=c(-10,10), ylim=c(-10,10),


xlab=’’, ylab=’’, axes=F)
box()
lines( r$par[c(1,3)], r$par[c(2,4)], col=’red’ )


}
par(op)
%--


# Starting values: random
op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))
for (i in 1:9) {
l <- runif(4, -8,8)
deb <- runif(4, -8,8)
d <- rbind( seq(l[1],l[2],length=10), seq(l[3],l[4],length=10) )
r <- broken.line(d, np=2, deb=deb)
plot(t(d), xlim=c(-10,10), ylim=c(-10,10),


xlab=’’, ylab=’’, axes=F)
box()
lines( r$par[c(1,3)], r$par[c(2,4)], col=’red’ )
lines( deb[c(1,3)], deb[c(2,4)], col=’blue’, lty=2 )


}
par(op)
%--


Aaaaaaahhhhhhhhhhhh... It does not converge – not at all. Let us try again, by running
the algorithm several times.
op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))
for (i in 1:9) {
l <- runif(4, -8,8)
deb <- runif(4, -8,8)
d <- rbind( seq(l[1],l[2],length=10), seq(l[3],l[4],length=10) )
plot(t(d), xlim=c(-10,10), ylim=c(-10,10),


xlab=’’, ylab=’’, axes=F)
box()
lines( deb[c(1,3)], deb[c(2,4)], col=’blue’, lty=2 )
for (j in 1:10) {
r <- broken.line(d, np=2, deb=deb)
lines( r$par[c(1,3)], r$par[c(2,4)], col=’red’ )
deb <- r$par


}
}
par(op)
%--


No, it really fails to converge.
TODO: look at the value of the distance at the end of the
algorithm...
I get very small values while the segment id rather far away from
the points: why?
(this bug could account for the convergence problems...)


There is another problem: the solution we are looking for is not unique. If a segment is a
solution of our problem, any larger segment is also a solution.
It converges too slowly to get a reliable result. Let us try ith the nlm function (“optim”
should work fine with “naughty” functions, “nlm” on “nice” functions – our function os
piecewise quadratic, with a unique local minimum).
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# Even longer...
r <- nlm(f, deb, iterlim=20) # By default, iterlim=100...
pc <- princomp(t(data.noisy.broken.line))
plot(pc$scores[,1:2])
lines( (t(matrix(deb, nc=np) - pc$center) %*% pc$loadings)[,1:2], col=’red’,


lwd=3, lty=3 )
lines((t(matrix(r$estimate,nc=np) - pc$center) %*% pc$loadings)[,1:2], col=’blue’,


lwd=3, lty=2)


In the previous example (had it worked), the curve was made of 4 segments and we wer
looking for a curve made of 3 segments. If we had asked for 5 segments, we would have had
a segment of length 0, or an unused segment at the end of the curve. to avoid this, we can
add a penalty if the segments do not have the same length.
# I add the sum of the inverses of the squares of the lengths of the
# segments.
# TODO: This is a BAD idea: it favours long, useless segments.
f <- function (x) {
sum(apply(data.noisy.broken.line, 2, distance, matrix(x, nc=np) )) +
sum( 1/apply(t(apply(matrix(x,nc=np), 1,diff))^2, 2, sum) )


}


TODO: computation with 6 or 7 segments to find a broken line with
only 5.


TODO: Similarly, we could add a penalty for the total length of the
curve.


TODO: We could do the same thing with splines


5.11.6 Traveling Salesman Problem (TSP)


The Traveling Salesman Problem is the following: we have a cloud of points (in a metric
space: think “cities on a map”) and we are looking for a path, as short as possible, that
visits each point. On other words, we want to find an order on the points that minimizes a
certain function.
Presented like that, the problem already has a lot of applications (for instance, the path
of a delivery car; the path of a soldering iron in an electrnic appliances assembly line), but
other seemingly unrelated problems can be formulated as TSP (for instance, some problems
in gene mapping – see Setubal’s book – I confess I have never read it).
We can apply a TSP-solving algorithm to our cloud of points: we get an order on those
points, that can be seen as a broken line. We then smooth this broken line: we get a curve,
parametrized by [0,1] – this parameter is the index we were looking for. Finally, given a new
point, we just have to project it onto the curve to get the value of the parameter.
Unfortunately, no TSP-solving algorithm is implemented under R: we shall have to program.


5.11.7 TSP: descent


Here is an implementation using descent: we start with a random path (i.e., an order on
the points) and we try to transform it (by interchanging the rank of two points) to get a
shorter path.
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longueur <- function (d,o) {
n <- length(o)
sum(diag( d [o[1:(n-1)],] [,o[2:n]] ))


}
tsp.descent <- function (d, N=1000) {
# d: distance matrix
d <- as.matrix(d)
n <- dim(d)[1]
o <- sample(1:n)
v <- longueur(d,o)
k <- 0
res <- list()
k.res <- c()
l.res <- c(v)
while (k<N) {
i <- sample(1:n, 2)
oo <- o
oo[ i[1] ] <- o[ i[2] ]


oo[ i[2] ] <- o[ i[1] ]
w <- longueur(d,oo)
if (w<v) {
v <- w
o <- oo
res <- append(res, list(o))
k.res <- append(k.res, k)
l.res <- append(l.res, v)
k <- 0


} else {
k <- k+1


}
}
list(o=o, details=res, k=k.res, longueur=v, longueurs=l.res)


}


n <- 100
x <- matrix(runif(2*n), nr=n)
r <- tsp.descent(dist(x))
o <- r$o
plot(x)
lines(x[o,], col=’red’)
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op <- par(mfrow=c(2,2))
n <- length(r$details)
for (i in floor(c(1, n/4, n/2, n))) {
plot(x, main=paste("n =",i))
lines(x[r$details[[i]],], col=’red’)


}
par(op)


The value we have chosen for N is not sufficient:
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n <- 100
x <- seq(0,6, length=n)
x <- sample(x)
x <- cbind(cos(x), sin(x))
r <- tsp.descent(dist(x), N=10000)
op <- par(mfrow=c(2,2))
n <- length(r$details)
for (i in floor(c(1, n/4, n/2, n))) {
plot(x, main=paste("n =",i))
lines(x[r$details[[i]],], col=’red’)


}
par(op)
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We can try to improve the algorithm by running it several times.
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# Very long...
op <- par(mfrow=c(3,3))
for (i in 1:9) {
r <- tsp.descent(dist(x), N=1000)
plot(x, main=signif(r$longueur))
lines( x[r$o,], col=’red’, type=’l’ )


}
par(op)


Still not conclusive.


5.11.8 TSP: Simulated annealing


We can modify the algorithm above by accepting a new path even if it is worse, with a
probability initially high, but that progressively decreases.
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tsp.recuit <- function (d, N=1000, taux=.99) {
# d: distance matrix
d <- as.matrix(d)
n <- dim(d)[1]
o <- sample(1:n)
v <- longueur(d,o)
# Computing the initial temperature
dE <- NULL
j <- 0
for (i in 1:100) {
i <- sample(1:n, 2)
oo <- o
oo[ i[1] ] <- o[ i[2] ]
oo[ i[2] ] <- o[ i[1] ]
w <- longueur(d,oo)
if (w<v) {
dE <- append(dE,abs(w-v))
j <- j+1


}
}
print(dE)
T <- - max(dE) / log(.8)
print(T)
# Initialisations
k <- 0
res <- list()
k.res <- c()
l.res <- c(v)
t.res <- c(T)
p.res <- c()
while (k<N) {
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i <- sample(1:n, 2)
oo <- o
oo[ i[1] ] <- o[ i[2] ]
oo[ i[2] ] <- o[ i[1] ]
w <- longueur(d,oo)
p.res <- append(p.res, exp((v-w)/T))
if ( runif(1) < exp((v-w)/T) ) {
v <- w
o <- oo
res <- append(res, list(o))
k.res <- append(k.res, k)
l.res <- append(l.res, v)
k <- 0
T <- T*taux
t.res <- append(t.res, T)


} else {
k <- k+1


}
}
list(o=o, details=res, k=k.res, longueur=v, longueurs=l.res, T=t.res, p=p.res)


}


n <- 100
x <- seq(0,5, length=n)
x <- sample(x)
x <- cbind(cos(x), sin(x))
r <- tsp.recuit(dist(x), N=1000, taux=.995)
op <- par(mfrow=c(2,2))
n <- length(r$details)
for (i in floor(c(1, n/4, n/2, n))) {
plot(x, main=paste("n =",i))
lines(x[r$details[[i]],], col=’red’)


}
par(op)
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op <- par(mfrow=c(2,2))
plot(r$k)
plot(r$longueurs, main="Lengths")
plot(r$T, main="Temperature")
plot(r$p, ylim=0:1, main="Probabilities")
par(op)


5.11.9 Exterior programs: heuristics and exact algorithms


We can currently solve, exactly, TSP problems with several thousands of cities, by writing
the problem as a “linear program”. It is a bit tricky to describe, because there is an
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exponentially large number of constraints (namely, we want to exclude closed cycles, and
we have one constraint for each possible cycle): we start to solve the problem without
any constraint, we look at the constraints that are infringed (the cycles in the result), we
explicitely add those constraints and we go on until we get a feasable solution.
TODO: give more details


After roaming the internet, I found “Concorde”: it is a TSP solver (developed at Princeton,
frrely useable for academic purposes) that relies on a linear programming solver such as
QSopt (same licence) or CPlex (commercial and expensive).
http://www.tsp.gatech.edu/concorde.html
http://www.isye.gatech.edu/~wcook/qsopt/
http://www.ilog.com/products/cplex/


The documentation of the file formats:
http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95/DOC.


PS


The website http://www.branchandcut.org/ lists Branch and Cut (this is one of the algo-
rithms used to solve integer programs) software.
Symphony is an open source software to solve branc-and-cut problems such as the TSP. It
also assumes we have a linear program solver such as CLP, Coin LP Solver (COIN, COm-
putational INfrasctructure for Operations Research, also open source, comes from IBM).
http://branchandcut.org/SYMPHONY/
http://www.coin-or.org/


Here is an example with “linkern”, a program (part of concorde) that uses a heuristic to
solve a TSP.
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print.tsp <- function (x, d=dist(x), f="") {
## BEWARE: The documentation states "All explicit [weight] data is
## integral"
## If the best tour has length 0, the problem may come from there.
d <- round(as.dist(d))
n <- dim(x)[1]
cat("TYPE : TSP\n", file=f) # Creating the file
cat("DIMENSION : ", file=f, append=T)
cat(n, file=f, append=T)
cat("\n", file=f, append=T)
cat("EDGE WEIGHT TYPE : EXPLICIT\n", file=f, append=T)
cat("EDGE WEIGHT FORMAT : UPPER ROW\n", file=f, append=T)
cat("DISPLAY DATA TYPE : NO DISPLAY\n", file=f, append=T)
cat("EDGE WEIGHT SECTION\n", file=f, append=T)
cat(paste(as.vector(d), collapse=" "), file=f, append=T)
cat("\n", file=f, append=T)
cat("EOF\n", file=f, append=T)


}


tsp.plot.linkern <- function (x, d=dist(x), ...) {
print.tsp(x, d, f="tmp.tsp")
system(paste("./linkern", "-o", "tmp.tsp result", "tmp.tsp"))
ij <- 1+read.table("tmp.tsp result", skip=1)[,1:2]
xy <- prcomp(x)$x[,1:2]
plot(xy, ...)
segments( xy[,1][ ij[,1] ],


xy[,2][ ij[,1] ],
xy[,1][ ij[,2] ],
xy[,2][ ij[,2] ],
col=’red’ )


ij
}



http://www.tsp.gatech.edu/concorde.html

http://www.isye.gatech.edu/~wcook/qsopt/

http://www.ilog.com/products/cplex/

http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95/DOC.PS

http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIB95/DOC.PS

http://www.branchandcut.org/

http://branchandcut.org/SYMPHONY/

http://www.coin-or.org/
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op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))
for (i in 1:9) {
n <- 50
k <- 3
x <- matrix(rnorm(n*k), nr=n, nc=k)
tsp.plot.linkern(x, d=round(100*dist(x)), axes=F)
box()


}
par(op)


Let us now try with Concorde.
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tsp.plot.concorde <- function (x, d=dist(x), plot=T, ...) {
print.tsp(x, d, f="tmp.tsp")
system(paste("./concorde", "tmp.tsp"))
i <- scan("tmp.sol")[-1]
ij <- 1+matrix(c(i, i[-1], i[1]), nc=2)
xy <- prcomp(x)$x[,1:2]
if (plot) {
plot(xy, ...)
n <- dim(ij)[1]
segments( xy[,1][ ij[,1] ],


xy[,2][ ij[,1] ],
xy[,1][ ij[,2] ],
xy[,2][ ij[,2] ],
col=rainbow(n) )


}
ij


}
op <- par(mfrow=c(3,3), mar=.1+c(0,0,0,0))


for (i in 1:9) {
n <- 50
k <- 3
x <- matrix(rnorm(n*k), nr=n, nc=k)
tsp.plot.concorde(x, d=round(100*dist(x)), axes=F)
box()


}
par(op)


5.11.10 Looking for an open path


If we apply this to our simulated data, we get:
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tsp.plot.concorde(t(data.broken.line))


There is one segment too many, because the algorith wants a closed path – we want an open
one.
With noisy data, it is even worse: the path goes on one direction and then comes back all
the way.
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tsp.plot.concorde(t(data.noisy.broken.line))


This is clearer if we smooth the curve:
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x <- t(data.noisy.broken.line)
ij <- tsp.plot.concorde(x, plot=F)
xy <- prcomp(x)$x[,1:2]
y <- xy[ij[,1],]
x <- 1:dim(ij)[1]
plot(xy)
x1 <- predict(loess(y[,1]~x, span=.2))
x2 <- predict(loess(y[,2]~x, span=.2))
n <- length(x1)
segments(x1[-n], x2[-n], x1[-1], x2[-1], col=rainbow(n-1), lwd=3)


We can turn an open TSP program by adding a vertex whose distance to all the others is
zero (or is the same).
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print.open.tsp <- function (x, d=dist(x), f="") {
## BEWARE: The documentation states "All explicit [weight] data is
## integral"
## If the best tour has length 0, the problem may come from there.
d <- as.matrix(d)
d <- cbind(0,rbind(0,d))
d <- round(as.dist(d))
n <- dim(x)[1] + 1
cat("TYPE : TSP\n", file=f) # Creating the file
cat("DIMENSION : ", file=f, append=T)
cat(n, file=f, append=T)
cat("\n", file=f, append=T)
cat("EDGE WEIGHT TYPE : EXPLICIT\n", file=f, append=T)
cat("EDGE WEIGHT FORMAT : UPPER ROW\n", file=f, append=T)
cat("DISPLAY DATA TYPE : NO DISPLAY\n", file=f, append=T)
cat("EDGE WEIGHT SECTION\n", file=f, append=T)
cat(paste(as.vector(d), collapse=" "), file=f, append=T)
cat("\n", file=f, append=T)


cat("EOF\n", file=f, append=T)
}
tsp.plot.concorde.open <- function (x, d=dist(x), plot=T, smooth=F, span=.2,...) {
print.open.tsp(x, d, f="tmp.tsp")
system(paste("./concorde", "tmp.tsp"))
i <- scan("tmp.sol")[-1] # Remove the number of
i <- i[-1] # Remove the first node: 0
ij <- matrix(c(i[-length(i)], i[-1] ), nc=2)
xy <- prcomp(x)$x[,1:2]
if (plot) {
if (smooth) {
y <- xy[ij[,1],]
x <- 1:dim(ij)[1]
plot(xy, ...)
x1 <- predict(loess(y[,1]~x, span=span))
x2 <- predict(loess(y[,2]~x, span=span))
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n <- length(x1)
segments(x1[-n], x2[-n], x1[-1], x2[-1], col=rainbow(n-1), lwd=3)


} else {
plot(xy, ...)
n <- dim(ij)[1]
segments( xy[,1][ ij[,1] ],


xy[,2][ ij[,1] ],
xy[,1][ ij[,2] ],
xy[,2][ ij[,2] ],
col=rainbow(n) )


}
}
ij


}
x <- t(data.noisy.broken.line)
tsp.plot.concorde.open(x)


●


●


●


●


●●
●


●
●


●●


●
●


●●
●


●


●


●


●●
●


●


●


●


●


●


●


●
●


●
●


●


●●●


●


●


●● ●
●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●●●


●


●


●


●


●


●● ●


● ●
●●


●
●


●
●


●


●
●


●


●


●
●


●


●
●
●


●


●


●


●


●●


●


●●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●●


●


●
●


●
●


●
●


●


●


●
●


●


●


●


●


●
●


●


●
●●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●
●


●


●


●
●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●
●●


●


●
●● ●


●


●
●
●


●


●●
●●


●
●


●


●


●


●


●●
●


● ●


●


−15 −10 −5 0 5 10 15


−
15


−
10


−
5


0
5


10


PC1


P
C


2


tsp.plot.concorde.open(x, smooth=T)
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5.11.11 With our data
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tsp.plot.concorde.open(t(data.curve), smooth=T)
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tsp.plot.concorde.open(t(data.noisy.curve), smooth=T)
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tsp.plot.concorde.open(t(data.real), smooth=F)
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tsp.plot.concorde.open(t(data.real), smooth=T)
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op <- par(mfrow=c(2,2))
for (s in c(.2, .3, .4, .5)) {
tsp.plot.concorde.open(t(data.real), smooth=T, span=s)


}
par(op)
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tsp.plot.concorde.open(data.real.3d, smooth=F)
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tsp.plot.concorde.open(data.real.3d, smooth=T)
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tsp.plot.concorde.open(data.real.3d, smooth=T, span=.5)


5.11.12 Yet another idea


Take our cloud of points, assign a mass to each so that they attract
each other. You can choose the law of attraction: for instance, a
force proportionnal to the inverse of the square of the distance, We
then simulate the evolution of this system (but not until
equilibrium: we stop before: after some time, the points seem to
form a curve).


This is one of the algorithms used to draw knots -- but is is rather
tricky to tune: if you make a mistake with the weights or the law of
attraction, you can get points that collapse on one another or that
go to infinity.


TODO: References?
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There are several delicate choices:
1. The law of attraction
1bis. The dimension of the space (in which the points live and in
which we compute the distance) might have some importance.
2. The simulation of the evolution (not too fast, not too slow)
3. When do we stop?


Idea to decide when to stop:
Look at the ramification of the Minimal Spanning Tree (I define the
ramification of a tree as the number of nodes that are not on the
longest path -- it is easy to find: simply compute the matrix of
distances in the graph -- but there might be faster algorithms --
indeed:
Remove the shortest edge among those leading to a leaf
This creates a vertex of arity 2: fuse the two edges.
Repeat until we are left with a single segment.


Yet another idea
Asign a random value to the index of each point of the cloud
This gives an order on the points
Consider the corresponding curve (broken line)
Smooth it.
Project the points on this curve and get a new value of the index.
Iterate


Yet another idea
Cluster the points into several classes
Find a segment for each of those classes
Try to glue those segments (how?)


Idea 1bis
TODO: svm if you know the index of each patient.


5.11.13 TODO


Add the computation time
Legends in my plots


For neural networks, present things a bit differently:
In-line algorithm, that always takes new data (this is easy, because
we know how the data were obtained, get can ask for an infinite
number of them)


Start with the linear PCA anc compare the neural-net implementation
with the linear algebra one.


Optimization algorithms:
Start with a simple situation: a single segment, no noise, in
dimension 2 (or even 1)


In particular this will help see if/where my code is wrong.


TODO: for the simulated data, divide the points into 4 groups, with
a colour for each. Thus, it will be clearer if we are supposed to
see something or not.
Ideally, we could also put all those plots in a single function that
we would call for all the examples.
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5.12 TODO: to sort


5.12.1 Latent class analysis (LCA)


TODO...
library(e1071)
?lca


library(poLCA)
?poLCA


5.12.2 Complements


The “ade4” package contains a lot of variants or applications of Principal Component Anal-
ysis.
library(help=ade4)


See also
library(help=pcurve)


5.12.3 Caveat


Principal Component Analysis and the methods that stem from it are linear: if the data is
not linear, the result may be meaningless.


5.12.4 Various


http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Eigenstructure.
pdf



http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Eigenstructure.pdf

http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Eigenstructure.pdf





Chapter 6


Clustering


We now consider the problem of classifying the observation or the subjects into several
groups, several classes. For instance, we have weighted and measured animals and we would
like to know if there are several species: do the data form a single cluster or several?
This is called “unsupervised” learning, because we do not know the classes nor even their
number. When we know the classes and try to find criteria to assign new observations to a
class, we call that “supervised learning” – it is a regression, with a qualitative variable to
predict.


6.1 Non-hierarchical clustering (k-means)


We choose k points, the “centers”, and we cluster the data into k classes, assigning each
point to its nearest center. We then replace the centers by the center of gravity of the points
in their class. And we iterate.
This method has several problems: the result depends on the first centers chosen (we can
start again with new centers and compare – or even adapt the algorithm with genetic
algorithms); it is not well-adapted to noisy data; we have to know the number of clusters; the
algorithm implicitely assumes that the clusters have the same size (while one application of
clustering is “outlier detection”, with two classes: one, large, with most of the data, another,
smaller, with the outliers); it assigns each point to a class, even if there is some ambiguity
(we would like to know if the classification of a new point is ambiguous).
The k-means algorith is very similar.
Explain what the k-means algorithm is.


"the nonhierarchical k means or iterative relocation
algorithm. Each case is initially placed in one of k
clusters, cases are then moved between clusters if it
minimises the differences between cases within a cluster."
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x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))


cl <- kmeans(x, 2, 20)
plot(x, col = cl$cluster, pch=3, lwd=1)
points(cl$centers, col = 1:2, pch = 7, lwd=3)
segments( x[cl$cluster==1,][,1], x[cl$cluster==1,][,2],


cl$centers[1,1], cl$centers[1,2])
segments( x[cl$cluster==2,][,1], x[cl$cluster==2,][,2],


cl$centers[2,1], cl$centers[2,2],
col=2)


Let us try this with my pupils’ marks (I spent one year as a high school teacher – a dreadful
experience, that I would not advise to anyone).
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# This is not what we want...
load(file="data notes.Rda") # reads in the "notes" matrix, defined


# in a preceding chapter.
cl <- kmeans(notes, 6, 20)
plot(notes, col = cl$cluster, pch=3, lwd=3)
points(cl$centers, col = 1:6, pch=7, lwd=3)


This is not what we want: we got the plot in the first two coordinates of the data set instead
of the first two coordinates of the Principal Component Analysis of the data set.
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n <- 6
cl <- kmeans(notes, n, 20)
p <- princomp(notes)
u <- p$loadings
x <- (t(u) %*% t(notes))[1:2,]
x <- t(x)
plot(x, col=cl$cluster, pch=3, lwd=3)
c <- (t(u) %*% t(cl$center))[1:2,]
c <- t(c)
points(c, col = 1:n, pch=7, lwd=3)
for (i in 1:n) {
print(paste("Cluster", i))
for (j in (1:length(notes[,1]))[cl$cluster==i]) {
print(paste("Point", j))
segments( x[j,1], x[j,2], c[i,1], c[i,2], col=i )


}
}
text( x[,1], x[,2], attr(x, "dimnames")[[1]] )


In fact, the “clusplot” already does this. We give it the result of one of the following
functions, that are variants of the k-means algorithm.
pam partitionning around medoids (more robust)
clara other partitionning, well-suited for large data sets


(the idea is just to sample from the large data set)
daisy dissimilarity matrix: qualitative or quantitative variables
dist dissimilarity matrix: quantitative variables only
fanny fuzzy clustering


TODO: explain (here or elsewhere, the assumed properties of the clusters for these different
methods: same size or not, same shape (variance) or not, etc.)
Here are a few sample results.
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These two components explain 58.12 % of the point variability.
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library(cluster)
clusplot( notes, pam(notes, 6)$clustering )
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These two components explain 58.12 % of the point variability.
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clusplot( notes, pam(notes, 2)$clustering )
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These two components explain 56.51 % of the point variability.
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clusplot( daisy(notes), pam(notes,2)$clustering, diss=T )
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These two components explain 56.51 % of the point variability.
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clusplot( daisy(notes), pam(notes,6)$clustering, diss=T )
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These two components explain 58.12 % of the point variability.
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clusplot(fanny(notes,2))
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These two components explain 58.12 % of the point variability.
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clusplot(fanny(notes,10))


6.2 Hierarchical Classification (dendogram)


We start with a cloud of n points and we put each point in a class of its own (so we have
n classes, each containing a single point). Then, we look for the closest two classes (for a
given distance, for instance the distance between their center of gravity – but other distances
will give other results, perhaps more appropriate for some data sets) and we join them into
a new class. We now have n-1 classes, all but one containing a single element. Then we
iterate. The result can be presented as a dendogram: the leaves are the initial 1-element
classes and the various “cuts” (by a horizontal line in the following plot) of the dendogram
are various clusterings of the data, into a decreasing number of classes.
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Cluster Dendrogram


hclust (*, "average")
dist(USArrests)


H
ei


gh
t


data(USArrests)
hc <- hclust(dist(USArrests), "ave")
plot(hc)
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Cluster Dendrogram


hclust (*, "average")
dist(USArrests)
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plot(hc, hang = -1)


Here is the result with my pupils’ marks: I try to plot the tree onto the first two components
of the PCA.
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hclust (*, "complete")
dist(notes)
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plot(hclust(dist(notes)))
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p <- princomp(notes)
u <- p$loadings
x <- (t(u) %*% t(notes))[1:2,]
x <- t(x)
plot(x, col="red")
c <- hclust(dist(notes))$merge
y <- NULL
n <- NULL
for (i in (1:(length(notes[,1])-1))) {
print(paste("Step", i))
if( c[i,1]>0 ){
a <- y[ c[i,1], ]
a.n <- n[ c[i,1] ]


} else {
a <- x[ -c[i,1], ]
a.n <- 1


}
if( c[i,2]>0 ){


b <- y[ c[i,2], ]
b.n <- n[ c[i,2] ]


} else {
b <- x[ -c[i,2], ]
b.n <- 1


}
n <- append(n, a.n+b.n)
m <- ( a.n * a + b.n * b )/( a.n + b.n )
y <- rbind(y, m)
segments( m[1], m[2], a[1], a[2], col="red" )
segments( m[1], m[2], b[1], b[2], col="red" )
if( i> length(notes[,1])-1-6 ){
op=par(ps=30)
text( m[1], m[2], paste(length(notes[,1])-i), col="red" )
par(op)


}
}
text( x[,1], x[,2], attr(x, "dimnames")[[1]] )


Conclusion: either choose the representation as a tree (and forget about PCA, at least for
a moment), or only plot the first two or three levels of the tree – as we did above.
Also see the “mclust” package (Model-based clustering) that models the data as a mixture
of gaussians (i.e., as a superposition of clusters).
library(help=mclust)


6.2.1 Various shapes of trees


TODO:
- a tree with no clusters
- a tree with a lot of outliers (i.e., a lot of "horizontal branches")
- a tree with "biological" (balanced) clusters
- a tree with "financial" (unbalanced) clusters
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Hierarchical clustering


Silhouette width si
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Silhouette
n = 100 2    clusters    Cj


j :  nj | avei∈∈Cj    si


1 :   66  |  0.45


2 :   34  |  0.79


Random gaussian data


do.it <- function (x, k=3, main="") {
if (inherits(x, "dist")) {
d <- x
x <- sammon(d)$points


} else {
d <- dist(x)
if (!is.vector(x)) {
x <- sammon(d)$points


}
}
op <- par(mfrow = c(2,2),


mar = c(3,2,4,2)+.1,
oma = c(0,0,0,0))


if (is.vector(x)) {
hist(x,


col="light blue",
xlab="", ylab="", main="Data")


} else {


plot(x, main="Data")
}
hist(as.vector(d),


col="light blue",
xlab="", ylab="", main="Distances")


plot(hclust(d), labels=FALSE,
main = "Hierarchical clustering")


plot(silhouette(cutree(hclust(d),k), d),
main = "Silhouette")


par(op)
mtext(main, line=3, font=2, cex=1.2)


}
do.it(runif(100), k=2,


main="Random gaussian data")


Data
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Hierarchical clustering


Silhouette width si
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Silhouette
n = 100 3    clusters    Cj


j :  nj | avei∈∈Cj    si


1 :   96  |  0.81


2 :   2  |  0.513 :   2  |  0.43


Random data with fat tails


set.seed(1)
x <- rt(100,2)
do.it(x, main="Random data with fat tails")
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3 :   19  |  −0.006


High−dimensional random gaussian data


x <- matrix(rnorm(10000), nr=100, nc=100)
do.it(x, main="High-dimensional random gaussian data")
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Hierarchical clustering


Silhouette width si
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n = 100 5    clusters    Cj


j :  nj | avei∈∈Cj    si
1 :   20  |  0.01


2 :   58  |  0.01


3 :   18  |  −0.05
4 :   3  |  −0.035 :   1  |  0.00


High−dimensional, fat tails


set.seed(1)
x <- matrix(rt(10000, df=4), nr=100, nc=100)
do.it(x, k=5, main="High-dimensional, fat tails")
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Two real clusters


N <- 100
x <- rnorm(N, sample(c(-2,2), N, replace=T))
do.it(x, k=2, main="Two real clusters")
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j :  nj | avei∈∈Cj    si


1 :   31  |  0.23


2 :   58  |  0.06


3 :   11  |  0.17


Three cluster, higher dimension


N <- 100 # Number of observations
n <- 10 # Dimension
k <- 3 # Number of clusters
i <- sample( 1:k, N, replace=T )
mu <- matrix(runif(n*k, -2, 2), nr=k, nc=n)
x <- matrix(rnorm(N*n), nc=n) + mu[i,] # One subject per row
do.it(x, k=3, main="Three cluster, higher dimension")


TODO: Find some financial data
TODO: Find some biological data (multiple alignment)
TODO: Find some bad data (with a lot of horizontal segments)


6.2.2 Distance between points


Hierarchical classification requires you to choose a notion of distance between points and a
notion of distance between clusters.
There might be several reasonable choices of a distance between points: for instance, to
perform a hierarchical analysis on protein sequences, we can, after aligning them, count the
number of differences. We can also weight those differences: if the physico-chemical proper-
ties of the amino-acids are similar, the distance will be short, if they are very different, the
distance will be higher. (For further analyses, we also have another notion of distance, only
available after hierarchical classification: we can measure the distance on the dendogram.)
TODO: give an alignment example
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TODO: other distance examples
Cosine distance: scalar product of two (unit) vectors, i.e., the


correlation. It is a similarity measure.


TODO: define "similarity measure".


Count data:
Chi2 : Chi2 of the test for equality.
Phi2 : ??? This measure is equal to the chi-square measure


normalized by the square root of the combined frequency.


Binary (or qualitative) data: there are more than a dozen
notions of distance or similarity.
TODO: a reference.
We already mentionned them when dealing with supervised
classification, to assess the quality of the results: we
were comparing the real classes and the predicted classes.


6.2.3 Mahalanobis distance


TODO


Consider a cloud of points in the plane. To compute the distance betweem two of those
points, one could use the euclidian distance.
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Contour plot of the Euclidian distance to the origin
N <- 1000
d <- matrix(rnorm(2*N), nc=2)
par(mar=c(2,2,4,2))
plot(d, xlim=c(-2,2), ylim=c(-2,2),


axes = FALSE,
xlab="", ylab="",
main="Contour plot of the Euclidian distance to the origin")


box()
abline(h=0, v=0, lty=3)
x <- seq(min(d[,1]), max(d[,1]), length=100)
y <- seq(min(d[,2]), max(d[,2]), length=100)
z <- outer(x, y, function (x,y) sqrt(x^2 + y^2))
contour(x, y, z,


add = TRUE,
col = "blue", lwd = 3)


But if the cloud of points is more elliptical than spherical, this might not be the best choice:
in the following plot, points 1 and 2 are at the same euclidian distance from the origin, but
point 1 is very far away from the bulk of the cloud.







CHAPTER 6. CLUSTERING 500


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


● ●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


● ●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


● ●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


● ●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●


●


●


●


●


●●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


Contour plot of the Euclidian distance to the origin


21
N <- 5000
library(MASS)
d <- mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,.8,.8,1),2))
par(mar=c(2,2,4,2))
plot(d, xlim=c(-2,2), ylim=c(-2,2),


axes = FALSE,
xlab="", ylab="",
main="Contour plot of the Euclidian distance to the origin")


box()
abline(h=0, v=0, lty=3)
x <- seq(min(d[,1]), max(d[,1]), length=100)
y <- seq(min(d[,2]), max(d[,2]), length=100)
z <- outer(x, y, function (x,y) sqrt(x^2 + y^2))
contour(x, y, z,


add = TRUE,
col = "blue", lwd = 1)


points(sqrt(2)*c(1,-1), sqrt(2)*c(1,1),
lwd = 10, cex = 5, pch = 4, col = "blue")


text(sqrt(2)*c(1,-1), sqrt(2)*c(1,1) + .1,
c("2", "1"),
pos = 3, adj = .5,
font = 2, cex = 3, col = "blue")


The Mahalanobis distance accounts for this. it is defined as
d(x1, x2) = (x1 - x2)’ V^-1 (x1 - x2)


where V is the variance matrix of the cloud of points (either the one corresponding to
the gaussian random variable from which the points were samples, if you know it, or an
estimation of it).
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Contour plot of the Mahalanobis distance to the origin
N <- 1000
V <- matrix(c(1,.8,.8,1),2)
d <- mvrnorm(N, mu=c(0,0), Sigma=V)
par(mar=c(2,2,4,2))
plot(d, xlim=c(-2,2), ylim=c(-2,2),


axes = FALSE,
xlab="", ylab="",
main="Contour plot of the Mahalanobis distance to the origin")


box()
abline(h=0, v=0, lty=3)
x <- seq(min(d[,1]), max(d[,1]), length=100)
y <- seq(min(d[,2]), max(d[,2]), length=100)
z <- outer(x, y, function (x, y) {
sqrt(apply(rbind(x,y) * solve(V, rbind(x,y)), 2, sum))


} ) # BUG: MEMORY PROBLEM...
contour(x, y, z,


add = TRUE,
col = "blue", lwd = 3)


6.2.4 Tracking Error distance


In some situations, some people also advocate the use of the “tracking error distance”,
x(x1, x2) = (x1 - x2)’ V (x1 - x2)


The rationale could be the following: we think the data is inherently unidimensional and we
want to lower the importance of the other, noisy dimensions.
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Contour plot of the Tracking Error distance to the origin
N <- 1000
V <- matrix(c(1,.8,.8,1),2)
d <- mvrnorm(N, mu=c(0,0), Sigma=V)
par(mar=c(2,2,4,2))
plot(d, xlim=c(-2,2), ylim=c(-2,2),


axes = FALSE,
xlab="", ylab="",
main="Contour plot of the Tracking Error distance to the origin")


box()
abline(h=0, v=0, lty=3)
x <- seq(min(d[,1]), max(d[,1]), length=100)
y <- seq(min(d[,2]), max(d[,2]), length=100)
z <- outer(x, y, function (x, y) {
sqrt(apply(rbind(x,y) * (V %*% rbind(x,y)), 2, sum))


} )
contour(x, y, z,


add = TRUE,
col = "blue", lwd = 3)


6.2.5 Distance between clusters


The notion of distance between clusters is slightly trickier. Here are a few examples of such
a distance.
d(A,B) = Max { d(a,b) ; a \in A and b \in B }


d(A,B) = Min { d(a,b) ; a \in A and b \in B }


d(A,B) = d(center of gravity of A, center of gravity of B) (actually used?)


d(A,B) = mean of the d(a,b) where a \in A and b \in B (UPGMA: Unweighted
Pair-Groups Method Average)


TODO: plots illustrating those notions.
TODO: Ward’s method
Ward’s method
Cluster membership is assessed by calculating the total
sum of squared deviations from the mean of a cluster. The
criterion for fusion is that it should produce the
smallest possible increase in the error sum of squares.


Remark: the same data, with different algorithms and/or distances, can produce completely
unrelated dendograms.


6.2.6 A few applications


TODO
Detecting outliers (they form one or several small
clusters, isolated from the rest of the data)


TODO
Non-supervised learning, when you do not know the number
of classes.
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6.3 Comparing those two methods


The k-means algorithm algorithm and its variants are very fast, well-suited to large data
sets, but non-deterministic – hierarchical clustering is just the opposite.
That is why we sometimes mix those two approaches (hybrid clustering): we start with the
k-means algorithm to get a few tens or hundreds of classes; then hierarchical clustering on
those classes (not on the initial data, too large) to find the number of classes; finally, we can
refine, with the k-means algorithm on the newly obtained classes.
TODO Example: do this, following this example (from the manual)


0
50


00
10


00
0


15
00


0
20


00
0


Original Tree


hclust (*, "centroid")
dist(USArrests)^2


H
ei


gh
t


## Do the same with centroid clustering and squared Euclidean distance,
## cut the tree into ten clusters and reconstruct the upper part of the
## tree from the cluster centers.
hc <- hclust(dist(USArrests)^2, "cen")
memb <- cutree(hc, k = 10)
cent <- NULL
for(k in 1:10){
cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))


}
hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))
opar <- par(mfrow = c(1, 2))
plot(hc, labels = FALSE, hang = -1, main = "Original Tree")
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00
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20


00
0


Re−start from 10 clusters


hclust (*, "centroid")
dist(cent)^2


H
ei


gh
t


plot(hc1, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")


6.4 Density estimation


The preceding methods assumed that the clusters were convex, or even spherical. But this
is not always the case.
In the following example, we would like the computer to find two clusters...
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n <- 1000
x <- runif(n,-1,1)
y <- ifelse(runif(n)>.5,-.1,.1) + .02*rnorm(n)
d <- data.frame(x=x, y=y)
plot(d,type=’p’, xlim=c(-1,1), ylim=c(-1,1))


With k-means:
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test.kmeans <- function (d, ...) {
cl <- kmeans(d,2)
plot(d, col=cl$cluster, main="kmeans", ...)
points(cl$centers, col=1:2, pch=7, lwd=3)


}
test.kmeans(d, xlim=c(-1,1), ylim=c(-1,1))


With hierarchical clustering:
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test.hclust <- function (d, ...) {
hc <- hclust(dist(d))
remplir <- function (m, i, res=NULL) {
if(i<0) {
return( c(res, -i) )


} else {
return( c(res, remplir(m, m[i,1], NULL), remplir(m, m[i,2], NULL) ) )


}
}
a <- remplir(hc$merge, hc$merge[n-1,1])
b <- remplir(hc$merge, hc$merge[n-1,2])
co <- rep(1,n)
co[b] <- 2
plot(d, col=co, main="hclust", ...)


}
test.hclust(d, xlim=c(-1,1), ylim=c(-1,1))


We can also imagine other pathologies, with non-convex clusters.
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get.sample <- function (n=1000, p=.7) {
x1 <- rnorm(n)
y1 <- rnorm(n)
r2 <- 7+rnorm(n)
t2 <- runif(n,0,2*pi)
x2 <- r2*cos(t2)
y2 <- r2*sin(t2)
r <- runif(n)>p
x <- ifelse(r,x1,x2)
y <- ifelse(r,y1,y2)
d <- data.frame(x=x, y=y)
d


}
d <- get.sample()
plot(d,type=’p’, xlim=c(-10,10), ylim=c(-10,10))
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You can try to add variables (this is the same idea that leads to polynomial regression – or
kernel methods).
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But it does not work, unless we add the “right” variables.
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xpy


kmeans


d <- data.frame(x=x, y=y, xx=x*x, yy=y*y, xy=x*y, xpy=x*x+y*y)
test.kmeans(d)
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hclust


test.hclust(d)


In that kind of situation, if there are only two dimensions, we can try to estimate the
corresponding probability density and hope to see two peaks.
help.search("density")
# Suggests:
# KernSur(GenKern) Bivariate kernel density estimation
# bkde2D(KernSmooth) Compute a 2D Binned Kernel Density Estimate
# kde2d(MASS) Two-Dimensional Kernel Density Estimation
# density(mclust) Kernel Density Estimation
# sm.density(sm) Nonparametric density estimation in 1, 2 or 3 dimensions.


r$fhat


Y


Z


library(KernSmooth)
r <- bkde2D(d, bandwidth=c(.5,.5))
persp(r$fhat)
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n <- length(r$x1)
plot( matrix(r$x1, nr=n, nc=n, byrow=F),


matrix(r$x2, nr=n, nc=n, byrow=T),
col=r$fhat>.001 )


TODO: a similar plot with hexbin?
(We leave it as an exercise to the reader to finish this example, by telling the computer how
to find the connected components of the preceding plot and how to use them for forecasting.)
You can use the same idea in a more algorithmitic way as follows: for each observation x,
we count the number of observations at a distance at most 0.1 (you can change this value)
from x; if there are more than 5 (you can change this value), we say that the observation
x is dense, i.e., inside a cluster. We then define an equivalence relation between dense
observations by saying that they are in the same cluster if their distance is under 0.1.
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http://www.genopole-lille.fr/fr/formation/cib/doc/datamining/DM-Bio.pps
(page 66)


You can implement this idea as follows.
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density.classification.plot <- function (x,y,d.lim=.5,n.lim=5) {
n <- length(x)
# Distance computation
a <- matrix(x, nr=n, nc=n, byrow=F) - matrix(x, nr=n, nc=n, byrow=T)
b <- matrix(y, nr=n, nc=n, byrow=F) - matrix(y, nr=n, nc=n, byrow=T)
a <- a*a + b*b
# Which observations are dense (i.e., in a cluster)?
b <- apply(a<d.lim, 1, sum)>=n.lim
plot(x, y, col=b)
points(x,y,pch=’.’)


}
density.classification.plot(d$x,d$y)


We then have to identify the various clusters.
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# Beware: the following code is very recursive -- but, by default,
# R limits the size of the function calls stack to 500 elements.
# We first increment this value.
options(expressions=10000)


density.classification.plot <- function (x,y,d.lim=.5,n.lim=5) {
n <- length(x)
# Distance computations
a <- matrix(x, nr=n, nc=n, byrow=F) - matrix(x, nr=n, nc=n, byrow=T)
b <- matrix(y, nr=n, nc=n, byrow=F) - matrix(y, nr=n, nc=n, byrow=T)
a <- a*a + b*b
# Which observations are dense (in a cluster)?
b <- apply(a<d.lim, 1, sum)>=n.lim
# We sort the observations
cl <- rep(0,n)
m <- 1
numerote <- function (i,co,cl) {
print(paste(co, i))


for (j in (1:n)[ a[i,]<d.lim & b & cl==0 ]) {
#print(paste(" ",j))
cl[j] <- co
try( cl <- numerote(j,co,cl) ) # Too recursive...


}
cl


}
for (i in 1:n) {
if (b[i]) { # Are we in a cluster?
# Cluster number
if (cl[i] == 0) {
co <- m
cl[i] <- co



http://www.genopole-lille.fr/fr/formation/cib/doc/datamining/DM-Bio.pps
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m <- m+1
} else {
co <- cl[i]


}
# We number the nearby points
#print(co)
cl <- numerote(i,co,cl)


}
}
plot(x, y, col=cl)
points(x,y,pch=’.’)


}
density.classification.plot(d$x,d$y)


Let us try again, in a more iterative way.
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density.classification.plot <- function (x,y,d.lim=.5,n.lim=5, ...) {
n <- length(x)
# Distance computation
a <- matrix(x, nr=n, nc=n, byrow=F) - matrix(x, nr=n, nc=n, byrow=T)
b <- matrix(y, nr=n, nc=n, byrow=F) - matrix(y, nr=n, nc=n, byrow=T)
a <- a*a + b*b
# Which observations are dense (in a cluster)?
b <- apply(a<d.lim, 1, sum)>=n.lim
# We sort the observations
cl <- rep(0,n)
m <- 0
for (i in 1:n) {
if (b[i]) { # Are we in a cluster?
# Cluster number
if (cl[i] == 0) {
m <- m+1
co <- m
cl[i] <- co


print(paste("Processing cluster", co))
done <- F
while (!done) {
done <- T
for (j in (1:n)[cl==co]) {
l <- (1:n)[ a[j,]<d.lim & b & cl==0 ]
if( length(l)>0 ) {
done <- F
for (k in l) {
cl[k] <- co
#print(k)


}
}


}


}
} else {
# Already processed cluster: pass


}
}


}
plot(x, y, col=cl, ...)
points(x,y,pch=’.’)


}
density.classification.plot(d$x,d$y)







CHAPTER 6. CLUSTERING 512


Let us play with the parameters.
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op <- par(mfrow=c(3,3))
for (d.lim in c(.2,1,2)) {
for (n.lim in c(3,5,10)) {
density.classification.plot(d$x,d$y,d.lim,n.lim,
main=paste("d.lim = ",d.lim, ", n.lim = ",n.lim, sep=’’))


}
}
par(op)


6.5 Other packages


amap: parallelized hclust, robust PCA
party: mob (model-based recursive partitionning)


cforest (random forest ensemble algorithm on
conditional inference trees)


cba







Chapter 7


Probability Distributions


In this chapter, we present the most important probability distributions (Gaussian, Expo-
nential, Uniform, Bernoulli, Binomial, Poisson); we explain how to “fit” a distribution, i.e.,
how to find the distribution that most closely matches a given data set, i.e., how to find the
most probable parameters; finally, we focus on the distributions of extreme values.


7.1 The zoo of discrete probability distributions


The most important discrete probability distributions are the Bernoulli, Binomial and Pois-
son distributions.


7.1.1 Bernoulli distribution


Tossing a coin is equivalent to examining a random variable following a Bernoulli distribution
of parameter 0.5. If the coin has been tampered with and “heads” appears with probability
p, it is a Bernoulli distribution of parameter p.
P( X=1 ) = p
P( X=0 ) = 1-p


In case of equiprobability, you can simulate such an experiment with the “sample” command,
that performs such draws, with or without replacement, from a given set.
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Bernoulli variables


Index


x


n <- 100
x <- sample(c(-1,1), n, replace=T)
plot(x, type=’h’, main="Bernoulli variables")
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Cumulated sums of Bernoulli variables


Index
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n <- 1000
x <- sample(c(-1,1), n, replace=T)
plot(cumsum(x), type=’l’,


main="Cumulated sums of Bernoulli variables")


If the probabilities of both events are differents, we can still use the “sample” command,
with one more argument.
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Bernoulli variables, different probabilities


Index


x


n <- 100
x <- sample(c(-1,1), n, replace=T, prob=c(.2,.8))
plot(x, type=’h’,


main="Bernoulli variables, different probabilities")
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Cummulative sums of Bernoulli variables
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n <- 200
x <- sample(c(-1,1), n, replace=T, prob=c(.2,.8))
plot(cumsum(x), type=’l’,


main="Cummulative sums of Bernoulli variables")


But you can also do than by hand, with the “runif” command.
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Bernoulli variables


Index


x


n <- 200
x <- runif(n)
x <- x>.3
plot(x, type=’h’, main="Bernoulli variables")


7.1.2 Uniform discrete distribution


This is a generalization of the Bernoulli distribution: we draw a number at random from 1,
2, ..., n.
We can simulate this distribution with the “sample” command.
> sample(1:10, 20, replace=T)
[1] 1 5 6 4 7 5 3 6 2 9 10 10 8 3 10 7 4 1 1 3


7.1.3 Binomial distribution


We toss a coin n times and we count the number of “heads”.
In more formal terms: a Binomial variable of parameters (n,p) is a sum of n Bernoulli
variables of parameter p.
We can simulate it as follows.


Simulating a binomial law
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N <- 10000
n <- 20
p <- .5
x <- rep(0,N)
for (i in 1:N) {
x[i] <- sum(runif(n)<p)


}
hist(x,


col=’light blue’,
main="Simulating a binomial law")


We can also use the “rbinom” command.







CHAPTER 7. PROBABILITY DISTRIBUTIONS 516


Binomial distribution, n=10, p=.5
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N <- 1000
n <- 10
p <- .5
x <- rbinom(N,n,p)
hist(x,


xlim = c(min(x), max(x)),
probability = TRUE,
nclass = max(x) - min(x) + 1,
col = ’lightblue’,
main = ’Binomial distribution, n=10, p=.5’)


lines(density(x, bw=1), col = ’red’, lwd = 3)


Binomial distribution, n=100, p=.5
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N <- 100000
n <- 100
p <- .5
x <- rbinom(N,n,p)
hist(x,


xlim = c(min(x), max(x)),
probability = TRUE,
nclass = max(x) - min(x) + 1,
col = ’lightblue’,
main = ’Binomial distribution, n=100, p=.5’)


lines(density(x,bw=1), col = ’red’, lwd = 3)
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Binomial distribution, n=100, p=.9
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p <- .9
x <- rbinom(N,n,p)
hist(x,


xlim = c(min(x), max(x)),
probability = TRUE,
nclass = max(x) - min(x) + 1,
col = ’lightblue’,
main = ’Binomial distribution, n=100, p=.9’)


lines(density(x,bw=1), col = ’red’, lwd = 3)


It is also the distribution of the number of red balls sampled with replacement from an urn
containing red and black balls: we can simulate it with the “sample” command.


Binomial distribution, n=100, p=.5
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N <- 10000
n <- 100
p <- .5
x <- NULL
for (i in 1:N) {
x <- append(x, sum(sample( c(1,0),


n,
replace = TRUE,
prob = c(p, 1-p) )))


}
hist(x,


xlim = c(min(x), max(x)),
probability = TRUE,
nclass = max(x) - min(x) + 1,
col = ’lightblue’,
main = ’Binomial distribution, n=100, p=.5’)


lines(density(x,bw=1), col = ’red’, lwd = 3)


You will also meet this distribution in ecology, when you try to estimate the number of
animals of a given species (say, fish in a lake). You catch the animal, you mark them (with
a ring – the word to google for is “ringing”), and afetr some time, a part of the population
is ringed (we know how many, because we have counted the rings), the rest is not. When
we catch new animals, we have a certain number of ringed animals and a certain number of
non-ringed animals: we can use those numbers to estimate the population size.


7.1.4 Hypergeometric distribution


This is the distribution of the number of red balls samples without replacement from an urn
containing red and white balls.
Let us simulate it on an example: we sample without replacement 5 balls from an urn
containing 15 white and 5 red balls and we count the number of white balls.
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Hypergeometric distribution, n=20, p=.75; k=5
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N <- 10000
n <- 5
urn <- c(rep(1,15),rep(0,5))
x <- NULL
for (i in 1:N) {
x <- append(x, sum(sample( urn, n, replace=F )))


}
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Hypergeometric distribution, n=20, p=.75; k=5’)


lines(density(x,bw=1), col=’red’, lwd=3)


Alternatively, you can directly use the “rhyper” function (it is faster).


Hypergeometric distribution, n=20, p=.75, k=5
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N <- 10000
n <- 5
x <- rhyper(N, 15, 5, 5)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Hypergeometric distribution, n=20, p=.75, k=5’)


lines(density(x,bw=1), col=’red’, lwd=3)
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Hypergeometric distribution, n=400, p=.75, k=100
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N <- 10000
n <- 5
x <- rhyper(N, 300, 100, 100)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Hypergeometric distribution, n=400, p=.75, k=100’)


lines(density(x,bw=1), col=’red’, lwd=3)


7.1.5 Poisson distribution


It is the distribution of the number of customers queueing (in a shop, a bank, a public
service) in a unit of time. Or the number of typos in a text. Or the number or radioactive
disintegration per second. Or any kind of “rare” event (indeed, the Poisson distribution is
a limiting case of a binomial distribution).
More formally, it is a probability distribution such that: (1) the probability of observing
an event (here, “event” can be: “a new customer arrives”, “there is a new radioactive
disintegration”, there is a typo”, etc.) in a “small” interval is proportional to the size of this
interval (in particular, it does not depend on the position of this interval on the time-axis);
(2) the probability that an event occur in a given interval is independant from the probability
that an event occurs in any other disjoint interval; (3) the events are never simultaneous.
This setup is called a “Poisson process”.
One can show that this uniquely defines a probability distribution, with:
P( X=k ) = e^(-lambda) * lambda^k / k!


where lambda is the average number of events per unit of time.
One can simulate this distribution with the “rpois” function.
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Poisson distribution, lambda=1
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N <- 10000
x <- rpois(N, 1)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Poisson distribution, lambda=1’)


lines(density(x,bw=1), col=’red’, lwd=3)


Poisson distribution, lambda=3
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N <- 10000
x <- rpois(N, 3)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Poisson distribution, lambda=3’)


lines(density(x,bw=1), col=’red’, lwd=3)
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Poisson distribution, lambda=5
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N <- 10000
x <- rpois(N, 5)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Poisson distribution, lambda=5’)


lines(density(x,bw=1), col=’red’, lwd=3)


Poisson distribution, lambda=20
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N <- 10000
x <- rpois(N, 20)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Poisson distribution, lambda=20’)


lines(density(x,bw=1), col=’red’, lwd=3)


7.1.6 Geometric distribution


It is the number of trials before a success in a series of Bernoulli events. For instance, if we
are interested in the occurrences of 1s and if we get
0 0 0 1 0 1 0 0 1 0 0 1 0


then, we have three trials (0 0 0, at the begining) before a success (the fourth element is
“1”).
We could simulate it by hand
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Geometric distribution
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my.rgeom <- function (N, p) {
bernoulli <- sample( c(0,1), N, replace=T, prob=c(1-p, p) )
diff(c(0, which(bernoulli == 1))) - 1


}
hist( my.rgeom(10000, .5), col="light blue",


main="Geometric distribution" )


but it is easier to use the “rgeom” command.


Geometric distribution, p=.5
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N <- 10000
x <- rgeom(N, .5)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Geometric distribution, p=.5’)


lines(density(x,bw=1), col=’red’, lwd=3)
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Geometric distribution, p=.1
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N <- 10000
x <- rgeom(N, .1)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Geometric distribution, p=.1’)


lines(density(x,bw=1), col=’red’, lwd=3)


Geometric distribution, p=.01
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N <- 10000
x <- rgeom(N, .01)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=20,
col=’lightblue’,
main=’Geometric distribution, p=.01’)


lines(density(x), col=’red’, lwd=3)


7.1.7 Negative binomial distribution


It is the distribution of the number of failures before k successes in a series of Bernoulli
events.
We could simulate it by hand (exercice left to the reader). but it is easier to resort to the
“rnbinom” function.
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Negative binomial distribution, n=10, p=.25
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N <- 100000
x <- rnbinom(N, 10, .25)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’Negative binomial distribution, n=10, p=.25’)


lines(density(x,bw=1), col=’red’, lwd=3)


negative binomial distribution, n=10, p=.5
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N <- 10000
x <- rnbinom(N, 10, .5)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’negative binomial distribution, n=10, p=.5’)


lines(density(x,bw=1), col=’red’, lwd=3)
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negative binomial distribution, n=10, p=.75
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N <- 10000
x <- rnbinom(N, 10, .75)
hist(x,


xlim=c(min(x),max(x)), probability=T, nclass=max(x)-min(x)+1,
col=’lightblue’,
main=’negative binomial distribution, n=10, p=.75’)


lines(density(x,bw=1), col=’red’, lwd=3)


7.1.8 Multinomial distribution


It is the analogue of the binomial distribution but, this time, the events have several possible
outcomes.
P( (X1,X2,...,Xn)=(k1,k2,...,kn) ) = m! p1^k1 ... pn^kn / (k1! ... kn!)


We can simulate it as follows, still with the “sample” function.
n <- 5
N <- 100
p <- c(.2,.5,.1,.1,.1)
x <- factor(sample(1:n, N, replace=T, prob=p), levels=1:n)
table(x)


We get:
x
1 2 3 4 5
19 47 13 7 14


7.2 The zoo of continuous probability distributions


The most important continuous probability distributions are the gaussian, exponential and
uniform distributions.


7.2.1 Uniform continuous distribution


Here, “uniform” means “evenly distributed in a given interval”. This is the distribution we
expect when we want to “take a number at random in the interval [0,1]”.
We can simulate this distribution with the “runif” function.
> round(runif(20), digits=4)
[1] 0.6187 0.4653 0.0806 0.5425 0.4418 0.4485 0.4685 0.4461 0.9195 0.6127
[11] 0.9132 0.8607 0.1341 0.3795 0.8608 0.9100 0.1545 0.7401 0.2990 0.8714


7.2.2 Expenential distribution


We can see it as an analogue of the Poisson distribution. Actually, the time between two
event in a Poisson process (intuitively: the time between two rare events) follows an expo-
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nential distribution. For instance, the time between two radioactive disintegrations.
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Exponential Probability Distribution Function
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curve(dexp(x), xlim=c(0,10), col=’red’, lwd=3,
main=’Exponential Probability Distribution Function’)


Exponential Distribution
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n <- 1000
x <- rexp(n)
hist(x, probability=T,


col=’light blue’, main=’Exponential Distribution’)
lines(density(x), col=’red’, lwd=3)
curve(dexp(x), xlim=c(0,10), col=’red’, lwd=3, lty=2,


add=T)


7.2.3 Gaussian distribution


This is the famous “bell-shaped” distribution.
More precisely, the central limit theorem states that if X1, X2, ... X3 are independant
identically distributed random varaibles with expectation m avd variance sˆ2, then


(X1+X2+...+Xn) - nm
---------------------


sqrt(n) s


converges in law to a gaussian distribution when n tends to infinity.
in other words, the empirical means
X1+...Xn
--------


n
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is “close to” a gaussian distribution of expectation m and standard deviation s/sqrt(n).
This explains the omnipresence of the gaussian law: when you repeat an experiment a large
number of times, the average result (almost) follows a gaussian distribution.
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limite.centrale <- function (r=runif, m=.5, s=1/sqrt(12), n=c(1,3,10,30), N=1000) {
for (i in n) {
x <- matrix(r(i*N),nc=i)
x <- ( apply(x, 1, sum) - i*m )/(sqrt(i)*s)
hist(x, col=’light blue’, probability=T, main=paste("n =",i),


ylim=c(0,max(.4, density(x)$y)))
lines(density(x), col=’red’, lwd=3)
curve(dnorm(x), col=’blue’, lwd=3, lty=3, add=T)
if( N>100 ) {
rug(sample(x,100))


} else {
rug(x)


}
}


}
op <- par(mfrow=c(2,2))
limite.centrale()
par(op)
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op <- par(mfrow=c(2,2))
limite.centrale(rexp, m=1, s=1)
par(op)
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op <- par(mfrow=c(2,2))
limite.centrale(rexp, m=1, s=1)
par(op)
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op <- par(mfrow=c(2,2))
limite.centrale(function (n) { rnorm(n, sample(c(-3,3),n,replace=T)) },


m=0, s=sqrt(10), n=c(1,2,3,10))
par(op)


Exercise: dra a plot, similar to the one above, but with the theoretical probability densities.
For the formula-savvy reader, the gaussian probability density function is
f(x) = exp( -x^2/2 ) / sqrt( 2 pi )


In R:
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Gaussian Probability Distribution Function
curve(dnorm(x), xlim=c(-3,3), col=’red’, lwd=3)
title(main=’Gaussian Probability Distribution Function’)


The cumulative density (i.e., the integral of the density):
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Cumulative gaussian distribution function
curve(pnorm(x), xlim=c(-3,3), col=’red’, lwd=3)
title(main=’Cumulative gaussian distribution function’)


The quantiles (i.e., the inverse of the cumulative density):
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Gaussian quantiles function
curve(qnorm(x), xlim=c(0,1), col=’red’, lwd=3)
title(main=’Gaussian quantiles function’)


And, of course, we have an “rnorm” function for simulations.


Gaussian Distribution
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n <- 1000
x <- rnorm(n)
hist(x, probability=T, col=’light blue’, main=’Gaussian Distribution’)
lines(density(x), col=’red’, lwd=3)
curve(dnorm(x), add=T, col=’red’, lty=2, lwd=3)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’sample density’, ’theoretical density’),
lwd=2, lty=c(1,2),
col=’red’)


In the discussion above, we had assumed the mean was mu=0 and the standard deviation
sigma=1 (the “standard gaussian” distribution): to get the general case, we just apply an
affine transformation:
f(x) = exp( -( (x-mu) / sigma )^2 /2 ) / sqrt( 2 pi sigma )


The gaussian distribution is sometimes called the “normal” distribution – I shall try to avoid
this word, because in some situations, the distribution we would like to observe (the one we
would like to call “normal”) is not the gaussian one.


7.2.4 Chi2 distribution with one degree of freedom


This is the distribution of Xˆ2, if the random variable X follows a standard gaussian distri-
bution.
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Chi2, one degree of freedom
curve(dchisq(x,1), xlim=c(0,5), col=’red’, lwd=3)
abline(h=0,lty=3)
abline(v=0,lty=3)
title(main="Chi2, one degree of freedom")


7.2.5 Chi2 distribution with n degrees of freedom


This is the probability distribution of X1ˆ2+...+Xnˆ2, where the random variables X1, X2,
..., Xn are independant standard gaussian.
We meet this distribution in statistics, when do computations that require the population
variance, without knowing this variance: we replace it by the variance of the sample.
We shall discuss this in more depth when we tackle estimators and statistical tests.
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Chi^2 Distributions
curve(dchisq(x,1), xlim=c(0,10), ylim=c(0,.6), col=’red’, lwd=3)
curve(dchisq(x,2), add=T, col=’green’, lwd=3)
curve(dchisq(x,3), add=T, col=’blue’, lwd=3)
curve(dchisq(x,5), add=T, col=’orange’, lwd=3)
abline(h=0,lty=3)
abline(v=0,lty=3)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’df=1’, ’df=2’, ’df=3’, ’df=5’),
lwd=3,
lty=1,
col=c(’red’, ’green’, ’blue’, ’orange’)


)
title(main=’Chi^2 Distributions’)


7.2.6 Student’s T


If X1, X2, X3,... are independant identically distributed gaussian random variables of ex-
pectation mu and standard deviation sigma, then


X1 + X2 + ... + Xn
-------------------- - mu


n
-----------------------------


sigma
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---------
sqrt(n)


follows a gaussian law. But if we replace the standard deviation by the sample standard
deviation (i.e., an estimator of the population standard deviation), this quantity no longer
follows a gaussian distribution but a Student T distribution with (n-1) degrees of freedom.


−3 −2 −1 0 1 2 3
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x


dt
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, 1
)


Student T distributions


df=1
df=2
df=5
df=10
Gaussian distribution


curve( dt(x,1), xlim=c(-3,3), ylim=c(0,.4), col=’red’, lwd=2 )
curve( dt(x,2), add=T, col=’blue’, lwd=2 )
curve( dt(x,5), add=T, col=’green’, lwd=2 )
curve( dt(x,10), add=T, col=’orange’, lwd=2 )
curve( dnorm(x), add=T, lwd=3, lty=3 )
title(main="Student T distributions")
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’df=1’, ’df=2’, ’df=5’, ’df=10’, ’Gaussian distribution’),
lwd=c(2,2,2,2,2),
lty=c(1,1,1,1,3),
col=c(’red’, ’blue’, ’green’, ’orange’, par("fg")))


7.2.7 Fisher’s F


If X1, X2, ... Xn and Y1, Y2,... Ym are independant identically distributes gaussian random
variables, then


X1^2 + X2^2 + ... + Xn^2
--------------------------


n
----------------------------
Y1^2 + Y2^2 + ... + Ym^2
--------------------------


m


follows an F distribution, with n and m degrees of freedom. This, it is the distribution of a
quotient of independant Chi2 variables, each divided by its degree of freedom.
We shall meet this distribution when we compare variances (for instance, in Anova (ANalysis
Of VAriance) or in statistical tests).
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Fisher's F


df=(1,1)
df=(3,1)
df=(6,1)
df=(3,3)
df=(6,3)
df=(3,6)
df=(6,6)


curve(df(x,1,1), xlim=c(0,2), ylim=c(0,.8), lty=2)
curve(df(x,3,1), add=T)
curve(df(x,6,1), add=T, lwd=3)
curve(df(x,3,3), add=T, col=’red’)
curve(df(x,6,3), add=T, lwd=3, col=’red’)
curve(df(x,3,6), add=T, col=’blue’)
curve(df(x,6,6), add=T, lwd=3, col=’blue’)
title(main="Fisher’s F")
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’df=(1,1)’, ’df=(3,1)’, ’df=(6,1)’,
’df=(3,3)’, ’df=(6,3)’,
’df=(3,6)’, ’df=(6,6)’),


lwd=c(1,1,3,1,3,1,3),
lty=c(2,1,1,1,1,1,1),
col=c(par("fg"), par("fg"), par("fg"), ’red’, ’red’, ’blue’, ’blue’))


7.2.8 Lognormal law


Quite often, the variables we meet in the real world have positive values: with a truly
gaussian variable, this is not possible – we know that our variable is not gaussian. Instead,
we can look if ots logarithm is gaussian – in other words, if our variable is the exponential
of a gaussian variable.
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Log−normal distribution


x


dl
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rm
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)


curve(dlnorm(x), xlim=c(-.2,5), lwd=3,
main="Log-normal distribution")


7.2.9 Cauchy


This is an example of a pathologically dispersed distribution: its variance is infinite.
It is sometimes called the bowman’s distribution: a blindfolded bowman, in front of an
infinite wall shoots arrows in random directions. The distribution of the arrow impacts on
the wall is a Cauchy distribution.
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The bowman's distribution (Cauchy)
N <- 100 # Number of arrows
alpha <- runif(N, -pi/2, pi/2) # Direction of the arrow
x <- tan(alpha) # Arrow impact
plot.new()
plot.window(xlim=c(-5, 5), ylim=c(-1.1, 2))
segments( 0, -1, # Position of the Bowman


x, 0 ) # Impact
d <- density(x)
lines(d$x, 5*d$y, col="red", lwd=3 )
box()
abline(h=0)
title(main="The bowman’s distribution (Cauchy)")
# Exercise: turn this into an animation...


●


●


●
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●●●


●●●●
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The bowman's distribution and Cauchy's


qcauchy(ppoints(N))
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N <- 10000
x <- tan(runif(N, -pi/2, pi/2))
xlim <- qcauchy(2/N)
xlim <- c(xlim, -xlim)
plot(qcauchy(ppoints(N)), sort(x),


xlim=xlim, ylim=xlim,
main="The bowman’s distribution and Cauchy’s")


It is also a limiting case of the Student T distribution, with 1 degree of freedom.
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Cauchy distribution
Gaussian distribution


curve(dcauchy(x),xlim=c(-5,5), ylim=c(0,.5), lwd=3)
curve(dnorm(x), add=T, col=’red’, lty=2)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’Cauchy distribution’, ’Gaussian distribution’),
lwd=c(3,1),
lty=c(1,2),
col=c(par("fg"), ’red’))


7.2.10 Fat-tailed (or heavy-tailed) distributions


Distributions with “more” extreme values than a gaussian distribution are called “fat-tailed”
distributions: the Student T distribution or the Cauchy distribution are fat-tailed.
Brownian motion built with a fat-tailed distribution (sometimes called “Levy flight”) is
sometimes used to model epidemics or foraging animals: locally, it looks like plain brownian
motion, but from time to time, there is a large jump and the process (or the animal) starts
to explore another part of the plane.
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Brownian Motion
N <- 100
x <- cumsum(rnorm(N))
y <- cumsum(rnorm(N))
plot(x, y,


type = "o", pch = 16, lwd = 2,
xlab = "", ylab = "",
axes = FALSE,
main = "Brownian Motion")


box()
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Levy flight
set.seed(1)
x <- cumsum(rt(N, df=2))
y <- cumsum(rt(N, df=2))
plot(x, y,


type = "o", pch = 16, lwd = 2,
xlab = "", ylab = "",
axes = FALSE,
main = "Levy flight")


box()


7.2.11 Mixtures


When modeling data, you can often faithfully model a fat-tailed distribution as a mixture
of gaussians: you assume the data does not come from a single, gaussian source, but from
several – say, the correct data and measuring errors – or several data sources, different but
all relevant.
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Gaussian QQ−plot of a mixture of gaussians


Theoretical Quantiles


S
am


pl
e 


Q
ua


nt
ile


s


N <- 10000
m <- c(-2,0,2) # Means
p <- c(.3,.4,.3) # Probabilities
s <- c(1, 1, 1) # Standard deviations
x <- cbind( rnorm(N, m[1], s[1]),


rnorm(N, m[2], s[2]),
rnorm(N, m[3], s[3]) )


a <- sample(1:3, N, prob=p, replace=TRUE)
y <- x[ 1:N + N*(a-1) ]


qqnorm(y,
main="Gaussian QQ-plot of a mixture of gaussians")


qqline(y, col="red", lwd=3)
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Mixture of gaussians


y


D
en


si
ty


−6 −4 −2 0 2 4 6


0.
00


0.
05


0.
10


0.
15


0.
20


0.
25


hist(y, col="light blue", probability=TRUE,
ylim=c(0,.25),
main="Mixture of gaussians")


curve(dnorm(x, mean=mean(y), sd=sd(y)),
add=TRUE, col="red", lwd=3, lty=2)


lines(density(x), col="red", lwd=3)


−4 −2 0 2 4


0.
00


0.
05


0.
10


0.
15


The three gaussian distributions in our mixture
curve( p[2] * dnorm(x, mean=m[2], sd=s[2]),


col = "green", lwd = 3,
xlim = c(-5,5),
main = "The three gaussian distributions in our mixture",
xlab = "", ylab = "")


curve( p[1] * dnorm(x, mean=m[1], sd=s[1]),
col="red", lwd=3, add=TRUE)


curve( p[3] * dnorm(x, mean=m[3], sd=s[3]),
col="blue", lwd=3, add=TRUE)
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−4 −2 0 2 4


Mixture of gaussians
n <- 200
x <- seq(-5, 5, length=n)
y3 <- p[1] * dnorm(x, mean=m[1], sd=s[1]) +


p[2] * dnorm(x, mean=m[2], sd=s[2]) +
p[3] * dnorm(x, mean=m[3], sd=s[3])


y2 <- p[1] * dnorm(x, mean=m[1], sd=s[1]) +
p[2] * dnorm(x, mean=m[2], sd=s[2])


y1 <- p[1] * dnorm(x, mean=m[1], sd=s[1])
plot.new()
plot.window(xlim=range(x), ylim=range(0,y1,y2,y3))
polygon(c(x[1],x,x[n]), c(0,y3,0), col="blue", border=NA)
polygon(c(x[1],x,x[n]), c(0,y2,0), col="green", border=NA)
polygon(c(x[1],x,x[n]), c(0,y1,0), col="red", border=NA)
lines(x, y1, lwd=3)
lines(x, y2, lwd=3)
lines(x, y3, lwd=3)
box()
axis(1)


title("Mixture of gaussians")


TODO:
mclust
norm1mix


TODO: Model real data as a mixture of gaussians.
Compare with a model of the data as a gaussian,
Student T or Cauchy distribution (with qqplots)


7.2.12 Quantile mixtures


One usually defines mixtures using the distribution functions. Instead, one could define
them using the quantile functions. For instance, a gaussian-polynomial quantile mixture
has a quantile function of the form
q(p) = qnorm(p) + a * p + b * p^2 + x * p^3.


(Beware, not any value of a, b anc c will do: the quantile function has to be increasing!)
One could similarly define a Cauchy-polynomial quantile mixture.


Gaussian−polynomial quantile mixture
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Quantile function
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q <- function (p, a=1, b=0, c=0, d=0) {
a * qnorm(p) + b + c * p + d * p^2


}
N <- 10000
x <- runif(N)
op <- par(mfrow=c(2,3))
for (a in c(-2,2)) {
y <- q(x, 1, -a/2, a)
hist(y,


xlab = "",
main = "Gaussian-polynomial quantile mixture",
col = "light blue",
probability = TRUE)


curve(q(x, 1, -a/2, a),
lwd = 3,
xlim = c(0,1), ylim = c(-3,3),
xlab = "",
main = "Quantile function")
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abline(h = 0,
v = c(0, .5, 1),
lty = 3)


curve(qnorm(x), lty = 2, add = TRUE)
qqnorm(y)
qqline(y, col="red")


}
par(op)


Those distributions can be used as a generalization of a classical distribution (gaussian,
Cauchy, etc.), together with L-moments or trimmed L-moments (TL-moments).
TODO: URL
Estimation of quantile mixtures via L-moments and trimmed L-moments
J. Karvanen (2005)


See also the lmomco package.
library(help=lmomco)


7.2.13 Edgeworth expansion


AN edgeworth expansion is an approximation of a univariate distribution, e.g., so that the
first moments (mean, standard deviation, skewness, kurtosis) be correct.
Here is an application to option pricing with non-log-normal underlying:
M. Rubinstein, Edgeworth binomial tree
http://www.haas.berkeley.edu/finance/WP/rpf275.pdf


7.2.14 Stable distributions


The Cauchy distribution is (together with the gaussian distribution) a member of the family
of “stable distributions” (also called “Levy distributions” or “Levy-stable distributions” or
“Pareto-Levy distributions”): this means that a sum of Cauchy variables is still a Cauchy
varible. Thus, one may expect to find the Cauchy distribution, or more generally stable
distributions, from time to time, in natural phenomena.
More precisely, stable distributions satisfy a limit theorem similar to the central limit the-
orem. The central limit theorem states that, under some often satisfied conditions, if X1,
X2, ..., Xn are independant identically distributed random variables, then their average
(X1+...+Xn)/n “converges” (in some sense) to a gaussian distribution. But in those “of-
ten satisfied” conditions, we require that the distribution have a variance. What if the
distribution is so fat-tailed that the variance is infinite? There is a more general limit theo-
rem, with more general hypotheses: the everage (X1+...+Xn)/n converges towards a stable
distribution.
?StableDistribution



http://www.haas.berkeley.edu/finance/WP/rpf275.pdf
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A stable distribution (alpha=1.5)
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library(fBasics)
# alpha=2 is the gaussian distribution
# alpha<2 distributions have fat tails
x <- rsymstb(10000, alpha=1.5)
y <- x[ abs(x) < 10 ]
hist(y,


ylim = c(0, .4),
col = "light blue",
probability = TRUE,
xlab = "", ylab = "",
main = "A stable distribution (alpha=1.5)")


lines(density(y), col = "red", lwd = 3)
curve(dnorm(x), col = "red", lwd = 3, lty=2,


add = TRUE)


For more on the subject, check:
http://academic2.american.edu/~jpnolan/stable/chap1.pdf


7.2.15 Levy distribution


The Levy distribution is one of the stable distributions. It is fat-tailed, asymetric and its
expectation is infinite.
It is obtained, for instance, as the hitting times of a brownian motion.
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(Discretized) Levy distribution


Hitting time
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)


set.seed(1)
N <- 1e7
x <- sample(c(-1,+1), N, replace = TRUE)
x <- cumsum(x) # Random walk
x <- diff(which(x==0)) # Time to go back to zero
r <- density(x[x<100])
plot(r$x, log(r$y),


xlim = c(0,20),
ylim = c(-6,0),
type = "l",
xlab = "Hitting time",
ylab = "log(density)",
main = "(Discretized) Levy distribution")


v <- r$x[ which.max(r$y) ] # Mode
abline(v = v, lty=3, lwd=3)
curve( dnorm(x, mean = v, sd = 1, log = TRUE) -


dnorm(0,sd=1,log=T) + log(max(r$y)) ,
add = TRUE, col = "blue", lwd = 3, lty = 2 )


7.2.16 Weibull distribution


The Weibull distribution is a generalization of the exponential distribution in which the
“decrease rate” (the correct word is “hazard rate” – more about this when we tackle survival
analysis) is not constant. It is used to model the lifetime (time without a failure) of a
machine (this “decrease rate”, i.e., the probability a problem occurs, grows with the age of
the machine).
The density is of the form exp(-a tˆb).



http://academic2.american.edu/~jpnolan/stable/chap1.pdf
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Weibull Probability Distribution Function


Exponential
Weibull, shape=1
Weibull, shape=2
Weibull, shape=.8


curve(dexp(x), xlim=c(0,3), ylim=c(0,2))
curve(dweibull(x,1), lty=3, lwd=3, add=T)
curve(dweibull(x,2), col=’red’, add=T)
curve(dweibull(x,.8), col=’blue’, add=T)
title(main="Weibull Probability Distribution Function")
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’Exponential’, ’Weibull, shape=1’,
’Weibull, shape=2’, ’Weibull, shape=.8’),


lwd=c(1,3,1,1),
lty=c(1,3,1,1),
col=c(par("fg"), par("fg"), ’red’, ’blue’))


7.2.17 Gamma Distribution


This is the distribution of a sum of independant exponential random variables. As such,
it is a generalization of the exponential distribution, use to model lifetimes (for instance, a
reliable machine that would have to undergo three successive problems to stop functionning,
each problem being described by an exponential law).
The arrival times in a Poisson process are Gamma-distributed.
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Gamma probability distribution function


k=1 (Exponential distribution)
k=2
k=3
k=4
k=5


curve( dgamma(x,1,1), xlim=c(0,5) )
curve( dgamma(x,2,1), add=T, col=’red’ )
curve( dgamma(x,3,1), add=T, col=’green’ )
curve( dgamma(x,4,1), add=T, col=’blue’ )
curve( dgamma(x,5,1), add=T, col=’orange’ )
title(main="Gamma probability distribution function")
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’k=1 (Exponential distribution)’, ’k=2’, ’k=3’, ’k=4’, ’k=5’),
lwd=1, lty=1,
col=c(par(’fg’), ’red’, ’green’, ’blue’, ’orange’) )
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Comparision: gamma distribution and sum of exponential r.v.
n <- 500
x1 <- rexp(n,17)
x2 <- rexp(n,17)
x3 <- rexp(n,17)
x <- x1 + x2 + x3
# Simpler, but less readable:
# k <- 3
# x <- drop(apply( matrix( rexp(n*k,17), nr=n, nc=k ), 1, sum))
y <- qgamma(ppoints(n),3,17)
plot( sort(x) ~ sort(y), log=’xy’ )
abline(0,1, col=’red’)
title("Comparision: gamma distribution and sum of exponential r.v.")


See also:
http://www.math.uah.edu/statold/special/special3.html


7.2.18 Beta distribution


Here is the definition you will find in most books (it is not enlightening, I shall therefore give
more intuitive definitions in a few moments): If X and T are independant random variables,
following Gamma distributions of parameters (a,r) and (b,r), then X/(X+Y) is distributed
according to a Beta distribution of parameters (a,b).
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Beta distribution


(1,1)
(2,1)
(3,1)
(4,1)
(2,2)
(3,2)
(4,2)
(2,3)
(3,3)
(4,3)


curve( dbeta(x,1,1), xlim=c(0,1), ylim=c(0,4) )
curve( dbeta(x,2,1), add=T, col=’red’ )
curve( dbeta(x,3,1), add=T, col=’green’ )
curve( dbeta(x,4,1), add=T, col=’blue’ )
curve( dbeta(x,2,2), add=T, lty=2, lwd=2, col=’red’ )
curve( dbeta(x,3,2), add=T, lty=2, lwd=2, col=’green’ )
curve( dbeta(x,4,2), add=T, lty=2, lwd=2, col=’blue’ )
curve( dbeta(x,2,3), add=T, lty=3, lwd=3, col=’red’ )
curve( dbeta(x,3,3), add=T, lty=3, lwd=3, col=’green’ )
curve( dbeta(x,4,3), add=T, lty=3, lwd=3, col=’blue’ )
title(main="Beta distribution")
legend(par(’usr’)[1], par(’usr’)[4], xjust=0,


c(’(1,1)’, ’(2,1)’, ’(3,1)’, ’(4,1)’,
’(2,2)’, ’(3,2)’, ’(4,2)’,
’(2,3)’, ’(3,3)’, ’(4,3)’ ),


lwd=1, #c(1,1,1,1, 2,2,2, 3,3,3),
lty=c(1,1,1,1, 2,2,2, 3,3,3),
col=c(par(’fg’), ’red’, ’green’, ’blue’,


’red’, ’green’, ’blue’,
’red’, ’green’, ’blue’ ))


If X1,X2,...,Xn are independant random variables, uniformly distributed in [0,1], then max(X1,X2,...,Xn)
is distributed according to a Beta distribution of parameters (n,1).



http://www.math.uah.edu/statold/special/special3.html
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Order statistic and Beta distribution
N <- 500
n <- 5
y <- drop(apply( matrix( runif(n*N), nr=N, nc=n), 1, max ))
x <- qbeta(ppoints(N), n, 1)
plot( sort(y) ~ x )
abline(0,1, col=’red’)
title("Order statistic and Beta distribution")


The orther order statistics (the k-th largest element of X1,X2,...,Xn) follow other Beta
distributions.
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Order statistics and Beta distribution
N <- 500
n <- 5
k <- 3
y <- drop(apply( matrix( runif(n*N), nr=n, nc=N), 2, sort )[n-k,])
x <- qbeta(ppoints(N), n-k, k+1) # Exercice: Where do those


# coefficients come from?
plot( sort(y) ~ x )
abline(0,1, col=’red’)
title("Order statistics and Beta distribution")
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# I admit it: I found the coefficients above by trial-and-error...
op <- par(mfrow=c(5,5), mar=c(0,0,0,0) )
for (i in 1:5) {
for (j in 1:5) {
plot( sort(y) ~ qbeta(ppoints(N), j, i), xlab=’’, ylab=’’, axes=F )
abline(0,1, col=’red’)
box()
text( (par(’usr’)[1]+par(’usr’)[2])/2,


(par(’usr’)[3]+par(’usr’)[4])/2,
paste(j,i),
cex=3, col=’blue’ )


}
}
par(op)


See also:
http://www.math.uah.edu/statold/special/special9.html


Here is another, bayesian, motivation for the Beta distribution. “Bayesian” means that,
when we are interested in some parameter (say, the probability of getting “tails” when
tossing a coin), we do not want to get a single precise value – we are sure it would be wrong
–, we want a whole distribution, e.g., “the probability of getting tails seems to be taken from
a gaussian distribution of mean 0.4 and standard deviation 0.1”. (Here, you should stand
up and scream: it cannot be a gaussian distribution, it must be some distribution whose
values are limited to [0,1]!)
Let us toss a coin (it is funnier if it has been tampered with; if you cannot find one, you can
use a drawing pin instead) and try to find the probability of getting tails. We do not know
anything, a priori, about this probability. If we wanted to give a number for it, we would
give “0.5”, but it is more precise to give a distribution: the “prior probability” is described
by a uniform distribution in [0,1]. It means that we do not know anything, that we do not
have any information that could suggest a preference for some probability. If we toss the
coin (drawing pin) 10 times and observe 7 tails and 3 heads, we have more information and
we can uptate our probability distribution for p: it is proportionnal to
p^7 * (1-p)^3.


This is a Beta(8,4) distribution.



http://www.math.uah.edu/statold/special/special9.html
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posterior distrobution of p
curve(dbeta(x,8,4),xlim=c(0,1))
title(main="posterior distrobution of p")


You can do the experiment in two steps: you start with a uniform prior, you toss a few
coins/drawing pins, you get a beta posterior; if you toss a few more coins, you can transform
this beta distribution (the beta posterior of the first series of tosses is the prior of the
second series of tosses) into another beta distribution. That is why one often uses the beta
distribution as a prior distribution, when one uses bayesian methods to estimate probabilities
(or any bounded quantity).
In a more simple and intuitive way, one can use a beta distribution to model a continuous
distribution in the interval [0,1], with a peak, more or less important, more or less skewed.
As a result, you may want to use this distribution to model any bounded quantity.
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B(10,10)
B(1,1)
B(2,2)
B(5,2)
B(.1,.5)


A few beta probability distributions
curve(dbeta(x,10,10), xlim=c(0,1), lwd=3)
curve(dbeta(x,1,1), add=T, col=’red’, lwd=3)
curve(dbeta(x,2,2), add=T, col=’green’, lwd=3)
curve(dbeta(x,5,2), add=T, col=’blue’,lwd=3)
curve(dbeta(x,.1,.5), add=T, col=’orange’)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’B(10,10)’, ’B(1,1)’, ’B(2,2)’, ’B(5,2)’, ’B(.1,.5)’),
lwd=c(3,3,3,3,1), lty=1,
col=c(par(’fg’),’red’,’green’,’blue’,’orange’))


title("A few beta probability distributions")


Here is another presentation of this bayesian motivation for the Beta distribution, with no
bayesian ideas but “just” maximum likelihood. The situation is the same: we toss a coin or
a drawing pin and we look on which side it falls. We call p the probability of getting “tails”.
We got 7 tails and 3 heads. We can see 7 as the value of a binomial variable of parameters
(10,p). The probability of observing 7 tails and 3 heads given p is
L(p) = p^7 * (1-p)^3.


This probability is called “likelihood” (in more general terms, the “likelihood” of a parameter
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p is the probability of observing the results we actually observed given the value of p – it is
a function of p, which we usually use to compyte the “most probable value of p”, i.e., the
value pf p that maximizes the likelihood). As before, it is proportional to the density of a
Beta distribution.
We say that the binomial and the beta distribution are conjugated: their density is given
by the same formula by interverting the role of the parameter and the variable.


7.2.19 Dirichlet distribution


This is a multidimensionnal generalization of the beta distribution, extensively used in
bayesian modelling: the Beta distribution can be used to model the distribution of the p
paremeter of a binomial random variable; similarly, the Dirichlet distribution can be used to
model the distribution of the probabilities used as parameters of a multinomial distribution.
library(gtools)
?rdirichlet


library(bayesm)
?rdirichlet


library(MCMCpack)
?Dirichlet


TODO


If X1,...,Xn are independant Gamma distributions, then
(X1,...,Xn)/(X1+...+Xn) follows a Beta distribution.


7.2.20 Exponential distributions


Most of the distributions presented here belong to the family of exponential distributions –
they play an important role in some theoretical results, mainly because they are amenable to
explicit (closed-formula) computations, but their definition might not be very enlightening:


y theta - v(theta)
f(y, theta,phi) = exp ( -------------------- + w(y,phi) )


u(phi)


7.2.21 Pathological distributions


For simulations (especially if you want to know how the algorithm you just developed is
“robust”, i.e., behaves well with non-gaussian distributions – or even, with no assumption
in the distribution), you can have a look at the Marron–Wand distributions in the nor1mix
package.







CHAPTER 7. PROBABILITY DISTRIBUTIONS 547


−3 −1 1 2 3


0.
0


0.
2


0.
4


#1 Gaussian


x


f(
x)


−2 0 1 2 3


0.
0


0.
2


0.
4


#2 Skewed


x


f(
x)


−5 −3 −1 1


0.
0


0.
6


1.
2


#3 Str Skew


x


f(
x)


−2 0 1 2


0.
0


1.
0


#4 Kurtotic


x


f(
x)


−1.0 0.0 0.5 1.0


0
1


2
3


#5 Outlier


x


f(
x)


−2 0 2


0.
00


0.
15


0.
30


#6 Bimodal


x


f(
x)


−4 0 2 4


0.
0


0.
2


0.
4


#7 Separated


x


f(
x)


−3 −1 1 3


0.
0


0.
2


0.
4


#8 Asym Bim


x


f(
x)


−4 −2 0 2 4


0.
00


0.
15


0.
30


#9 Trimodal


x


f(
x)


−2 0 1 2


0.
0


0.
2


0.
4


0.
6


#10 Claw


x


f(
x)


−3 −1 1 3


0.
0


0.
2


0.
4


#11 Doub Claw


x


f(
x)


−3 −1 1 3


0.
0


0.
2


0.
4


#12 Asym Claw


x


f(
x)


−3 −1 1 3


0.
0


0.
2


0.
4


#13 As Do Claw


x


f(
x)


−4 0 2 4


0.
0


0.
2


0.
4


#14 Smoo Comb


x


f(
x)


−4 0 2 4


0.
0


0.
2


0.
4


#15 Disc Comb


x


f(
x)


−5 0 5


0.
0


0.
4


0.
8


1.
2


#16 Dist Bim


x


f(
x)


The Marron−Wand Densities
# Example from the manual
library(nor1mix)
ppos <- which("package:nor1mix" == search())
nms <- ls(pat="^MW.nm", pos = ppos)
nms <- nms[order(as.numeric(substring(nms,6)))]
op <- par(mfrow=c(4,4), mgp = c(1.2, 0.5, 0), tcl = -0.2,


mar = .1 + c(2,2,2,1), oma = c(0,0,3,0))
for(n in nms) { plot(get(n, pos = ppos)) }
mtext("The Marron-Wand Densities", outer = TRUE,


font = 2, cex = 1.6)
par(op)


7.2.22 Multivariate gaussian distribution


One can generalize the gaussian distribution in higher dimensions (“multivariate” means
that the random variable does not provide us with numbers one at a time, but with points
in some vector space – equivalently, it provides us with n numbers (the coordinates) at a
time). Before the definition, let us give a few examples.
For instance, if X1,...,Xn are iid gaussian variables, then (X1,...,Xn) is a multivariate gaus-
sian. But it is a very special case: the resulting cloud of points looks perfectly spherical –
and centered in zero.
If X1,...,Xn are independant gaussian random variables, of different means and variances,
then (X1,...,Xn) is a multivariate gaussian. The cloud of points is no longer spherical, it can
be elongated, but it will be elongated squashed in directions parallel to the axes – it is still
a very special case.
If X1,...,Xn are gaussian variables, with no restrictions on their means, variances and co-
variances (they need not be independant), then (X1,...,Xn)
This is actually a definition of the multivariate gaussian variables. A multivariate gaussian
random variable is entirely determined by its mean (it is a vector) and its variance-covariance
matrix.
Equivalently, one can define multivariate gaussian random variables as variables of the form
Y=A+B*X, where A is any vector, B any matrix, X=(X1,...,Xn) and X1,...,Xn are iid
standard gaussian random variables.
There used to be ne predefined R function to get a multivariate gaussian sample for a
given variance-covariance matrix. But you can roll up your own as follows: we start with
independant standard gaussian variables X1, X2, ... and we let
Y1 = a*X1
Y2 = b*X1 + c*X2
Y3 = d*X1 + e*X2 + f*X3
etc.


A “quick” computation shows that
cov(Y) = t(A) %*% A


where
a 0 0 ...


A = b c 0
d e f
...
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So we “just” have to decompose the desired variance-covariance matrix as a product of a
triangular matrix and its transpose: this is the Choleski decomposition.
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rmnorm <- function (R, C, mu=rep(0,dim(C)[1])) {
A <- t(chol(C))
n <- dim(C)[1]
t(mu + A %*% matrix(rnorm(R*n),nr=n))


}
C <- matrix(c(2,.5,.5,1),nr=2)
mu <- c(2,1)
y <- rmnorm(1000,C, mu)
cov(y)
plot(y)


abline(h=mu[2], lty=3, lwd=3, col=’blue’)
abline(v=mu[1], lty=3, lwd=3, col=’blue’)
e <- eigen(C)
r <- sqrt(e$values)
v <- e$vectors
N <- 100
theta <- seq(0,2*pi, length=N)


x <- mu[1] + r[1]*v[1,1]*cos(theta) +
r[2]*v[1,2]*sin(theta)


y <- mu[2] + r[1]*v[2,1]*cos(theta) +
r[2]*v[2,2]*sin(theta)


lines(x,y, lwd=3, col=’blue’)


If you want to do computations (and not simulations, as we just did), check the “mvtnorm”
package.
library(help=mvtnorm)


Actually, there is already a function to sample from gaussian distributions: “mvrnorm”, the
the MASS package.
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library(MASS)
N <- 200
mu <- c(1, .5)
S <- matrix(c(4,2,2,2), nc=2)
x <- mvrnorm(N, mu, S)
plot(x)
# Cloud center
points(mu[1], mu[2], pch=3, cex=3, lwd=5, col="blue")
# Ellipse axes
e <- eigen(S)
a <- mu + sqrt(e$values[1]) * e$vectors[,1]
b <- mu - sqrt(e$values[1]) * e$vectors[,1]
segments(a[1], a[2], b[1], b[2], col="blue", lwd=3)
a <- mu + sqrt(e$values[2]) * e$vectors[,2]
b <- mu - sqrt(e$values[2]) * e$vectors[,2]
segments(a[1], a[2], b[1], b[2], col="blue", lwd=3)
# TODO: Draw the ellipse...


7.3 Fitting a distribution


TODO
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fitdistr
density estimation
locfit(..., deriv=...) # To get an estimation of the derivative of the density


7.4 Extreme value theory


7.4.1 Evd (Extreme Value Distribution)


TODO: there is already a section about EVT slightly below...


I said above that one should not use the word “normal” to speak of the gaussian distribution,
because in certain situations, “normal” data are far from gaussian. This is the case in finance
(more precisely, in high-frequency (intraday) data), where data are more dispersed than with
gaussian distributions. We say that the data have “fat tails”.
And the situation is even worse: we are mainly interested in those tails: a high value means
high profits (good) or high losses (bad). As those extreme events are more frequent than
with a gaussian distribution, as the gaussian distribution fails to describe them properly,
and as we wish to focus on them, we should not use the gaussian distribution.
Instead, we can study the truncated distributions:
X | X>a


and
X | X<-a


(Generalized) Extreme Value Distributions are candidate distributions that are hoped to fit
more or less closely those truncated distributions.
TODO
evd/doc/guide.pdf
density = exp(-x-exp(-x))


TODO: this should not be in the middle of the
distributions used in survival analysis...


7.4.2 Extreme Value Theory (EVT)


"If things go wrong, how wrong can they go?"


Quite often, when studying voluminous data, we start to assume that they are gaussian.
We rarely check this assumption – if we do, we realize that the gaussian approximation is
reasonable for observations close to the mean but completely wrong far from the mean.
The gaussian approximation (with suppression of the most extreme observations) is sufficient
if we are only interested in the “usual” behaviour of the data – but when extreme values
play a central role, when we try to understand, fight or use the phenomena that underlie
them, this approximation becomes troublesome.
This is the case in risk management: natural disasters (for insurance companies) or stock
market crashes are rare events with disastrous consequences – one cannot afford to improp-
erly evaluate their probabilities and consequences.
Here is an example with stick market data (they were retrieved from Yahoo).
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x <- read.table("SUNW.csv", header=T, sep=",")
x <- x$Close
x <- diff(log(x)) # Compute the returns
qqnorm(x, main="Normality of stock returns (15 years)")
qqline(x, col=’red’)


Actually, on a short period, monthly returns are almost normal (the problem is even worse
for high freauency (intraday) data).
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qqnorm(x[1:90], main="Normality of stock returns (3 months)")
qqline(x[1:90], col=’red’)


One can graphically compare the sample probability distribution function with that of a
gaussian distribution.
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Stock returns density vs normal density


N = 4353   Bandwidth = 0.005178
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plot(density(x), main="Stock returns density vs normal density")
m <- mean(x)
s <- sd(x)
curve( dnorm(x, m, s), col=’red’, add=T)


It is clearer on a logarithmic scale.
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plot(density(x), log=’y’, main="Stock returns density vs normal density")
curve( dnorm(x, m, s), col=’red’, add=T)
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N = 4353   Bandwidth = 0.005178
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plot(density(x), log=’y’, ylim=c(1e-1,1.5e1), xlim=c(-.2,.2),
main="Stock returns density vs normal density (detail)")


curve( dnorm(x, m, s), col=’red’, add=T)


We see that, indeed, the sample distribution has a sharper peak than the normal one – and
is is straiter (on our logarithmic scale): it almost looks like two ligne segments.
Conclusion: in real data, extreme values may be more frequent that in gaussian data.


7.4.3 EVT and risk management


In risk management, we classically compute three quantities to measure the risk of rare
events.
The Value at Risk (VaR) is the alpha-% quantile of the Profits and Losses (P&L) distribu-
tion, which we assume normal.
For internal risk control purposes, most of the financial
firms compute a 5% VaR over a one-day holding period. The
Basle accord proposed that VaR for the next 10 days and
p = 1%, based on a historical observation period of at least
1 year (220 days) of data, should be computed and then
multiplied by the ‘safety factor’ 3. The safety factor was
introduced because the normal hypothesis for the profit
and loss distribution is widely recognized as unrealistic.


The Expected Shortfall (ES), or tail conditionnal expectation, is the expectation of the P&L
given that it exceeds the VaR.
ES(alpha) = E[ X | X > VaR(alpha) ]


One may consider a third quantity: the n-day k-th return level is the 1/k-quantile of
Max(X1,...,Xn), i.e., in one case out of k, the maximum loss in an n-day period will ex-
ceed R(n,k).
These two quantities are studied in “Extreme Value Theory” – indeed, it is not a simgle
theory but two:
GEV: Study of Max(X1,...,Xn) (for n large)
GPD: Study of X|X>a (for a large)


7.4.4 EVT: GEV


We have seen that the Beta distribution was the distribution of the maximum of X1,X2,...,Xn
when the Xi are uniform variables. But if the Xi follow another distribution, what can we
say?
And if the Xi follow a distribution we do not know, can we say anythong at all? This
question is very similar to that that motivates the central limit theorem, that says that the
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(normalized) mean of X1,X2,...,Xn is gaussian – with almost no assumptions on the Xi.
Well, such a theorem does exist:
If there is a way of “normalizing” Max(X1,X2,...,Xn) so that its distribution converges to a
certain distribution, than this distribution is one of the followings:
Frechet: exp( - x^-alpha )
Weibul: exp( - (-x)^-alpha )
Gumbel: exp( - e^-x )


The GEV (Generalized Extreme Value) distribution is a parametrization of these three
distributions, with a single formula:
exp( -(1+ax)^(-1/a) ) if a != 0
exp( - e^-x )


Here is the plot of those distributions.
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density of the Frechet distribution
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library(evd)
curve(dfrechet(x, shape=1), lwd=3, xlim=c(-1,2), ylim=c(0,1),


ylab="", main="density of the Frechet distribution")
for (s in seq(.1,2,by=.1)) {
curve(dfrechet(x, shape=s), add=T)


}
curve(dfrechet(x, shape=2), lwd=3, add=T, col=’red’)
curve(dfrechet(x, shape=.5), lwd=3, add=T, col=’blue’)
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density of the (reverse) Weibull distribution


x


curve(drweibull(x, shape=1), lwd=3, xlim=c(-2,1), ylim=c(0,1),
ylab="", main="density of the (reverse) Weibull distribution")


for (s in seq(.1,2,by=.1)) {
curve(drweibull(x, shape=s), add=T)


}
curve(drweibull(x, shape=2), lwd=3, add=T, col=’red’)
curve(drweibull(x, shape=.5), lwd=3, add=T, col=’blue’)
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curve(dgumbel(x), lwd=3, xlim=c(-2,2), ylim=c(0,1),
ylab="", main="density of the Gumbel distribution")
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density of the GEV distribution


x


curve(dgev(x, shape=0), lwd=3, xlim=c(-2,2), ylim=c(0,1),
ylab="", main="density of the GEV distribution")


for (s in seq(-2,2,by=.1)) {
curve(dgev(x, shape=s), add=T)


}
curve(dgev(x, shape=-1), lwd=3, add=T, col=’red’)
curve(dgev(x, shape=1), lwd=3, add=T, col=’blue’)


7.4.5 EVT: Conditionnal Excess Distribution Function (GPD)


We are now interested in the distribution of X—X>a (i.e., “X given that X>a”), when a
becomes large.
TODO: write up this part.


cdf of X, with the "X>a" part in red
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x <- diff(log(x)) # Compute the returns
x <- sort(x)
n <- length(x)
m <- floor(.9*n)
y <- (1:n)/n
plot(x,y, type=’l’, main="empirical cdf of stock returns")
lines(x[m:n], y[m:n], col=’red’, lwd=3)


cdf of X-a—X>a, same color
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plot(x[m:n], y[m:n], col=’red’, lwd=3,
type=’l’, main="empirical conditionnal excess cdf of stock returns")


rescaled cdf of X-a—X>a
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plot(x[m:n], (y[m:n] - y[m])/(1-y[m]) , col=’red’, lwd=3,
type=’l’, main="rescaled empirical conditionnal excess cdf of stock returns")


The Generalized Pareto Distribution (GPD) is often a good approximation.
G(x) = 1 - (1 + a/b * x)^ -1/a if a !=0
G(x) = 1 - exp(-x/b) if a = 0


Here is its probability distribution function
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density of the Generalized Pereto Distribution (GPD)


x


curve(dgpd(x, shape=0), lwd=3, xlim=c(-.1,2), ylim=c(0,2),
ylab="", main="density of the Generalized Pereto Distribution (GPD)")


for (s in seq(-2,2,by=.1)) {
curve(dgpd(x, shape=s), add=T)


}
curve(dgpd(x, shape=-1), lwd=3, add=T, col=’red’)
curve(dgpd(x, shape=1), lwd=3, add=T, col=’blue’)


(the more extreme the extreme values, the larger the “shape” parameter – in our example,
we can expect a positive value) and its cdf.
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cdf of the Generalized Pereto Distribution (GPD)


x


curve(pgpd(x, shape=0), lwd=3, xlim=c(-.1,2), ylim=c(0,1),
ylab="", main="cdf of the Generalized Pereto Distribution (GPD)")


for (s in seq(-2,2,by=.1)) {
curve(pgpd(x, shape=s), add=T)


}
curve(pgpd(x, shape=-1), lwd=3, add=T, col=’red’)
curve(pgpd(x, shape=1), lwd=3, add=T, col=’blue’)


To estimate this parameter, we can use quantile-quantile plots.


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●


●●●●●●
●
●●


●
●


●


●


●● ● ● ●


0 1 2 3 4 5 6 7


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●


●●●●●●
●
●●


●
●


●


●


●● ● ● ●


0 5 10 15


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●


●●●●●●
●
●●
●
●


●


●


●● ● ● ●


0 10 20 30 40 50


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●
●


●


●


●● ● ● ●


0 50 100 150 200


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●
●


●


●


●● ● ● ●


0 200 400 600 800


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●
●


●


●


●●● ● ●


0 1000 2000 3000


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●
●


●


●


●●● ● ●


0 5000 10000


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●
●


●


●


●●● ● ●


0 20000 60000


0.
1


0.
3


0.
5


0.
7


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●
●


●


●


●●● ● ●


0e+00 2e+05


0.
1


0.
3


0.
5


0.
7


x <- read.table("SUNW.csv", header=T, sep=",")
x <- x$Close
x <- diff(log(x)) # Compute the returns
x <- sort(x)
n <- length(x)
m <- floor(.9*n)
y <- (1:n)/n
op <- par(mfrow=c(3,3), mar=c(2,2,2,2))
for (s in seq(0,2,length=9)) {
plot(qgpd(ppoints(n-m+1),shape=s), x[m:n],


xlab=’’, ylab=’’)
}
par(op)


Here, we do not see much: we have the impression that half a dozen points do not follow the
same distribution as the others. We could already spot them in the usual quantile-quantile
plot.
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But there is a slight problem: it might be a good idea to look at X—X>a and try to model
its distribution, but how do we choose a in the first place? Where do we truncate the
distribution? In other words, where does the tail of the distribution start?
TODO


Sample mean excess plot
(u, e(u))
where e(u) = mean of the (x i - u), for i such that x i > u
This could be written:
mean( (x-u)[x>u] )
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plot(x, e, type=’o’, main="Sample mean excess plot")


Here is again our pathology. We can see three parts: the part we are not interested in; the
“regular” tail, we are interested in; and a few outliers. We choose a at the begining of the
regular tail.
(Honestly, I am not really confident about this: there are too many observations in the
“irregular tail” to simply forget about them, but too few (and they are too clustered) to be
really used.)
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TODO: understand...


Let us check another example.
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Sample mean excess plot


x


e


op <- par(mfrow=c(3,3))
for (f in c("SUNW", "ADBE", "ADPT",


"PCAR", "COST", "INTC",
"MSFT", "ADCT", "BMET")) {


x <- read.table(paste(f,".csv", sep=’’), header=T, sep=",")
x <- x$Close
x <- -diff(log(x)) # Compute the returns
x <- sort(x)
e <- rep(NA, length(x))
for (i in seq(along=x)) {
u <- x[i]
e[i] <- mean( (x-u)[x>u] )


}
plot(x, e, type=’o’, main="Sample mean excess plot")


}
par(op)


See also
An Application of Extreme Value Theory for Measuring Risk
http://www.unige.ch/ses/metri/gilli/evtrm/evtrm.pdf
http://www.unige.ch/ses/metri/gilli/evtrm/CSDA-08-02-2003.pdf


7.5 Miscellaneous


7.5.1 Copulas


TODO



http://www.unige.ch/ses/metri/gilli/evtrm/evtrm.pdf

http://www.unige.ch/ses/metri/gilli/evtrm/CSDA-08-02-2003.pdf
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7.5.2 Other distributions


Less commonly used distributions are in separate packages. For instance:
evd (extreme value distribution)
gld (generalized lambda distribution)
SuppDists
normalp (generalizations of the gaussian distribution)







Chapter 8


Estimators and Statistical Tests


TODO: give the structure of this chapter
motivation of statistical tests
notion of estimator, bias, MSE
...
MLE (should be in a section of its own)
Bayesian methods (in a section of their own)


(TODO)


TODO: list the more important tests (Student and Chi^2)
Student T test: compare a mean with a given number


compare the mean in two samples
There are generalizations for more than two samples
(analysis of variance) and for non-gaussian samples
(Wilcoxon).
One can devise similar tests to compare the variance of
a sample with a given number or to compare the variance
of two samples.


Chi^2 test: to compare the distribution of a qualitative
variable with predetermined values, to compare the
distribution of a qualitative variable in two
samples. One can also use it to check if two qualitative
variables are independant. However, it is only an
approximation, valid for large samples (more than 100
observations, more that 10 observations per class).


TODO: check if we can do without the Chi^2 test:
- binary variable: bimom.test
- multinomial test: ???
- Independance Chi^2: fisher.test
- two variables: fisher.test


8.1 Introduction to statistical tests: TODO: REWRITE
THIS SECTION


We want to answer a question of the kind “Does tobacco increase the risk of cancer?”, “Does
the proximity of a nuclear waste reprocessing plant increase the risk of leukemia?”, “Is the
mean of the population from which this sample was drawn zero, given that the sample mean
is 0.02?”
Let us detail the problem “Have those two samples the same mean?” (it is a simplification
of the problem “Do those two samples come from the same population?”).
Let us consider a first population, on which is defined a statistical variable (with a gaussian
distribution), from which we get a sample. We do the same for a second population, with
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the same population mean.
We can then consider the statistical variable
sample mean in the first sample - sample mean in the
second sample


and find its distribution.
If we measure a certain value of this difference, we can compute the probability of obtaining
a difference at least as large.
If
P( difference > observed difference ) < alpha,


(for a given value of alpha, say 0.05), we reject the hypothesis “the two means are equal”,
with a risk equal to alpha.
But beware, this result is not certain at all. There can be two kinds of error: either wrongly
clain that they are different (this happens with a probability alpha) or wrongly claim that
the two means are equal.
Beware again, those tests are only valid under certain conditions (gaussian variables, same
variance, etc.).
If we really wish to be rigorous, we do not consider a single hypothesis, but two: for instamce
“the means are equal” and “the means are different”; or “the means are equal” and “the
first mean is larger than the second”. We would use the second formulation if we can a
priori reject the fact that the first mean is lower than the second – but this has to come
from information independant from the samples at hand.
The statistical tests will never tell “the hypothesis is true”: they will merely reject or fail
to reject the hypothesis stating “there is nothing significant”. (This is very similar to the
development of science as explained by K. Popper: we never prove that something is true,
we merely continuously try to prove it wrong and fail to do so.)


8.1.1 H0 (null hypothesis) and H1 (alternative hypothesis)


Let us consider two hypotheses: the null hypothesis H0, “there is no noticeable effect” (for
instance, “tobacco does not increas the risk of cancer”, the proximity of a waste recycling
plant does not increas the risk of leukemia) and the alternative hypothesis H1, “there is a
noticeable effect” (e.g., “tobacco increases the risk of cancer”). The alternative hypothe-
sis can be symetric (“tobacco increases of decreases the risk of cancer”) or not (“tobacco
increases the risk of cancer”). To choose an asymetric hypothesis means that we reject, a
priori, half of the hypothesis: it can be a prejudice, so you should think carefully before
choosing an asymetric alternative hypothesis.
H0 is sometimes called the “conservative hypothesis”, because it is the hypothesis we keep
if the results of the test are not conclusive.


8.1.2 Type I error


To wrongly reject the null hypothesis (i.e., to wrongly conclude “there is an effet” or “there
is a noticeable difference”).
For instance, if the variable X follows a gaussian distribution, we expect to get values “in
the middle” of the bell-shaped curve. If we get extreme values, we shall reject, sometimes
wrongly, the null hypothesis (that the mean is actually zero). The type I error corresponds
to the red part in the following plot.
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Type I error
colorie <- function (x, y1, y2, N=1000, ...) {
for (t in (0:N)/N) {
lines(x, t*y1+(1-t)*y2, ...)


}
}
# No, there is already a function to do this
colorie <- function (x, y1, y2, ...) {
polygon( c(x, x[length(x):1]), c(y1, y2[length(y2):1]), ... )


}
x <- seq(-6,6, length=100)
y <- dnorm(x)
plot(y~x, type=’l’)
i = x<qnorm(.025)
colorie(x[i],y[i],rep(0,sum(i)) ,col=’red’)
i = x>qnorm(.975)
colorie(x[i],y[i],rep(0,sum(i)) ,col=’red’)
lines(y~x)
title(main="Type I error")


8.1.3 p-value


Probability (if the null hypothesis is true) to get a result at least as extreme. It is the
probability of making a type I error.


8.1.4 Type II error


Wrongly accepting the null hypothesis (i.e., wrongly concluding “there is no statistically
significant effect” or “there is no difference”).
In all rigour, it is not an error, because one never says “H0 is true” but “we do not reject
H0 (yet)”. It is not an error, but a missed opportunity.
The type II error is the area of the red part in the following plot. The middle bell-shaped
curve is the distribution predicted by the null hypothesis, the other one is the actual distri-
bution of the population.
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High risk of type II error
x <- seq(-6,6, length=1000)
y <- dnorm(x)
plot(y~x, type=’l’)
y2 <- dnorm(x-.5)
lines(y2~x)
i <- x>qnorm(.025) & x<qnorm(.975)
colorie(x[i],y2[i],rep(0,sum(i)), col=’red’)
segments( qnorm(.025),0,qnorm(.025),dnorm(qnorm(.025)), col=’red’ )
segments( qnorm(.975),0,qnorm(.975),dnorm(qnorm(.975)), col=’red’ )
lines(y~x)
lines(y2~x)
title(main="High risk of type II error")


If the two curves are sufficiently far appart (i.e., if the difference of means is more significant),
the risk is much lower.
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Lower risk of type II error
x <- seq(-6,6, length=1000)
y <- dnorm(x)
plot(y~x, type=’l’)
y2 <- dnorm(x-3.5)
lines(y2~x)
i <- x>qnorm(.025) & x<qnorm(.975)
colorie(x[i],y2[i],rep(0,sum(i)), col=’red’)
segments( qnorm(.025),0,qnorm(.025),dnorm(qnorm(.025)), col=’red’ )
segments( qnorm(.975),0,qnorm(.975),dnorm(qnorm(.975)), col=’red’ )
lines(y~x)
lines(y2~x)
title(main="Lower risk of type II error")


You can plot the probability of type II error against the mean difference (contrary to the
type I error, the risk of type II error is not a constant but depends on the actual value of
the parameter: this is why this risk is often considered as difficult to compute and people
tend to fail to mention it in elementary courses).
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type II error in a Student T test


mean difference
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delta <- seq(-1.5, 1.5, length=500)
p <- NULL
for (d in delta) {
p <- append(p,


power.t.test(delta=abs(d), sd=1, sig.level=0.05, n=20,
type=’one.sample’)$power)


}
plot(1-p~delta, type=’l’,


xlab=’mean difference’, ylab="propability of a type II error",
main="type II error in a Student T test")


abline(h=0,lty=3)
abline(h=0.05,lty=3)
abline(v=0,lty=3)


8.1.5 Power


The power of a test is
1 - P( type II error ).


Usually, the power is not a number but a function. The null hypothesis is often of the form
H0: “mu = mu0” and the alternative hypothesis of the form H1: “mu different from mu0”.
The power will depend on the actual value of mu: if mu is close to mu0, the type II error
probability is hygh and the power is low; on the contrary, if mu and mu0 are very different.
the probability of type II error is lower and the power higher.
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Power of a one−sample t−test
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delta <- seq(0, 1.5, length=100)
p <- NULL
for (d in delta) {
p <- append(p,


power.t.test(delta=d, sd=1, sig.level=0.05, n=20,
type=’one.sample’)$power)


}
plot(p~delta, type=’l’,


ylab=’power’, main=’Power of a one-sample t-test’)


The power plays an important role when you design an experiment. Let us imagine that we
want to know if the mean mu of a certain variable on a certain population equals mu0. We
want to be able to detect a difference at least epsilon in at least 80% of the cases, with a
type I error risk inferior to 5%: what should be the sample size?
In other words, we want that the power of the test H0: << mu = mu0 >> against H1: <<
abs(mu - mu0) > epsilon >> with a confidence level alpha=0.05 be at least 0.80 (“tradition”
suggests a power equal to 0.80, and a confidence level 0.05).
The “power.t.test” performs those computations (for Student’s T test).
> power.t.test(delta=.1, sd=1, sig.level=.05, power=.80, type=’one.sample’)


One-sample t test power calculation


n = 786.8109
delta = 0.1


sd = 1
sig.level = 0.05


power = 0.8
alternative = two.sided


You can ask the question in any direction. For instance, the experiment has already been
carried out, with a sample of size n: what is the minimal difference in mean we can expect
to spot if we want the power of the test to be 0.08?
> power.t.test(n=100, sd=1, sig.level=.05, power=.80, type=’one.sample’)


One-sample t test power calculation


n = 100
delta = 0.2829125


sd = 1
sig.level = 0.05


power = 0.8
alternative = two.sided


Here is a plot of this minimum noticeable difference against the sample size.
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significance level=.05
significance level=.01
significance level=.001


Sample size and difference detected for tests of pover 0.80
N <- seq(10,200, by=5)
delta <- NULL
for (n in N) {
delta <- append(delta,


power.t.test(n=n, sd=1, sig.level=.05,
power=.80, type=’one.sample’)$delta


)
}
plot(delta~N, type=’l’, xlab=’sample size’)
delta <- NULL
for (n in N) {
delta <- append(delta,


power.t.test(n=n, sd=1, sig.level=.01,
power=.80, type=’one.sample’)$delta


)
}
lines(delta~N, col=’red’)
delta <- NULL


for (n in N) {
delta <- append(delta,


power.t.test(n=n, sd=1, sig.level=.001,
power=.80, type=’one.sample’)$delta


)
}
lines(delta~N, col=’blue’)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’significance level=.05’, ’significance level=.01’, ’significance level=.001’),
col=c(par(’fg’), ’red’, ’blue’),
lwd=1, lty=1)


title(main=’Sample size and difference detected for tests of pover 0.80’)


You might want to read:
http://www.stat.uiowa.edu/~rlenth/Power/2badHabits.pdf
http://www.stat.uiowa.edu/techrep/tr303.pdf


8.1.6 Simple hypothesis


A hypothesis is said to be simple if it entails a complete knowledge of the distribution of
the random variables. For instance, if we are looking for the mean of a gaussian variable of
variance 1 (we already know the variance), the hypothesis H0: “the mean is zero” is simple.
On the contrary, if we are looking for the mean of a gaussian variable (we know the variable
is gaussian, but we do not know its variance – we are not interested in it), this hypothesis
is not simple.
Here is another example: we have a sample that comes either from a population 1 (described
by a random variable of mean 3 and variance 2), or from a population 2 (described by a
random variable of mean 1 and variance 1). In this case, both hypotheses H0: “the sample
comes from population 1” and H1: “the sample comes from population 2” are simple.


8.1.7 Composite hypothesis


A non-simple hypothesis.
Quite often, the alternative assumptions (H1) are composite: if H1 is true, we know that
the distribution has a certain form, with a parameter that has not a certain value – but we
do not know its value.



http://www.stat.uiowa.edu/~rlenth/Power/2badHabits.pdf

http://www.stat.uiowa.edu/techrep/tr303.pdf
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8.1.8 Confidence Interval


Let us consider a random variable, whose distribution is not completely known: for instance,
we know it is a gaussian distribution of variance 1, but the mean is unknown.
If we estimate this mean as a single number, we are sure to be wrong: the actual mean
might be close to our proposal, but there is no reason it should be exactly this one, up
to the umpteenth decimal. Instead, we can give a confidence interval – note the use of an
indefinite article: there are many such intervals (you can shift it to the left or to the right
– and doing so will change its width).
TODO: check that I give an example with several intervals.
Here are two interpretations of this notion of “confidence interval”.
(1) It is an interval in which we have a 95% probability of finding the sample mean.
(2) More naively, it is an interval that has a 95% probability of containing the population
mean (i.e., the actual mean).
Actually, these two interpretations are equivalent. As I was very dubious, let us check it on
a simulation (here, I draw the population mean at random, and this prior distribution does
not play any role).
TODO: say that it is bayesian...
# Sample size
n <- 100
# Number of points to draw the curve
N <- 1000
v <- vector()
for (i in 1:N) {
m <- runif(1)
x <- m+rnorm(n)
int <- t.test(x)$conf.int
v <- append(v, int[1]<m & m<int[2])


}
sum(v)/N


We get 0.95.
From this, we get two interpretations of the p-value: first, as the probability pf getting
results at least as extre,e if H0 is true (this is the definition); second, it is the probability of
being the in “the” confidence interval.
TODO: explain a bit more. I said that "the" confidence
interval was not uniquely defined, and thus, that we
should not use a definite article...


The p-value is NOT the probability that H0 be true. To convince yourself of this, consider
gaussian random variable, of variance 1 and unknown mean. From a sample, we test H0:
“the mean is 0” against H1: “the mean is not 0”. We will get a certain p-value.
> n <- 10 # Sample size
> m <- rnorm(1) # Unknown mean
> x <- m + rnorm(n) # Sample
> t.test(x)$p.value # p-value
[1] 0.2574325


But what is the probability that the mean be exactly zero? In our simulation, this probability
is zero: the mean is almost surely non-zero.
> m
[1] 0.7263967


8.1.9 UMP (Uniform Most Powerful) tests


We would like to set the power of a test, in the same way we choose the level of confidence.
But there is a problem: if H1 is not a simple hypothesis (i.e., if it is not a single hypothesis,
as “mu=0” but a set of hypotheses, as “mu!=0”, “mu>0” or “mu>1”), the power is not a
number but a function, that depends on the simple hypotheses contained in H1.
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A test is UMP (Uniformly Most Powerful) for a given confidence level alpha if, for any simple
hypothesis in H1, it has the largest power among the tests with confidence level alpha.


8.1.10 Non parametric test


Most of the time, statistical tests assume that the random variables studied are gaussian
(and even, when there are several, that they have the same variance). Non-parametric tests
do not make such assumptions – xwe say that they are more “robust” – but, as a counter
part, they are less powerful.
Here are a few examples of parametric and non-parametric tests.
TODO: is it the right place for this list?
Aim Parametric tests Non-parametric tests
----------------------------------------------------------------------------
compare two means Student’s T test Wilcoxon’s U test


compare more than Anova (analysis of Kruskal--Wallis test
two means variance)


Compare two Fisher’s F test Ansari-Bradley or
variances Mood test


Comparing more than Bartlett test Fligner test


8.1.11 Robustness


A (parametric) test is robust if its results are still valid when its assumptions are no longer
satisfied (especially if the random variables studied are no longer gaussian).


8.1.12 Resistance


A statistic (mean, median, variance, trimmed mean, etc.) is resistant if it does not depend
much on extreme values. For instance, the mean is not resistant, while the median is: a
single extreme value can drastically change the mean, while it will not change the median.
> x <- rnorm(10)
> mean(x)
[1] -0.08964153
> mean(c(x,10^10)) # We add an extreme value
[1] 909090909


> median(x)
[1] -0.2234618
> median(c(x,10^10)) # We add an extreme value
[1] -0.1949206


8.1.13 Pearson residuals


One can sometimes spot outliers with the Pearsons residuals:
sample density / density according to the model - 1


TODO: Example with circular data.


8.1.14 Outlier detection


TODO
- Should you want them, there are statistical tests for the presence
of outliers


- Outlier detection benchmark: use classical examples, such as
library(robustbase)
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?hkb


One should not try to automatically detect and remove the outliers: the first problem is that
this is a multi-stage procedure (first the outlier detection and removal, then the rest of the
analysis), whose performance should be assessed (the rest of the analysis will not perform as
well as you think it should, because the data has been tampered with); the second problem
is that the outlier removal is a black-and-white decision, either we keep the observation, or
we remove it completely – if we are unsure whether the observation is an actual outlier, we
are sure to make mistakes.
Methods that remain efficient even in presence of outliers (“robust methods”) do exist: use
them!


8.1.15 Breaking point


The breaking point is the proportion of observations you can tamper with without being
able to make the estimator arbitrarily “large”.
This is a measure of robustness of an estimator.
For instance, the breaking point of the mean is zero: by changing a single observation, you
can make the mean arbitrary large.
On the other hand, the breaking point of the median is 50%: if you change a single obser-
vation, the median will change, but its value vull be bounded by the rest of the cloud of
points – to make the median arbitrarily large, you would have to move (say) the top half of
the data points.
The trimmed mean has a breaking point somewhere inbetween.


8.1.16 TODO: A few robust estimators


Location (mean): trimmed mean, median
Dispersion (standard deviation): IQR, MAD, Sn, L-moments, MCD


rlm, cov.rob
library(rrcov)
library(robustbase) (includes roblm)


8.1.17 Three means of performing statistical tests


1. We can look for a parameter of the distribution describing the population. If possible, we
shall take an unbiased one, with the lowest variance possible. (However, we shall see later
that certain biased estimators may be more interesting, because their mean square error is
lower – this is the case for ridge regression.)
2. Instead of a single value of this parameter, we can be looking for an interval containing
it: we are then building a confidence interval.
3. We can also want to know if this parameter has (or not) a predefined value: we will then
perform a test.


8.1.18 Criticism of statistical tests


A p-value close to zero can mean two very different things: either the null hypothesis is very
wrong, or ot is just slightly wrong but our sample is large enough to spot it. In the latter
case, the difference between reality and the hypothesis is statistically significant, but for all
practical purposes, it is negligible.
TODO: this problem with p-values is a starting point for the development
of bayesian methods.
http://www.stat.washington.edu/www/research/online/1994/bic.ps


8.1.19 Decision Theory


Among all the possible tests, we want one for which the risks of type I and type II errors are
as low as possible. Among the tests that can not be improved (i.e., we cannot modify them



http://www.stat.washington.edu/www/research/online/1994/bic.ps
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to get one with the same type I error risk and a lower type II error risk, and conversely),
there is no means of choosing THE best. Indeed, we can plot those tests in the (type I error
risk)x(type II error risk) plane: we get a curve. However, decision theory allows everyone to
choose, among those tests, the one that becomes best one’s taste taste for risk. One crude
way of preceeding is to choose an upper bound on the type I error risk (alpha) and minimize
the type II error risk.
For more details, read Simon’s French book, “Decision Theory: an introduction to the math-
ematics of rationality”, Ellis Horwood series in mathematics and its applications, Halsted
Press, 1988.


8.2 The Zoo of statistical tests: Parametric Tests


8.2.1 Statistical tests under R


Most R functions that perform (classical) tests are in the “stats” package (it is already
loaded).
library(help="stats")


The list of functions is huge: look for those containing the “test” string.
> apropos(".test")
[1] "ansari.test" "bartlett.test" "binom.test"
[4] "Box.test" "chisq.test" "cor.test"
[7] "fisher.test" "fligner.test" "friedman.test"
[10] "kruskal.test" "ks.test" "mantelhaen.test"
[13] "mcnemar.test" "mood.test" "oneway.test"
[16] "pairwise.prop.test" "pairwise.t.test" "pairwise.wilcox.test"
[19] "power.anova.test" "power.prop.test" "power.t.test"
[22] "PP.test" "prop.test" "prop.trend.test"
[25] "quade.test" "shapiro.test" "t.test"
[28] "var.test" "wilcox.test"


8.2.2 Reading a test result


One would expect those functions to yield a result as “Null hypothesis rejected” or “Null
hypothesis not rejected” – bad luck. The user has to know how to interpret the results, with
a critical eye.
The result is mainly a number, the p-value. It is the probability to get a result at least as
extreme. If it is close to one, we do not reject the hypothesis, i.e., the test did not find
anything statistically significant; if it close to zero, we can reject the null hypothesis. More
precisely, before performing the test, we choose a confidence level alpha (often 0.05; for
human health, you will be more conservative an choose 0.01 or even less; if you want results
with little data, if you do not mind that those results are not reliable, you can take 0.10): if
p<alpha, you reject the null hypothesis, if p>alpha, you do not reject it.
Of course, you have to choose the confidence level alpha BEFORE performing the test
(otherwise, you will choose it so that it produces the results you want)...
For instance,
> x <- rnorm(200)
> t.test(x)


One Sample t-test


data: x
t = 3.1091, df = 199, p-value = 0.002152
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.07855896 0.35102887
sample estimates:
mean of x
0.2147939
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If we reject the null hypothesis (here: “the mean is zero”), we will be wrong with a probability
0.002152, i.e., in 2 cases out of 1,000.
We can check that with simulations: if the null hypothesis H0 is true, in 95% of the cases,
we have p>0.05. Nore precisely, if H0 is true, the p-value is unifromly distributed in [0,1].
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p <- c()
for (i in 1:1000) {
x <- rnorm(200)
p <- append(p, t.test(x)$p.value)


}
hist(p, col=’light blue’)
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p−value of a Student T test when H0 is true
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p <- sort(p)
p[950]
p[50]
x <- 1:1000
plot(p ~ x, main="p-value of a Student T test when H0 is true")


That was the type I error risk (wrongly rejecting the null hypothesis). Let us now focus on
the type II error risk. This time, the population mean is non-zero. The risk will depend on
the actual value of this mean – but we do not know this value. If the mean is close to zero,
the risk is high (we need a lot of data to spot small differences), if it is farther, the risk is
lower.
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Type II error risk in a Student T test
# Sample size
n <- 10
# Number of simulations
# (sufficiently large to get a good approximation
# of the probability)
m <- 1000
# Number of points to draw the curve
k <- 50
# Maximum value for the actual mean
M <- 2
r <- vector()
for (j in M*(0:k)/k) {
res <- 0
for (i in 1:m) {
x <- rnorm(10, mean=j)
if( t.test(x)$p.value > .05 ){
res <- res + 1


}


}
r <- append(r, res/m)


}
rr <- M*(0:k)/k
plot(r~rr, type="l",


xlab=’difference in mean’,
ylab="type II error probability")


# Comparison with the curve produced by "power.t.test"
x <- seq(0,2,length=200)
y <- NULL
for (m in x) {
y <- append(y, 1-power.t.test(delta=m, sd=1, n=10, sig.level=.05,


type=’one.sample’)$power)
}
lines(x,y,col=’red’)


# Theoretical curve
# (This is a Z test, not too different)
r2 <- function (p,q,conf,x) {
p(q(1-conf/2)-x) - p(q(conf/2)-x)


}
f <- function(x) {
p <- function (t) { pnorm(t, sd=1/sqrt(10)) }
q <- function (t) { qnorm(t, sd=1/sqrt(10)) }
r2(p,q,.05,x)


}
curve( f(x) , add=T, col="blue" )


# Theoretical curve (T test)
f <- function(x) {
p <- function (t) { pt(sqrt(10)*t, 10) } # Is this correct?
q <- function (t) { qt(t, 10)/sqrt(10) }
r2(p,q,.05,x)


}
curve( f(x) , add=T, col="green" )


legend(par(’usr’)[2], par(’usr’)[4], xjust=1,
c(’simulation’, ’power.t.test’, ’"exact" value, Z test’,
’excat value’),
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col=c(par(’fg’),’red’,’blue’,’green’),
lwd=1,lty=1)


title(main="Type II error risk in a Student T test")


We saw earlier that, if the null hypothesis is true, the p-values are uniformly distributed in
[0,1]. Here is their distribution if H0 is false, for different values of the population mean.
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N <- 10000
x <- 100*(1:N)/N
plot( x~I(x/100), type=’n’, ylab="cumulated percents", xlab="p-value" )
do.it <- function (m, col) {
p <- c()
for (i in 1:N) {
x <- m+rnorm(200)
p <- append(p, t.test(x)$p.value)


}
p <- sort(p)
x <- 100*(1:N)/N
lines(x ~ p, type=’l’, col=col)


}
do.it(0, par(’fg’))
do.it(.05, ’red’)
do.it(.1, ’green’)
do.it(.15, ’blue’)
do.it(.2, ’orange’)


abline(v=.05)
title(main=’p-value distribution’)
legend(par(’usr’)[2],par(’usr’)[3],xjust=1,yjust=1,


c(’m=0’, ’m=0.05’, ’m=.01’, ’m=.015’, ’m=.02’),
col=c(par(’fg’), ’red’, ’green’, ’blue’, ’orange’),
lty=1,lwd=1)


The manual gives this striking example, that explains why R does not give a clear result
“Null hypothesis rejected” or “Null hypothesis not rejected”. If we look at the data (with
the eyes, on a plot – always plot the data) we can state with little risk of error that the
means are very different. However, the p-value is very high and suggests not to reject the
null hypothesis that the means are equal. One problem is the size of the confidence interval:
it is extremely large. Thus you should carefully look at the data. (On this example, there
was one more problem: to perform a Student T test, the data have to be gaussian, to have
the same variance, to be independant – this is far from being the case).
TODO: somewhere in this document, state how to correctly
perform a test.
0. Choose a confidence level, a test
1. Plot the data
2. Check the assumptions. Change the test if needed.
3. Perform the test. Check the confidence interval.


TODO: where is my rant against T-values?
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x <- 1:10
y <- c(7:20, 200)
boxplot(x,y, horizontal=T)
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boxplot(x,y, log="x", horizontal=T)


> t.test(x, y)


Welch Two Sample t-test


data: x and y
t = -1.6329, df = 14.165, p-value = 0.1245
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-47.242900 6.376233


sample estimates:
mean of x mean of y
5.50000 25.93333


Of course, if we remove the outlier, 200, the result conforms with our intuition.
> t.test(1:10,y=c(7:20))


Welch Two Sample t-test


data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.052802 -4.947198
sample estimates:
mean of x mean of y


5.5 13.5


Similarly, if we use a non parametric test – what we should have done from the very begin-
ning.
> wilcox.test(x,y)


Wilcoxon rank sum test with continuity correction


data: x and y
W = 8, p-value = 0.0002229
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alternative hypothesis: true mu is not equal to 0


Warning message:
Cannot compute exact p-value with ties in: wilcox.test.default(x, y)


8.2.3 The zoo of parametric tests


8.2.4 WARNING


Most of these tests are only valid for gaussian variables. Furthermore, if there are several
samples, they often ask them to be independant and have the same variance.


8.2.5 Student’s T test


Here, we want to find the mean of a random variable or, more precisely, to compare it with
a predefined value.
?t.test


Assumptions: The variable is gaussian (if it is not, you can use Wilcoxon’s U test).
We already gave an example above.
Here is the theory.
The null hypothesis is H0: “the mean is m”, the alternative hypothesis is H1: “the mean is
not m”. We compute


sample mean - m
T = ---------------------------------------


sample standard deviation / sqrt(n)


(beware: there are two formulas for the standard deviation: the population standard devia-
tion, with “n” in the denominator, and the sample standard deviation, with “n-1” – R only
uses the latter) (here, n is the sample size) and we reject H0 if
abs( T ) > t {n-1} ^{-1} ( 1 - alpha/2 )


where T {n-1} is the student T distribution with n-1 degrees of freedom.
(With gaussian independant identically distributed random variables, T indeed follows this
distribution – you can actually define the Student T distribution that way.)
Here are a few Student T probability distribution functions. The larger n, the closer it is
from a gaussian distribution.
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Student's T probability distribution function
curve(dnorm(x), from=-5, to=5, add=F, col="orange", lwd=3, lty=2)
curve(dt(x,100), from=-5, to=5, add=T, col=par(’fg’))
curve(dt(x,5), from=-5, to=5, add=T, col="red")
curve(dt(x,2), from=-5, to=5, add=T, col="green")
curve(dt(x,1), from=-5, to=5, add=T, col="blue")
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’gaussian’, ’df=100’, ’df=5’, ’df=2’, ’df=1’),
col=c(’orange’, par(’fg’), ’red’, ’green’, ’blue’),
lwd=c(3,1,1,1,1),
lty=c(2,1,1,1,1))


title(main="Student’s T probability distribution function")


Let us now see how to use this, by hand.
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We start with a sample from a gaussian population, whose mean we want to estimate.
> x <- rnorm(200)
> m <- mean(x)
> m
[1] 0.05875323


We now try to find an interval, centered on this sample mean, in which we ahve a 95%
probability of finding the actual (population) mean (it is zero).
x <- rnorm(100)
n <- length(x)
m <- mean(x)
m
alpha <- .05
m + sd(x)/sqrt(n)*qt(alpha/2, df=n-1, lower.tail=T)
m + sd(x)/sqrt(n)*qt(alpha/2, df=n-1, lower.tail=F)


We get [m - 0.19, m + 0.19].
The “t.test” function provides a similar result.
> t.test(x, mu=0, conf.level=0.95)


One Sample t-test


data: x
t = 0.214, df = 99, p-value = 0.831
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.1987368 0.2467923
sample estimates:
mean of x
0.02402775


You can also experimentally check this with, with a simulation.
> m = c()
> for (i in 1:10000) {
+ m <- append(m, mean(rnorm(100)) )
+ }
> m <- sort(m)
> m[250]
[1] -0.1982188
> m[9750]
[1] 0.1999646


The interval is [-0.20, +0.20]: we get approximately the same result as the theoretical
computations (this will always be the case with Monte-Carlo methods: the approximation
is coarse, the convergence is slow, we need a lot of iterations to get a reliable result).
We can also plot the result of those simulations. We see that the actual mean is sometimes
outside the confidence interval.
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The population mean need not be in the confidence interval
N <- 50
n <- 5
v <- matrix(c(0,0),nrow=2)
for (i in 1:N) {
x <- rnorm(n)
v <- cbind(v, t.test(x)$conf.int)


}
v <- v[,2:(N+1)]
plot(apply(v,2,mean), ylim=c(min(v),max(v)),


ylab=’Confidence interval’, xlab=’’)
abline(0,0)
c <- apply(v,2,min)>0 | apply(v,2,max)<0
segments(1:N,v[1,],1:N,v[2,], col=c(par(’fg’),’red’)[c+1], lwd=3)
title(main="The population mean need not be in the confidence interval")


8.2.6 Student’s T test: robustness


Let us perform a simulation to see what happens with non normal data – a situation in
which one should be using the Wilcoxon U test.
Let us first check with a distribution less dispersed that the gaussian one: the uniform
distribution.
> N <- 1000
> n <- 3
> v <- vector()
> for (i in 1:N) {


x <- runif(n, min=-1, max=1)
v <- append(v, t.test(x)$p.value)


}
> sum(v>.05)/N
[1] 0.932


Now with gaussian data.
> N <- 1000
> n <- 3
> v <- vector()
> for (i in 1:N) {


x <- rnorm(n, sd=1/sqrt(3))
v <- append(v, t.test(x)$p.value)


}
> sum(v>.05)/N
[1] 0.952


Thus, the p-value is wrong when the variable is no longer gaussian: when we think we are
rejecting the null hypothesis with a 5% risk of type I error, this risk is actually (for a uniform
distribution, which is very far from pathological) 7%.
Let us seewhat happens to the confidence interval: we should be in it in 95% of the cases.
For a uniform distribution:
> N <- 1000
> n <- 3
> v <- vector()
> for (i in 1:N) {


x <- runif(n, min=-1, max=1)
r <- t.test(x)$conf.int
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v <- append(v, r[1]<0 & r[2]>0)
}


> sum(v)/N
[1] 0.919


For a normal distribution:
> N <- 1000
> n <- 100
> v <- vector()
> for (i in 1:N) {


x <- rnorm(n, sd=1/sqrt(3))
r <- t.test(x)$conf.int
v <- append(v, r[1]<0 & r[2]>0)


}
> sum(v)/N
[1] 0.947


For the uniform distribution, we are in the confidence interval in 92% of the cases instead
of the expected 95%. Actually, when the distribution is not gaussian, the results can be
“wrong” in two ways: either the distribution is less dispersed than the gaussian, and the
p-value is higher than stated by the test and the confidence interval provided is too small;
or the distribution is more dispersed than the gaussian, the p-value will always be high, the
confidence interval will be huge, and the test will no longer test anything (it loses its power,
it will always state: there is nothing noticeable – you can say it is blinded by the outliers).
TODO: I will say this later...


However, if the sample is much larger, the error becomes negligible.
> N <- 1000
> n <- 100
> v <- vector()
> for (i in 1:N) {


x <- runif(n, min=-1, max=1)
v <- append(v, t.test(x)$p.value)


}
> sum(v>.05)/N
[1] 0.947


> N <- 1000
> n <- 100
> v <- vector()
> for (i in 1:N) {


x <- runif(n, min=-1, max=1)
r <- t.test(x)$conf.int
v <- append(v, r[1]<0 & r[2]>0)


}
> sum(v)/N
[1] 0.945


Let us now check the power of the test.
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N <- 1000
n <- 10
delta <- .8
v <- vector()
w <- vector()
for (i in 1:N) {
x <- delta+runif(n, min=-1, max=1)
v <- append(v, t.test(x)$p.value)
w <- append(w, wilcox.test(x)$p.value)


}
plot(sort(v), type=’l’, lwd=3, lty=2, ylab="p-valeur")
lines(sort(w), col=’red’)
legend(par(’usr’)[1], par(’usr’)[4], xjust=0,


c(’Student’, ’Wilcoxon’),
lwd=c(2,1),
lty=c(2,1),
col=c(par("fg"), ’red’))


0 200 400 600 800 1000


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


Index


so
rt


(v
)


Student
Wilcoxon


N <- 1000
n <- 100
delta <- .1
v <- vector()
w <- vector()
for (i in 1:N) {
x <- delta+runif(n, min=-1, max=1)
v <- append(v, t.test(x)$p.value)
w <- append(w, wilcox.test(x)$p.value)


}
plot(sort(v), type=’l’, lwd=3, lty=2)
lines(sort(w), col=’red’)
legend(par(’usr’)[1], par(’usr’)[4], xjust=0,


c(’Student’, ’Wilcoxon’),
lwd=c(2,1),
lty=c(2,1),
col=c(par("fg"), ’red’))
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N <- 1000
n <- 100
delta <- .8
v <- vector()
w <- vector()
for (i in 1:N) {
x <- delta+runif(n, min=-1, max=1)
v <- append(v, t.test(x)$p.value)
w <- append(w, wilcox.test(x)$p.value)


}
plot(sort(v), type=’l’, lwd=3, lty=2)
lines(sort(w), col=’red’)
legend(par(’usr’)[1], par(’usr’)[4], xjust=0,


c(’Student’, ’Wilcoxon’),
lwd=c(2,1),
lty=c(2,1),
col=c(par("fg"), ’red’))


From this, Student’s T test seems robust: if the data are less dispersed than with a gaussian
distribution, the p-value and the confidence interval are underestimated, but not too much.
This effect disappeard if the sample is large enough.
But wait! Let us now see waht happens with a distribution more dispersed than the gaussian
– e.g., the Cauchy distribution.
> N <- 1000
> n <- 3
> v <- vector()
> for (i in 1:N) {
+ x <- rcauchy(n)
+ v <- append(v, t.test(x)$p.value)
+ }
> sum(v>.05)/N
[1] 0.974


> N <- 1000
> n <- 3
> v <- vector()
> for (i in 1:N) {
+ x <- rcauchy(n)
+ r <- t.test(x)$conf.int
+ v <- append(v, r[1]<0 & r[2]>0)
+ }
> sum(v)/N
[1] 0.988


The given confidence interval is too large: we are not in it in 95% of the cases, but much
more. Things do not improve with an even larger sample.
> N <- 1000
> n <- 100
> v <- vector()
> for (i in 1:N) {
+ x <- rcauchy(n)
+ v <- append(v, t.test(x)$p.value)
+ }
> sum(v>.05)/N
[1] 0.982


> N <- 1000
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> n <- 100
> v <- vector()
> for (i in 1:N) {
+ x <- rcauchy(n)
+ r <- t.test(x)$conf.int
+ v <- append(v, r[1]<0 & r[2]>0)
+ }
> sum(v)/N
[1] 0.986


Let us now check the test power: this is disastrous...
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N <- 1000
n <- 10
delta <- 1
v <- vector()
w <- vector()
for (i in 1:N) {
x <- delta+rcauchy(n)
v <- append(v, t.test(x)$p.value)
w <- append(w, wilcox.test(x)$p.value)


}
plot(sort(v), type=’l’, lwd=3, lty=2)
lines(sort(w), col=’red’)
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N <- 1000
n <- 100
delta <- 1
v <- vector()
w <- vector()
for (i in 1:N) {
x <- delta+rcauchy(n)
v <- append(v, t.test(x)$p.value)
w <- append(w, wilcox.test(x)$p.value)


}
plot(sort(v), type=’l’, lwd=3, lty=2)
lines(sort(w), col=’red’)


From this, we conclude that if the data are more dispersed than with a gaussian distribution,
the power of the test decreases and nothing remains. Increasing th sample size does not
improve things. In these situations, one should use non-parametric tests (or a parametric
test adapted to the distribution at hand, or transform the data so that it looks more normal
– be beware, using the same data to choose the distribution or the trans formation and to
perform the test will yield biased p-values).
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> N <- 1000
> n <- 100
> v <- vector()
> w <- vector()
> for (i in 1:N) {
+ x <- rcauchy(n)
+ v <- append(v, t.test(x)$p.value)
+ w <- append(w, wilcox.test(x)$p.value)
+ }
> sum(v>.05)/N
[1] 0.976
> sum(w>.05)/N
[1] 0.948


> N <- 1000
> n <- 100
> v <- vector()
> w <- vector()
> for (i in 1:N) {
+ x <- 1+rcauchy(n)
+ v <- append(v, t.test(x)$p.value)
+ w <- append(w, wilcox.test(x)$p.value)
+ }
> sum(v<.05)/N
[1] 0.22
> sum(w<.05)/N
[1] 0.992


8.2.7 Z test


It is similar to the Student T test, but this time, we know the exact value of the variance:
in this cas, the distribution of the test statistic is nolonger a Student T distribution but a
gaussian distribution (often denoted Z).
In the real world, when we do not know the mean, we do not know the variance either –
thus, this test has little practical utility.
For large samples, Student’s T distribution is well approximated by a gaussian distribution,
so we can perform a Z test instead of a T test (that would be relevant if we we computing
everything ourselves, but as the computer is there...)


8.2.8 Student T test: comparing the mean of two samples.


We now consider two samples and we would like to know if they come from the same
population. More simply, we would like to know if they have the same mean.
Here, we assume that the data are normal (do a qqplot or a Shapiro test), have the same
variance (use an F test). If those conditions are not satisfied, you can use a Wilcoxon test.
We also assume that the variables are independant (this is not always the case: for instance,
you might want to compare the length of the left and right humerus on a bunch of human
skeletons; to get rid of the dependance problem, you can consider the length difference for
each individual and compare it with zero.
For two samples of size n (it also works for samples of different sizes, but the formula is
more complicated), one can show that the statistic
t = difference between the means / sqrt( (sum of the variances)/n )


follows a Student distribution with 2n-n degrees of freedom.
We shall reject the null hypothesis “the means are equal” if
abs(t) > abs( t(alpha, 2n-2) )


We could perform the test by hand, as above, but there is already a function to do so.
?t.test
> x <- rnorm(100)
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> y <- rnorm(100)
> t.test(x,y)


Welch Two Sample t-test


data: x and y
t = -1.3393, df = 197.725, p-value = 0.182
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.46324980 0.08851724
sample estimates:
mean of x mean of y


-0.03608115 0.15128514


> t.test(x, y, alternative="greater")


Welch Two Sample t-test


data: x and y
t = -1.3393, df = 197.725, p-value = 0.909
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-0.4185611 Inf
sample estimates:
mean of x mean of y


-0.03608115 0.15128514


Here is the example from the manual: the study of the efficiency of a soporific drug.
> ?sleep
> data(sleep)
> plot(extra ~ group, data = sleep)


> t.test(extra ~ group, data = sleep)
Welch Two Sample t-test


data: extra by group
t = -1.8608, df = 17.776, p-value = 0.0794
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean in group 1 mean in group 2


0.75 2.33


Here, as the p-value is greater than 5%, we would conclude that the drug’s effects are not
noticeable in this sample. However, if you work for the drug’s manufacturer, you would
prefer a different conclusion. You can get it if you change the alternative hypothsis, that
becomes H1: “the drug increases the time of sleep”. (If you are honest, you choose the
null and alternative hypotheses before performing the experiment, and this choice must be
backed by prior data or knowledge: remarking that in this very experiment the sample mean
is greater is not sufficient.)
> t.test(extra ~ group, data = sleep, alternative="less")


Welch Two Sample t-test


data: extra by group
t = -1.8608, df = 17.776, p-value = 0.0397
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:


-Inf -0.1066185
sample estimates:
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mean in group 1 mean in group 2
0.75 2.33


TODO: There should be a section “How to lie with statistics”
1. Reusing the same data several times to increase the


statistical significance of an effect. (examples:
choose H1 after looking at the data, use the data to
choose the transformation to apply, etc.)


2. Using a statistical test whose asumptions are not
satisfied (it can either yield more significant results
or less significant results: e.g., if the test assumes
that ******************** (deleted?)


3. Perform the same experiment several times and only
publish the results that go in the direction you
want. (Adverts by tobacco companies claiming that
passive smoking is harmless are done that way.)


4. Misleading plots
Adding a lot of unnecessary details
3D effects
- The most striking is the 3-dimensional piechart,
with the part of interest at the forefront, so that
it be deformed and larger)


- You can also plot a quantity as a sphere (ar any
3-dimensional object) of different scales: for a
quantity twice as large, you can multiply all the
dimensions by 2, thereby getting a volume eight
times as large.


If you have more than two samples, you can perform an ANalysis Of VAriance (Anova). If
you have two non-gaussain samples, you can perform a Wilcoxon U test. If you have more
that two non-gaussian samples, you can turn to non-parametric analysis of variance with
the Kruskal–Wallis test.


8.2.9 Robustness of Student’s 2-sample T test


To compare means with a Student T test, we assume that: the samples are gaussian, inde-
pendant and have the same variance.
Let us check what happens with gaussian non-equivariant samples.
TODO: check that there is no confusion between the Student T test and Welch’s test
(var.equal=T for the first, var.equal=F (the default) for the second).
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N <- 1000
n <- 10
v <- 100
a <- NULL
b <- NULL
for (i in 1:N) {
x <- rnorm(n)
y <- rnorm(n, 0, v)
a <- append(a, t.test(x,y)$p.value)
b <- append(b, t.test(x/var(x), y/var(y))$p.value)


}
plot(sort(a), type=’l’, col="green")
points(sort(b), type="l", col="red")
abline(0,1/N)
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And for the power:
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Student Test
Renormalized Student Test
Student Test renormalized with the sample variances
(Non−Parametric) Wilcoxson's U Test


Student's T test on non−equivariant samples
N <- 1000
n <- 10
v <- 100
a <- NULL
b <- NULL
c <- NULL
d <- NULL
for (i in 1:N) {
x <- rnorm(n)
y <- rnorm(n, 100, v)
a <- append(a, t.test(x,y)$p.value)
b <- append(b, t.test(x/var(x), y/var(y))$p.value)
c <- append(c, t.test(x, y/10000)$p.value)
d <- append(d, wilcox.test(x, y)$p.value)


}
plot(sort(a), type=’l’, col="green")
points(sort(b), type="l", col="red")
points(sort(c), type="l", col="blue")


points(sort(d), type="l", col="orange")
abline(0,1/N)
legend(par(’usr’)[1], par(’usr’)[4],


c(’Student Test’, ’Renormalized Student Test’,
’Student Test renormalized with the sample variances’,
"(Non-Parametric) Wilcoxson’s U Test"),


col=c(’green’, ’blue’, ’red’, ’orange’),
lwd=1,lty=1)


title(main="Student’s T test on non-equivariant samples")


With non-equivariant samples, the p-value of the Student test remains correct, but the
power dramatically decreases. If the data look gaussian but have different variances, you
had better normalize them andto perform a Student T test than perform a non-parametric
test.
TODO: What about the Welch test???


8.2.10 Several means of comparing means


There are several ways of comparing two means.
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data(sleep)
boxplot(extra ~ group, data=sleep,


horizontal=T,
xlab=’extra’, ylab=’group’)


With a Student T test, if the data are gaussian (or a Welch test, if they are gaussian but
have different variances).
> t.test(extra ~ group, data=sleep)


Welch Two Sample t-test


data: extra by group
t = -1.8608, df = 17.776, p-value = 0.0794
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alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean in group 1 mean in group 2


0.75 2.33


> t.test(extra ~ group, data=sleep, var.equal=T)


Two Sample t-test


data: extra by group
t = -1.8608, df = 18, p-value = 0.07919
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3638740 0.2038740
sample estimates:
mean in group 1 mean in group 2


0.75 2.33


With a Wilcoxon test, if we do not know that the data are gaussian, or if we suspect they
are not (from a Shapiro–Wilk test, for instance).
> wilcox.test(extra ~ group, data=sleep)


Wilcoxon rank sum test with continuity correction


data: extra by group
W = 25.5, p-value = 0.06933
alternative hypothesis: true mu is not equal to 0


Warning message:
Cannot compute exact p-value with ties in: wilcox.test.default(x = c(0.7, -1.6,


With an analysis of variance (we will present this later – with only two samples, it yields
exactly the same result as the Student T test).
> anova(lm(extra ~ group, data=sleep))
Analysis of Variance Table


Response: extra
Df Sum Sq Mean Sq F value Pr(>F)


group 1 12.482 12.482 3.4626 0.07919 .
Residuals 18 64.886 3.605
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


With a non parametric analysis of variance, i.e., a Kruskal–Wallis test.
> kruskal.test(extra ~ group, data=sleep)


Kruskal-Wallis rank sum test


data: extra by group
Kruskal-Wallis chi-squared = 3.4378, df = 1, p-value = 0.06372


Here are the results
Method p-value


Welch test 0.07919
Student T test 0.0794
Wilcoxon 0.06933
Analysis of Variance 0.07919







CHAPTER 8. ESTIMATORS AND STATISTICAL TESTS 587


Kruskal--Wallis Test 0.06372


8.2.11 The Chiˆ2 and variance computations


We are looking for the variance of a sample (whose mean is unknown).
Here is the theory.
The null hypothesis is H0: “the (population) variance is v”, the alternative hypothesis is
H1: “the variance is not v”. We compute the statistic
Chi2 = (n-1) * (sample variance) / v


and je reject the null hypothesis H0 if
Chi2 > Chi2 {n-1} ^{-1} ( 1 - alpha/2 )


or
Chi2 < Chi2 {n-1} ^{-1} ( alpha/2 )


where Chi2 {n-1} is the Chi2 distribution with n-1 degrees of freedom.
Here is the Chiˆ2 probability distribution function, with various degrees of freedom.
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df = 1
df = 2
df = 3
df = 4
df = 5
df = 6
df = 7
df = 8
df = 9
df = 10


Chi^2 Probability Distribution Function
curve(dchisq(x,2), from=0, to=5, add=F, col="red",


ylab="dchisq(x,i)")
n <- 10
col <- rainbow(n)
for (i in 1:n) {
curve(dchisq(x,i), from=0, to=5, add=T, col=col[i])


}
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


paste(’df =’,1:n),
lwd=1,
lty=1,
col=col)


title(main="Chi^2 Probability Distribution Function")


We can get a confidence interval for the standard deviation, by hand, as follows.
alpha <- .05
x <- rnorm(200)
n <- length(x)
v = var(x)
sd(x)
sqrt( (n-1)*v / qchisq(alpha/2, df=n-1, lower.tail=F) )
sqrt( (n-1)*v / qchisq(alpha/2, df=n-1, lower.tail=T) )


We get [0.91, 1.11].
We can check this with a simulation:
v <- c(0)
for (i in 1:10000) {
v <- append(v, var(rnorm(200)) )


}
v <- sort(v)
sqrt(v[250])
sqrt(v[9750])


We get [0.90, 1.10].
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With smaller samples, the estimation is less reliable: the confidence interval is larger, [0.68,
1.32].
v <- c(0)
for (i in 1:10000) {
v <- append(v, var(rnorm(20)) )


}
v <- sort(v)
sqrt(v[250])
sqrt(v[9750])


I have not found an R function that performs those computations (the “var.test” works with
two samples): we can write our own.
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chisq.var.test <- function (x, var=1, conf.level=.95,
alternative=’two.sided’) {


result <- list()
alpha <- 1-conf.level
n <- length(x)
v <- var(x)
result$var <- v
result$sd <- sd(x)
chi2 <- (n-1)*v/var
result$chi2 <- chi2
p <- pchisq(chi2,n-1)
if( alternative == ’less’ ) {
stop("Not implemented yet")


} else if (alternative == ’greater’) {
stop("Not implemented yet")


} else if (alternative == ’two.sided’) {
if(p>.5)
p <- 1-p


p <- 2*p
result$p.value <- p
result$conf.int.var <- c(
(n-1)*v / qchisq(alpha/2, df=n-1, lower.tail=F),
(n-1)*v / qchisq(alpha/2, df=n-1, lower.tail=T),


)
}
result$conf.int.sd <- sqrt( result$conf.int.var )
result


}
x <- rnorm(100)
chisq.var.test(x)


# We can check tha the results are correct by looking at
# the distribution of the p-values: it should be uniform
# in [0,1].
v <- NULL
for (i in 1:1000) {
v <- append(v, chisq.var.test(rnorm(100))$p.value)


}
plot(sort(v))


We can also compare the results with those of the “var.test” function, that works woth two
samples. Either graphically,
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p1 <- NULL
p2 <- NULL
for (i in 1:100) {
x <- rnorm(10)
p1 <- append(p1, chisq.var.test(x)$p.value)
p2 <- append(p2, var.test(x, rnorm(10000))$p.value)


}
plot( p1 ~ p2 )
abline(0,1,col=’red’)


or with a computation (we shall see later what it means: this is a test on a regression, that
tells us that p1=p2 with a p-value equal to 0.325).
> summary(lm(p1-p2~0+p2))


Call:
lm(formula = p1 - p2 ~ 0 + p2)


Residuals:
Min 1Q Median 3Q Max


-0.043113 -0.007930 0.001312 0.009386 0.048491


Coefficients:
Estimate Std. Error t value Pr(>|t|)


p2 -0.002609 0.002638 -0.989 0.325


Residual standard error: 0.01552 on 99 degrees of freedom
Multiple R-Squared: 0.009787, Adjusted R-squared: -0.0002151
F-statistic: 0.9785 on 1 and 99 DF, p-value: 0.325


8.2.12 Fisher distribution (F test) and comparison of the variance
of two samples


Here, we want to know if two samples come from populations from the same variance (we
are not interested in the mean).
We proceed as for the comparison of means, but instead of considering the difference of
means, we consider the quotient of variances.
One will use such a test before a Student T test (to compare the mean in two samples), to
check that the equivariance assumption is valid.
Here is the example with which we had illustrated the Student T test: indeed, the variances
do not seem too different.
?var.test
> var.test( sleep[,1] [sleep[,2]==1], sleep[,1] [sleep[,2]==2] )


F test to compare two variances


data: sleep[, 1][sleep[, 2] == 1] and sleep[, 1][sleep[, 2] == 2]
F = 0.7983, num df = 9, denom df = 9, p-value = 0.7427
alternative hypothesis: true ratio of variances is not equal to 1
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95 percent confidence interval:
0.198297 3.214123
sample estimates:
ratio of variances


0.7983426


Here is the theory behind this test.
The null hypothesis is H0: “the two populations have the same variance”, the alternative
hypothesis is H1: “the two populations do not have the same variance”. We compute the
statistic


variance of the first sample
F = -------------------------------


variance of the second sample


(here, I assume that the two samples have the same size, otherwise the formula becomes
more complicated) and we reject H0 if


F < F {n1-1, n2-2} ^{-1} ( alpha/2 )
or
F > F {n1-1, n2-2} ^{-1} ( 1 - alpha/2 )


where F is Fisher’s distribution.
Practically, we compute the quotient of variances with the largest variance in the numerator
and we reject the null hypothesis that the variances are equal if
F > F(alpha/2, n1-1, n2-1)


where n1 and n2 are the sample sizes.
Here is an example, where the computations were performed by hand.
> x <- rnorm(100, 0, 1)
> y <- rnorm(100, 0, 2)
> f <- var(y)/var(x)
> f
[1] 5.232247
> qf(alpha/2, 99, 99)
[1] 0.6728417
> f > qf(alpha/2, 99, 99)
[1] TRUE


If we have more than two samples, we can use Bartlett’s test. Of we have two non-gaussian
samples, we can use Ansari’s or Mood’s non parametric test. Of there are more that two
non-gaussian samples, we can use Fligner’s test.
?bartlett.test
?ansari.test
?mood.test
?fligner.test


8.3 The Zoo of Statistical Tests: discrete variables and
the Chiˆ2 test


8.3.1 Binomial test


In a sample of 100 butterflies, we found 45 males and 55 females. Can we conclude that
there are, in general, more males than females?
The number of female butterflies in a samples if 100 animals follows a binimial distribution
B(100,p) and we want to test the null hypothesis H0: “p=0.5” against the alternative
hypothesis H1: “p different from 0.5”.
> binom.test(55, 100, .5)


Exact binomial test
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data: 55 and 100
number of successes = 55, number of trials = 100, p-value = 0.3682
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.4472802 0.6496798
sample estimates:
probability of success


0.55


In this example, the difference is not statistically significant.


8.3.2 Mock binomial test (not important)


If we were doing the computations by hand, we would not use the binomial test, but an
approximation, with the “prop.test”. But as the computer performscarries out the compu-
tations for us, we need not use it.
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Comparing the binomial test and its approximation
p <- .3
col.values <- c(par(’fg’),’red’, ’blue’, ’green’, ’orange’)
n.values <- c(5,10,20,50,100)
plot(0, type=’n’, xlim=c(0,1), ylim=c(0,1), xlab=’exact’, ylab=’approximate’)
for (i in 1:length(n.values)) {
n <- n.values[i]
x <- NULL
y <- NULL
for (a in 0:n) {
x <- append(x, binom.test(a,n,p)$p.value)
y <- append(y, prop.test(a,n,p)$p.value)


}
o <- order(x)
lines(x[o],y[o], col=col.values[i])


}
legend(par(’usr’)[1],par(’usr’)[4],


as.character(n.values),
col=col.values,


lwd=1,lty=1)
title(main="Comparing the binomial test and its approximation")


We can also compare the distribution of p-values of these two tests.


0 200 400 600 800 1000


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


Index


p−
va


lu
e


exact
approximation


Binomial test (H0 true)
p <- .3
n <- 5
N <- 1000
e <- rbinom(N, n, p)
x <- y <- NULL
for (a in e) {
x <- append(x, binom.test(a,n,p)$p.value)
y <- append(y, prop.test(a,n,p)$p.value)


}
x <- sort(x)
y <- sort(y)
plot(x, type=’l’, lwd=3, ylab=’p-value’)
lines(y, col=’red’)
legend(par(’usr’)[2], par(’usr’)[3], xjust=1, yjust=0,


c(’exact’, ’approximation’),
lwd=c(3,1),
lty=1,
col=c(par("fg"),’red’))
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title(main="Binomial test (H0 true)")
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Binomial test (H0 false)
p1 <- .3
p2 <- .5
n <- 5
N <- 1000
e <- rbinom(N, n, p1)
x <- y <- NULL
for (a in e) {
x <- append(x, binom.test(a,n,p2)$p.value)
y <- append(y, prop.test(a,n,p2)$p.value)


}
x <- sort(x)
y <- sort(y)
plot(x, type=’l’, lwd=3, ylab=’p-value’)
lines(y, col=’red’)
legend(par(’usr’)[2], par(’usr’)[3], xjust=1, yjust=0,


c(’exact’, ’approximation’),
lwd=c(3,1),
lty=1,


col=c(par("fg"),’red’))
title(main="Binomial test (H0 false)")


We remark that if H0 is true, the p-value is over-estimated (the test is too conservative, it
is less powerful, it does not see anything significant while there is), but the wronger H0, the
better the approximation.


8.3.3 Another binomial test


TODO: alternative to the binomial test:
glm(y~x, family=binomial) # Logistic regression


(well, for p=0.5)


Question: and for p != 0.5?
You can do the same for multilogistic regression


8.3.4 Chiˆ2 test (very important)


The binomial test is fine, but it does not generalize: it allows you to study a binary variable,
nothing more. But sometimes we need a comparable test to study qualitative variables
with more than 2 values or to study several qualitative variables. There is no such “exact
multinomial test” (you can devise one, but you would have to implement it...): instead, one
uses the approximate Chi2 test.
The Chi2 test is a non parametric , non-rigorous (it is an approximation) test to compare
distributions of qualitative variables. In spite of that, it is the most important discrete test.
One can show that if (X1, X2, ..., Xr) is a multinomial random variable, then


( X 1 - n p 1 )^2 ( X r - n p r )^2
Chi^2 = ------------------- + ... + --------------------


n p 1 n p r


asymptotically follows a Chiˆ2 distribution with r-1 degrees of freedom. This tis is just an
asymptotic result, that is sufficiently true if
n >= 100 (the sample is large enough)
n p i >= 10 (the theoretical frequencies (counts) are not too small)


In particular, we get another mock binomial test.
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The binomial test and its approximations
p <- .3
col.values <- c(par(’fg’),’red’, ’blue’, ’green’, ’orange’)
n.values <- c(5,10,20,50,100)
plot(0, type=’n’, xlim=c(0,1), ylim=c(0,1), xlab=’exact’, ylab=’approximate’)
for (i in 1:length(n.values)) {
n <- n.values[i]
x <- NULL
y <- NULL
z <- NULL
for (a in 0:n) {
x <- append(x, binom.test(a,n,p)$p.value)
y <- append(y, chisq.test(c(a,n-a),p=c(p,1-p))$p.value)
z <- append(z, prop.test(a,n,p)$p.value)


}
o <- order(x)
lines(x[o],y[o], col=col.values[i])
lines(x[o],z[o], col=col.values[i], lty=3)


}


legend(par(’usr’)[1],par(’usr’)[4],
as.character(c(n.values, "prop.test", "chisq.test")),
col=c(col.values, par(’fg’), par(’fg’)),
lwd=1,
lty=c(rep(1,length(n.values)), 1,3)
)


title(main="The binomial test and its approximations")


Or a mock multinomial test: let us check, with a simulation, that the p-values are close.
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Monte Carlo Multinomial Test and Chi^2 Test
# A Monte Carlo multinomial test
multinom.test <- function (x, p, N=1000) {
n <- sum(x)
m <- length(x)
chi2 <- sum( (x-n*p)^2/(n*p) )
v <- NULL
for (i in 1:N) {
x <- table(factor(sample(1:m, n, replace=T, prob=p), levels=1:m))
v <- append(v, sum( (x-n*p)^2/(n*p) ))


}
sum(v>=chi2)/N


}
multinom.test( c(25,40,25,25), p=c(.25,.25,.25,.25) ) # 0.13
chisq.test( c(25,40,25,25), p=c(.25,.25,.25,.25) ) # 0.12


N <- 100
m <- 4
n <- 10


p <- c(.25,.25,.1,.4)
x <- NULL
y <- NULL
for (i in 1:N) {
a <- table( factor(sample(1:m, n, replace=T, prob=p), levels=1:m) )
x <- append(x, multinom.test(a,p))
y <- append(y, chisq.test(a,p=p)$p.value)


}
plot(y~x)
abline(0,1,col=’red’)
title("Monte Carlo Multinomial Test and Chi^2 Test")
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Here is the distribution of the p-values of a Chiˆ2 test.
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p−values in a Chi^2 test
# We sample 10 subjects in a 4-class population.
# We repeat the experiment 100 times.
N <- 1000
m <- 4
n <- 10
p <- c(.24,.26,.1,.4)
p.valeur.chi2 <- rep(NA,N)
for (i in 1:N) {
echantillon <- table(factor(sample(1:m, replace=T, prob=p), levels=1:m))
p.valeur.chi2[i] <- chisq.test(echantillon,p=p)$p.value


}
plot( sort(p.valeur.chi2), type=’l’, lwd=3 )
abline(0, 1/N, lty=3, col=’red’, lwd=3)
title(main="p-values in a Chi^2 test")


8.3.5 Independance Chiˆ2


Let us consider the following situation: we measure two qualitative variables each with two
values on a sample. In the whole population, the four classes occur with proportions 10%,
20%, 60%, 10%.


A B total
C 10 20 30
D 60 10 70
total 70 30 100


We can get a sample as follows.
TODO: this code is ugly...
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foo <- function (N) {
population1 <- c(rep(’A’,10), rep(’B’,20), rep(’A’,60), rep(’B’,10))
population1 <- factor(population1, levels=c(’A’,’B’))
population2 <- c(rep(’C’,10), rep(’C’,20), rep(’D’,60), rep(’D’,10))
population2 <- factor(population2, levels=c(’C’,’D’))
o <- sample(1:100, N, replace=T)
table( population2[o], population1[o] )


}
a <- foo(1000)
op <- par(mfcol=c(1,2))
plot( a, shade=T )
plot( t(a), shade=T )
par(op)


We would like to know wether these variables are independant or not. To do so, we take a
sample (as always, we do not know the population direclty, we only know it through samples
– so we are not supposed to know the proportions I mentionned above); we compute the
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marginal proportions (i.e., the “total” row and column); the product of this row and column,
so as to get the proportions one would observe if the variables were independant; we can
then compare those proportions with the observed ones.
> n <- 100
> a <- foo(n)
> a/n


A B
C 0.09 0.15
D 0.65 0.11


> a1 <- apply(a/n,2,sum) # The "total" row
> a1


A B
0.74 0.26
> a2 <- apply(a/n,1,sum) # The "total" column
> a2


C D
0.24 0.76
> b <- a1 %*% t(a2)
> b


C D
[1,] 0.1776 0.5624
[2,] 0.0624 0.1976


> chisq.test(as.vector(a),p=as.vector(b))


Chi-squared test for given probabilities


data: as.vector(a)
X-squared = 591.7683, df = 3, p-value = < 2.2e-16


TODO
I think the syntax is different
chisq.test(rbind(as.vector(a), as.vector(b)))
Is the result the same?


TODO
Remark
One can also use the Chi^2 for a homogeneity test, i.e.,
to check if two samples come from the same population.
It IS an independance Chi^2 (independance between the
variable and the sample number): the syntax is the same.
chisq.test(rbind(as.vector(a), as.vector(b)))


8.3.6 Fisher test: independance of two qualitative variables


Here, we want to check if two variables, given by a contingency table, are independant. It
sounds like the Chiˆ2 test, but this time, it is an exact test, not an approximation.
Let us take the example we had examined above with the Chiˆ2 test.
> a


A B
C 9 15
D 65 11


> fisher.test(a)


Fisher’s Exact Test for Count Data


data: a
p-value = 1.178e-05
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.03127954 0.32486526
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sample estimates:
odds ratio
0.1048422


With a smaller sample, it is less clear.
> fisher.test( foo(10) )


Fisher’s Exact Test for Count Data


data: foo(10)
p-value = 1
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.003660373 39.142615141


sample estimates:
odds ratio
0.3779644
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p−value of a Fisher test, H0 false


n=10
n=100


n1 <- 10
n2 <- 100
N <- 1000
x1 <- rep(NA,N)
x2 <- rep(NA,N)
for (i in 1:N) {
x1[i] <- fisher.test(foo(n1))$p.value
x2[i] <- fisher.test(foo(n2))$p.value


}
plot( sort(x1), type=’l’, lwd=3, ylab=’p-valeur’)
lines( sort(x2), col=’blue’, lwd=3 )
abline(0,1/N,col=’red’,lwd=3,lty=3)
abline(h=c(0,.05),lty=3)
abline(v=c(0,N*.05),lty=3)
title(main="p-value of a Fisher test, H0 false")
legend(par(’usr’)[1],par(’usr’)[4],


c("n=10", "n=100"),
col=c(par(’fg’), ’blue’),


lwd=3,
lty=1)


0 200 400 600 800 1000


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


Index


p−
va


le
ur


p−valueof a Fisher test, H0 true


n=10
n=100


foo <- function (N) {
population1 <- c(rep(’A’,2), rep(’B’,8), rep(’A’,18), rep(’B’,72))
population1 <- factor(population1, levels=c(’A’,’B’))
population2 <- c(rep(’C’,2), rep(’C’,8), rep(’D’,18), rep(’D’,72))
population2 <- factor(population2, levels=c(’C’,’D’))
o <- sample(1:100, N, replace=T)
table( population2[o], population1[o] )


}
n1 <- 10
n2 <- 100
N <- 1000
x1 <- rep(NA,N)
x2 <- rep(NA,N)
for (i in 1:N) {
x1[i] <- fisher.test(foo(n1))$p.value
x2[i] <- fisher.test(foo(n2))$p.value


}
plot( sort(x1), type=’l’, lwd=3, ylab=’p-valeur’, ylim=c(0,1))
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lines( sort(x2), col=’blue’, lwd=3 )
abline(0,1/N,col=’red’,lwd=3,lty=3)
abline(h=c(0,.05),lty=3)
abline(v=c(0,N*.05),lty=3)
title(main="p-valueof a Fisher test, H0 true")
legend(par(’usr’)[2], .2, xjust=1, yjust=0,


c("n=10", "n=100"),
col=c(par(’fg’), ’blue’),
lwd=3,
lty=1)


8.4 The Zoo of Statistical Tests: non-parametric tests


8.4.1 Sign test


It is a nom-parametric test on the median of a random variable – with no assumption on it.
The idea is simple: we count the number of values that are above the proposed median – we
know that of ot is the actual median, this number follows a binomial distribution, because
each value has exactly one chance out of two to be above it.
I have not found a function to perform this test, so I wrote my own.
sign.test <- function (x, mu=0) { # does not handle NA
n <- length(x)
y <- sum(x<mu) # should warn about ties!
p.value <- min(c( pbinom(y,n,.5), pbinom(y,n,.5,lower.tail=F) ))*2
p.value


}


To check that it works, let us simply remark that the distribution of the p-values is approx-
imately uniform, as it should be.
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sign.test <- function (x, mu=0) {
n <- length(x)
y <- sum(x<mu) # should warn about ties!
p.value <- min(c( pbinom(y,n,.5), pbinom(y,n,.5,lower.tail=F) ))*2
p.value


}
N <- 500
n <- 200
res <- rep(NA,N)
for (i in 1:N) {
res[i] <- sign.test(rlnorm(n),mu=1)


}
plot(sort(res))
abline(0,1/N,lty=2)


If the proposed median is wront, the p-values will be much lower.
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N <- 500
n <- 10
res <- rep(NA,N)
for (i in 1:N) {
res[i] <- sign.test(rlnorm(n),mu=2)


}
plot(sort(res), ylim=c(0,1))
abline(0,1/N,lty=2)


We can now complete our function to have confidence intervals.
sign.test <- function (x, mu=0, alpha=0.05) {
n <- length(x)
y <- sum(x<mu) # should warn about ties!
p.value <- min(c( pbinom(y,n,.5), pbinom(y,n,.5,lower.tail=F) ))*2
x <- sort(x)
q1 <- qbinom(alpha/2,n,.5,lower.tail=T)
q2 <- qbinom(alpha/2,n,.5,lower.tail=F)
ci <- c(x[q1], x[q2])
new.alpha = pbinom(q1,n,.5) + (1-pbinom(q2,n,.5))
list(p.value=p.value, ci=ci, alpha=new.alpha)


}


We can check that the confidence intervals actually have the advertised risk (as the binomial
distribution is a discrete distribution, this risk will not be exactly 0.05, that is why the
function returns the theoretical value).
test.sign.test <- function (n=100, N=500) {
N <- 500
res <- matrix(NA, nr=N, nc=3)
n <- 100
for (i in 1:N) {
r <- sign.test(rlnorm(n))
ci <- r$ci
res[i,] <- c( ci[1]<1 & 1<ci[2], n, r$alpha )


}
c(


1-sum(res[,1], na.rm=T)/sum(!is.na(res[,1])),
res[1,3]


)
}


N <- 10
res <- matrix(NA, nc=3, nr=N, dimnames=list(NULL,
c("Empirical Value", "Theoretical Value", "n")) )


for (i in 1:N) {
n <- sample(1:200, 1)
res[i,] <- round(c( test.sign.test(n), n ), digits=2)


}
res
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This yields:
> res


Empirical Value Theoretical Value n
[1,] 0.06 0.05 96
[2,] 0.04 0.05 138
[3,] 0.05 0.05 6
[4,] 0.06 0.05 135
[5,] 0.03 0.05 138
[6,] 0.04 0.05 83
[7,] 0.03 0.05 150
[8,] 0.05 0.05 91
[9,] 0.05 0.05 144
[10,] 0.04 0.05 177


8.4.2 Wilcoxon’s U test: comparing two “means”


TODO: read and correct (if needed) this part.
It is a non-parametric test: we do not know (or assume) anything on the distribution of the
variables, in particular, we think it is not gaussian (to check ot, look at a quantile-quantile
plot or perform a Shapiro–Wilk test) – otherwise, we would use Student’s T test, that is
more powerful.
However, there IS an assumption: the variable is symetric (if it is not, consider the sign
test). For this reason, we can speak of mean or of median – for the whole distribution it is
the same (but for a sample, that may be asymetric, it is different).
TODO: the following descrition is not that of the Wilcoxon
test I know, that assumes the variable is symetric, that
considers the variables Xij=(Xi+Xj)/2 and counts the
number of those variables that are above the proposed
mean.


The recipe is as follows. Take two samples, concatenate them, sort them. Then, look of the
two samples are “well-shuffled” or if the elements from one sample are rather at the begining
while those of the others are rather at the end.
The null hypothesis is H0: “P(X1 i > X2 i) = 0.5”.
We first sort each sample (separately) and compute
U1 = number of pairs (i,j) such that X1 i>X2 j


+ (1/2) * number of pairs (i,j) so that X1 i=X2 j
U2 = number of pairs (i,j) so that X1 j>X2 i


+ (1/2) * number of pairs (i,j) so that X1 i=X2 j
U = min(U1,U2)


Here is another method of computing this:
Contatenate the two samples, rank them
R1 = sum of the ranks on the first sample
R2 = sum of the ranks on the second sample
U2 = n1*n2 + n1(n1+1)/2 - R1
U1 = n1*n2 + n2(n2+1)/2 - R2
U = min(U1, U2)


Here is example from the man page (here, we imagine that prior data suggests that x>y, so
we choose an asymetric alternative hypothesis).
help.search("wilcoxon")
?wilcox.test
> x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
> y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
> wilcox.test(x, y, paired = TRUE, alternative = "greater", conf.level=.95,


conf.int=T)
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Wilcoxon signed rank test


data: x and y
V = 40, p-value = 0.01953
alternative hypothesis: true mu is greater than 0
95 percent confidence interval:
0.175 Inf
sample estimates:
(pseudo)median


0.46


Let us check on an example that the test remains valid for non-gaussian distributions.
N <- 1000
n <- 4
v <- vector()
w <- vector()
for (i in 1:N) {
x <- runif(n, min=-10, max=-9) + runif(n, min=9, max=10)
v <- append(v, wilcox.test(x)$p.value)
w <- append(w, t.test(x)$p.value)


}
sum(v>.05)/N
sum(w>.05)/N


We get 1 and 0.93: we make fewer mistakes with Wilcoxons’s test, but its power is lower,
i.e., we miss many opportunities of rejecting the null hypothesis:
# Probability of rejecting H0, when H0 is false (power)
N <- 1000
n <- 5
v <- vector()
w <- vector()
for (i in 1:N) {
x <- runif(n, min=0, max=1)
v <- append(v, wilcox.test(x)$p.value)
w <- append(w, t.test(x)$p.value)


}
sum(v<.05)/N
sum(w<.05)/N


We get 0 (the power of the test is zero: it never rejects the null hypothesis – if our sample
is very small and we do not know anything about the distribution, we cannot say much)
against 0.84.
Let us consider a more ungaussian distribution.
# Probability of rejecting H0, when H0 is false (power)
N <- 1000
n <- 5
v <- vector()
w <- vector()
for (i in 1:N) {
x <- runif(n, min=-10, max=-9) + runif(n, min=9, max=10)
v <- append(v, wilcox.test(x)$p.value)
w <- append(w, t.test(x)$p.value)


}
sum(v<.05)/N
sum(w<.05)/N


We get 0 and 0.05. For n=10, we would get 0.05 in both cases.
Let us now check the confidence interval.
N <- 1000
n <- 3
v <- vector()
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w <- vector()
for (i in 1:N) {
x <- runif(n, min=-10, max=-9) + runif(n, min=9, max=10)
r <- wilcox.test(x, conf.int=T)$conf.int
v <- append(v, r[1]<0 & r[2]>0)
r <- t.test(x)$conf.int
w <- append(w, r[1]<0 & r[2]>0)


}
sum(v)/N
sum(w)/N


We get 0.75 and 0.93.
TODO:


I do not understand.
As the U test is non-parametric, to should give larger
confidence intervals and make fewer mistakes.


The confidence interval for the Wilcoxon is three times as
small as that of Student’s T test.


???


However, these simulations show that Student’s T test is robust.


TODO: read what I just wrote and check the power


The following example tests if the variable is symetric around its mean.
> x <- rnorm(100)^2
> x <- x - mean(x)
> wilcox.test(x)


Wilcoxon signed rank test with continuity correction


data: x
V = 1723, p-value = 0.005855
alternative hypothesis: true mu is not equal to 0


Idem for the median.
> x <- x - median(x)
> wilcox.test(x)


Wilcoxon signed rank test with continuity correction


data: x
V = 3360.5, p-value = 0.004092
alternative hypothesis: true mu is not equal to 0


If there are more that two samples, you can use the Kruskal–Wallis test.
?kruskal.test


8.4.3 Kolmogorov-Smirnov Test (comparing two distributions)


We want to see if two (quantitative random variables) follow the same distribution.
> ks.test( rnorm(100), 1+rnorm(100) )


Two-sample Kolmogorov-Smirnov test


data: rnorm(100) and 1 + rnorm(100)
D = 0.43, p-value = 1.866e-08
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alternative hypothesis: two.sided


> ks.test( rnorm(100), rnorm(100) )


Two-sample Kolmogorov-Smirnov test


data: rnorm(100) and rnorm(100)
D = 0.11, p-value = 0.5806
alternative hypothesis: two.sided


> ks.test( rnorm(100), 2*rnorm(100) )


Two-sample Kolmogorov-Smirnov test


data: rnorm(100) and 2 * rnorm(100)
D = 0.19, p-value = 0.0541
alternative hypothesis: two.sided


TODO: state the idea (If my memory is good, we consider the sample cumulative distribution
function of both variables and compute the area between them).


8.4.4 Shapiro–Wilk test


This test check if a random variable is gaussian. That might seem to be a special case of the
Kolmogorov–Smirnov test, but actually we compare a random variable with the family of
gaussian distributions, without specifying the mean and variance, while the K-S test want
a completely specified distribution.
> shapiro.test(rnorm(10))$p.value
[1] 0.09510165
> shapiro.test(rnorm(100))$p.value
[1] 0.8575329
> shapiro.test(rnorm(1000))$p.value
[1] 0.1853919
> shapiro.test(runif(10))$p.value
[1] 0.5911485
> shapiro.test(runif(100))$p.value
[1] 0.0002096377
> shapiro.test(runif(1000))$p.value
[1] 2.385633e-17


It is a good idea to look at the quantile-quantile plot to see what happens, because the data
might be non-gaussian in a benign way (either, as here, because the data are less dispersed
that gaussian data, either because the deviation from a gaussian is statistically significant
but practically negligible – quite common if the sample is very large).


8.4.5 Other non-parametric tests


There is a wealth of other tests, we shall not detail them and merely refer to the manual.
?kruskal.test
?ansari.test
?mood.test
?fligner.test
library(help=ctest)
help.search(’test’)


8.5 Estimators


TODO: State the structure of this part -- and reorder it...
1. Generalities about estimators
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2. Least Squares estimators. Example: NLS.
3. Maximum Likelihood Estimators (also: REML, Penalized Likelihood)
4. GMM Estimators


Quite often, the data we are studying (the “statistical series”) is not the whole population
but just a sample of it – e.g., when you study birds on an island, you will not measure all
of them, you will simply catch a few dozen specimens and work on them. You can easily
compute the statistical parameters of this sample (mean, standard deviation, etc.), but they
are only approximations of those parameters for the whole population: how can we measure
the precision of those approximations?


8.5.1 Examples


Here are a few concrete examples of this situation.
An industrialist must choose a variety of maize. It will be used as (part of) an animal food
and we want the variety that contains the most proteins: we want to know the average
protein content of each variety – not that of the sample at hand, but that of the variety
as a whole. We might find that the sample of a variety has a larger protein content that
the sample of another: but were to samples sufficiently large, was the difference sifficiently
significant to extrapolate the results to the whole population?
An industrialist must choose a variaty of maize. It will be sold for human consumption and,
to ease its conditioning and packaging, we want all the ears to have the same size; i.e., we
want the standard deviation to be as small as possible. If we find that the standard deviation
of the sample of a variety is smaller than that of another variety, can we extrapolate the
results to the varieties as a whole? Were the samples sufficiently large? Was the difference
of standard deviations significant?


8.5.2 Modelling a statistical experiment


In simple terms: we draw, at random, subjects from a population and we measure, on the
resulting sample, the statistical variables of interest (size, protein content, etc.).
In algorithmic terms:
Repeat a large number of times:
Take a sample from the population
Estimate, on this sample, the quantity of interest
(this quantity is called a "statistic")


Compare those estimations (you can spot them as a histogram)
with the value on the whole population.


In more mathematical terms: Let X1,X2,...,Xn be independant identically distributed ran-
dom variables (iidrv). With the value those variables take on a single point of the universe,
we try to get some information about the distribution of those variables. For instance, we
expect (X1+...+Xn)/n to be an estimation of the mean of this distribution: is it really the
case? In what sense is it an “estimation”? What is the law of this sample mean? How to
measure the quality of this estimation?


8.5.3 Some vocabulary


8.5.4 Estimator


Let us consider a statistical experiment, i.e., iidrv X1,X2,...,Xn; we assume we know the
family this distribution belongs to but not its parameters (for instance, we know it is a
gaussian distribution, but we do not know the mean, or the variance – or even both). An
estimator is a function of X1,X2,...,Xn that gives an estimation of this parameter. (If we see
the random variables X1,X2,...,Xn as maps from the universe Omega to the real line R, an
estimator is the random variable obtained by composing (X1,...,Xn) with a map Rˆn —>
R.) For instance, (X1+...+Xn)/n is an estimator of the mean.
(Remark: we said that it was an estimator of the mean, but nowhere in the definition did
the mean appear. Indeed, it is also an estimator of the variance, of the standard deviation
or of any quantity we could think of – but we will see shortly that is is a “good” estimator
of the mean and a bad estimator of all these other quantities.)
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Quite often, estimators comes in families; for instance, the formula (X1+...+Xn)/n is a
family of estimators of the mean: we have one for each n.


8.5.5 Unbiased estimator


It is an estimator whose expectation is indeed the value of the parameter. For instance,
the sample mean (X1+...+Xn)/n is indeed an unbiased estimator of the mean. On the
contrary, the variance of the sample is a biased estimator of the population variance (but
you can easily transform it into an unbaised estimator: just replace “n” in the denominator
by “n-1”).
We can check this with a small simulation, as follows.
Let us draw 5 numbers at random, following a gaussian distribution of mean 0 and variance
1.
If we repeat this experiment 10000 times, we get (an estimation of) the expectation the
empirical mean: it is roughly equal to the population mean (here, 0).
x <- vector()
for(i in 1:10000){
x <- append(x, mean(rnorm(5)))


}
mean(x)


[1] 9.98948e-05


If we proceed likewise with the variance, we see that its expectation is significantly different
from the population variance (we get 0.8 instead of 1): we say that the “population variance”
is a biased estimator of the population variance.
TODO: the last paragraph was a bit ambiguous...
n <- 5
x <- vector()
for(i in 1:10000){
t <- rnorm(n)
t <- t - mean(t)
t <- t*t
x <- append(x, sum(t)/n)


}
mean(x)


[1] 0.806307


To get an unbiased estimator of the variance, it suffices to replace the “n” in the definition
of the variance by “n-1”. These two notions of variance are called “population variance”
and “sample variance”.


1
Population variance = --- * Sum( X i - mean(X j) )


n i


1
Sample variance = ----- * Sum( X i - mean(X j) )


n-1 i


Let us check, with another simulation, that this is indeed unbiased.
n <- 5
y <- vector()
for(i in 1:10000){
t <- rnorm(n)
t <- t - mean(t)
t <- t*t
y <- append(y, sum(t)/(n-1))


}
mean(y)
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[1] 1.000129


But this is not the only unbiased estimator of the variance: if we use the first formula with
the actual mean (that of the population, not that of the sample), the estimator is indeed
unbiased (but this is unrealistic: there is no reason why we should know the population
mean).
n <- 5
z <- vector()
for(i in 1:10000){
t <- rnorm(n)
t <- t - 0
t <- t*t
z <- append(z, sum(t)/n)


}
mean(x)


[1] 1.001210


We can graphically compare those three estimators of the variance.
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n <- 5
x <- y <- z <- vector()
for(i in 1:10000){
t <- rnorm(n)
z <- append(z, sum(t*t)/n)
t <- t - mean(t)
t <- t*t
x <- append(x, sum(t)/n)
y <- append(y, sum(t)/(n-1))


}
boxplot(x,y,z)







CHAPTER 8. ESTIMATORS AND STATISTICAL TESTS 606


0 1 2 3 4 5


0.
0


0.
2


0.
4


0.
6


0.
8


density.default(x = x)


N = 10000   Bandwidth = 0.07467
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plot(density(x))
points(density(y), type="l", col="red")
points(density(z), type="l", col="blue")


Histogram of x
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op <- par( mfrow = c(3,1) )
hist(x, xlim=c(0,5), breaks=20)
hist(y, xlim=c(0,5), breaks=20)
hist(z, xlim=c(0,5), breaks=20)
par(op)


Their square root (three estimators of the standard deviation) is more symetric.
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x <- sqrt(x)
y <- sqrt(x)
z <- sqrt(z)
boxplot(x,y,z)


0.0 0.5 1.0 1.5 2.0


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


1.
2


density.default(x = x)


N = 10000   Bandwidth = 0.04389
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plot(density(x))
points(density(y), type="l", col="red")
points(density(z), type="l", col="blue")
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op <- par( mfrow = c(3,1) )
hist(x, xlim=c(0,5), breaks=20)
hist(y, xlim=c(0,5), breaks=20)
hist(z, xlim=c(0,5), breaks=20)
par(op)


Question: are these estimators of the standard deviation biased? Check your answer with a
few simulations. Do you understand why? (Hint: they are all biased. The expectation is an
integral and we know that, in general, the integral of a square root is not the square roor of
the integral.)
TODO: check this hint.


There are many other notions, besides bias, that measure the quality of an estimator or
of a sequence of estimators. For instance, an estimator is “consistent” if, when the sample
size grows, ot converges (in probability) to the desired value. Thus, the weeak law of large
numbers states that the sample mean is a consistent estimator of the population mean.


8.5.6 Maximum Likelihood Estimators (MLE)


But where do we find the estimators in the first place? For simple quantities, such as the
mean or the variance, we have a formula for the whole population and we hope it will work
for a sample. For the mean, it works; for the variance, it yields a biased estimator, but we
can tweak it into an unbiased one.
But if we want to find a parameter of a more complicated law, for which we have no
“population formula” (imagine, for instance, that you want to find the parameter(s) of
an exponential, Poisson, Gamma, Beta, Weibull, Binomial, etc. distribution), how do we
proceed?
The Maximum Likelihood is a recipe to find such a candidate estimator. We do not know of
it will have “good” properties, in particular, it will pften be biased, it it will be a good start.
The idea is to find the value of the parameter for which the probability of observing the
results actually observed in the sample is maximum – this quantity is called the “likelihood”:
we maximize it.
For instance, let us use this method to find an estimator if the mean of a gaussian random
variable of variance 1 with a 5-element sample (actually, in this case, we get the “sample
mean” – the method is useful in more complex situations).
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# The population mean
m <- runif(1, min=-1, max=1)
# The n-element sample
n <- 5
v <- rnorm(n, mean=m)
# Likelihood
N <- 1000
l <- seq(-2,2, length=N)
y <- vector()
for (i in l) {
y <- append(y, prod(dnorm(v,mean=i)))


}
plot(y~l, type=’l’)
# Population mean
points(m, prod(dnorm(v,mean=m)), lwd=3)
# Sample mean
points(mean(v), prod(dnorm(v,mean=mean(v))), col=’red’, lwd=3)


The “optimize” function finds such a maximum, in dimension 1.
> optimize(dnorm, c(-1,2), maximum=T)
$maximum
[1] 1.307243e-05
$objective
[1] 0.3989423


In higher dimensions, you can use the “optim” function (it looks for a minimum)
f <- function (arg) {
x <- arg[1]
y <- arg[2]
(x-1)^2 + (y-3.14)^2


}
optim(c(0,0), f)


of the “nlm” function
TODO


We get:
$par
[1] 0.9990887 3.1408265


$value
[1] 1.513471e-06


$counts
function gradient


59 NA


$convergence
[1] 0


$message
NULL


We can ask for a specific optimization method, for instance, simulated annealing – actually,
in this example, we get an imprecise result.
optim(c(0,0), f, method="SANN")







CHAPTER 8. ESTIMATORS AND STATISTICAL TESTS 610


Let us consider the eruption lengths of the Faithful geyser and let us try to approximate
them as a mixture of Gaussian variables.


Histogram of faithful$eruptions


faithful$eruptions
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7 sample density


theoretical density


f <- function (x, p, m1, s1, m2, s2) {
p*dnorm(x,mean=m1,sd=s1) + (1-p)*dnorm(x,mean=m2,sd=s2)


}
data(faithful)
fn <- function(arg) {
prod(f(faithful$eruptions, arg[1], arg[2], arg[3], arg[4], arg[5]))


}
start <- c(.5,


min(faithful$eruptions), var(faithful$eruptions),
max(faithful$eruptions), var(faithful$eruptions),
)


p <- optim(start, function(a){-fn(a)/fn(start)}, control=list(trace=1))$par
hist(faithful$eruptions, breaks=20, probability=T, col=’light blue’)
lines(density(faithful$eruptions,bw=.15), col=’blue’, lwd=3)
curve(f(x, p[1], p[2], p[3], p[4], p[5]), add=T, col=’red’, lwd=3)
#curve(dnorm(x, mean=p[2], sd=p[3]), add=T, col=’red’, lwd=3, lty=2)
#curve(dnorm(x, mean=p[4], sd=p[5]), add=T, col=’red’, lwd=3, lty=2)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c(’sample density’, ’theoretical density’),
lwd=3, lty=1,
col=c(’blue’, ’red’))


We have just seen, in the previous examples, that the likelihood was often defined as a
product, with as many factors as observations. As such large products are numerically
unwieldy, we often prefer to take their logarithm.
TODO: the “fitdistr”, in the MASS package, computes univariate maximum likelihood es-
timators.
TODO: The “mle” function in the “stats4” package is a wrapper around “optim” and
provides functions to compute the information matrix, the covariance matrix, confidence
intervals, etc.


8.5.7 log-likelihood


The log likelihood is (not the logarithm of the likelihood but)
-2 log (vraissemblance).


It is the quantity we try to minimize in the Maximum likelihood method.
You might wonder where the ”-2” coefficient comes from: for gaussian variables, it yields
the logarithm of the sum of squares.
TODO: check the above.


8.5.8 Fisher information


If L is the log-likelihood and p the parameter to estimate, then the “score” is defined as
d log L


U = ---------
d p


and the Fisher information as
d^2 L


I(p) = -------
d p^2


The Fisher information measures the sharpness of the peak at the maximum of L.
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8.5.9 Likelihood Ratio (LR) test


TODO: I have NOT said anything about “H0” and “H1”...
We remark that


L if H0 is true
LR = - 2 log ---------------------------------------


L with the MLE parameters


L(b0)
= - 2 log ------- (if b is the parameter to estimate)


L(b)


where L is the likelihood, approximately follows a Chiˆ2 distribution with m degrees of
freedom, where m is the number of parameters to estimate.
TODO: explain why, in the gaussian case, it IS a Chi^2
distribution
TODO: explain how we estimate the variance of the
estimator.


TODO: an example (take one gaussian distribution and model
it as a mixture of distributions; take a mixture of two
gaussian distributions and model it as a mixture of two
gaussians; in both cases, test if the means of the two
gaussian distributions are the same).


The “Wald test” and the “score test” are approximations of the Likelihood Ratio (LR) test.
More precisely, if we note b the parameter to estimate, the “score” (it is a vector) is
U(b) = Nabla log V(b)


( d log V(b) )
= ( ------------ )
( d bi ) i


and the “information” (it is a matrix) is
( d^2 )


I(b) = ( - ----------- log V(b) )
( d bi d bj ) i,j


The “Wald statistic” is an order 2 Taylor expansion of the Likelihood Ratio (LR)
W = (b-b0)’ * I(b) * (b-b0)


and the “Score statistic” (it does not depend on b: it is very imprecise, but very fast to
compute)
S = U(b0)’ * I(b0)^-1 * U(b0).


8.5.10 MLE: mode


We can see the likelihood as the probability density function of the parameter, conditionnal
to the sample.
TODO: is it true?
TODO: plot


The idea of the Maximum Likelihood Method is to take the mode of this function. But
there are a few problems.
First, we completely forget the distribution of this estimator: we often look at its variance,
but if it is not normal, this is far from sufficient. (We can use this density to measure the
quality of the estimator or to do simulations (parametric bootstrap)).
Besides, the mode is not always a good choice. Why not take the mean (this is called bagging
– more about this later) or the median? What do we do if the mode is not unique? Or, more
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realistically, if the likelihood has several local maxima? Or a high narrow peak (so narrow
that its probability is low) and a wider smaller peak (so that its probability is high)?
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op <- par(mfrow=c(2,2))
curve(dnorm(x-5)+dnorm(x+5), xlim=c(-10,10))
curve(dnorm(x-5)+.4*dnorm(x+5), xlim=c(-10,10))
curve(dnorm(5*(x-5)) + .5*dnorm(x+5), xlim=c(-10,10))
par(op)


However, I have not managed to devise a situation in which we really observe such a phe-
nomenon (if you have such an example, tell me). Actually, such a situation might be a sign
that the model is wrong.
Ah, I finally got such an example. I simply took an estimator you cannot extrapolate from
a sample to a population: the maximum. (The statistics for which we might want to find
an estimator might have, or not, pleasant properties: the maximum is one of the worst
statistics you can imagine.)


Histogram of d
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get.sample <- function (n=10, p=1/100) {
ifelse( runif(n)>p, runif(n), 2 )


}
N <- 1000
d <- rep(NA,N)
for (i in 1:N) {
d[i] <- max(get.sample())


}
hist(d, probability=T, ylim=c(0, max(density(d)$y)), col=’light blue’)
lines(density(d), type=’l’, col=’red’, lwd=3)
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density.default(x = d)


N = 1000   Bandwidth = 0.11
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get.sample <- function (n=100, p=1/100) {
ifelse( runif(n)>p, runif(n), 2 )


}
N <- 1000
d <- rep(NA,N)
for (i in 1:N) {
d[i] <- max(get.sample())


}
#hist(d, breaks=seq(0,3,by=.02),
# probability=T, ylim=c(0, max(density(d)$y)), col=’light blue’)
#lines(density(d), type=’l’, col=’red’, lwd=3)
plot(density(d), type=’l’, col=’red’, lwd=3)
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density.default(x = d)


N = 1000   Bandwidth = 0.2595
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get.sample <- function (n=100, p=1/100) {
ifelse( runif(n)>p, runif(n), 2+2*runif(n) )


}
N <- 1000
d <- rep(NA,N)
for (i in 1:N) {
d[i] <- max(get.sample())


}
#hist(d, breaks=seq(0,4,by=.05),
# probability=T, ylim=c(0, max(density(d)$y)), col=’light blue’)
#lines(density(d), type=’l’, col=’red’, lwd=3)
plot(density(d), type=’l’, col=’red’, lwd=3)


However, some methods replace the estimators (a single value) by probability distributions:
on the computational side, all the methods relying on the bootstrap (e.g., the bagging), on
the theoretical side, these are called “bayesian methods”.


8.5.11 Bayesian methods


We have just seen that it could be interesting to have, not an estimator (a single number,
possibly with its variance) but a whole probability distribution. Bayesian methods push this
remark a little further.
We assume that the parameters of the model were chose at random according to a given
distribution – the prior distribution. Bayesian methods try fo find the posterior distribution,
i.e., the distribution of those parameters given the actually observed sample.
TODO: write this up.
Z: date
t: parameters
The model gives us P(Z|t)
We assume we know P(t) (the prior distribution).
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We then compute P(t|Z) (posterior distribution) from P(Z|t) and
P(t), with the Bayes formula -- hence the name.


TODO: recall this formula.


TODO:
MCMC (Markov Chain Monte Carlo) to sample from the posterior distribution
parametric bootstrap = computational implementation of the maximum likelihood


method
MLE = mode
bagged estimator = mean


TODO: EM algorithm (to find MLE in a 2-component misture model)
1. find first estimates (m1, m2: random; s1, s2: sd(whole sample))
2. Compute the responsabilities


gamma(i) = probability that observation i comes from the second component
1-gamma(i)=probability that observation i comes from the first component


3. new estimators = weighted means and variances
(use gamma(i), resp 1-gamma(i), as weights)


4. Iterate


TODO: you can generalize this algorith to other models.


TODO: this is a special case of REML


TODO: put those more complicated examples in the "bootstrap" chapter/section?


TODO: remark that bayesian methods can be applied iteratively.
Initial data --> prior
New data --> posterior
Update prior
New data --> posterior
Update prior
...


TODO: The theory behind the Kalman Filter (State Space
Models) is bayesian.


8.5.12 Bayesian statistics and quantum mechanics


Bayesian statistics are very similar to quantum mechanics: in quantum mechanics, reality is
a superposition of many possible realizations, each with its probability; similarly, the result
of a bayesian analysis is a whole probability distribution, giving all the possible answers,
each with its probability.


8.5.13 Bayesian Networks


TODO
This is very similar to neural networks, but we can
interpret the resulting model and add (prior) information
to it.


8.5.14 Fuzzy logic


TODO
(Notes taken while reading Matlab’s documentation)


The idea behind Fuzzy Inference Systems is to replace boolean values by continuously varying
values – think “probabilities”.
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A classical membership function
curve(ifelse(x < .3, 0, ifelse(x > .7, 0, 1)),


lwd = 3, col = "blue",
xlim = c(0,1),
main = "A classical membership function",
xlab="", ylab="")


abline(h = 0, lty = 3)
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A fuzzy membership function
curve( dnorm( x - .5, sd = .1 ) / dnorm(0, sd=.1),


lwd = 3, col = "blue",
xlim = c(0, 1),
main = "A fuzzy membership function",
xlab="", ylab="" )


abline(h=0, lty=3)


Boolean operators and deduction rules can then be fuzzified: AND becomes MIN, OR
becomes MAX, NOT(x) becomes 1-x THEN becomes MIN.
Note that there might be incoherences in the rules – it is not a problem.
You can tune the fuzzy inference system by changing the
membership functions (or even the boolean operators).
As with bayesian methods, the result is a probability
distribution, not a single number.
So far, it looks like bayesian networks, with a very
simple, fixed network structure, and no learning
capabilities.


(2) Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Actually, you do not have to provide the set of rules: you
can simply take you data, cluster it, and ask the computer
to write a rule for each cluster.
This looks very similar to nearest-neighbour methods --
and, if you impose some parsimony, it can be seen as a
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machine-learning analogue of Generalized Additive Models
(GAM, "mgcv" package in R).


(3) Fuzzy C-means clustering
This is a generalization of the k-means clustering
algorithm where cluster membership is fuzzy -- i.e., is a
probability. (In R, ir is implemented in the "fanny" or
"cmeans" functions.)


8.5.15 Influence curve


Let us consider an extimator U of a parameter u of a distribution F(u). The problem, is that
we do not know F exactly (more realistically: we do know F, but the population does not
exactly follow this distribution, it is merely an estimation of the distribution of the data).
To assess the robustness of the estimator, we can check how it changes when we modify F
at a single point. More precisely, we compute


U( (1-h) F + h 1x ) - U(F)
w(x) = lim ----------------------------


h -> 0 h


Where 1x is the Dirac measure at x.
TODO: example with the mean
TODO: example with the variance
TODO: example with the correlation (in dimension 2)
?persp


TODO: empirical estimation of the influence function with bootstrap.
library(boot)
?empinf


TODO: TO SORT?


8.5.16 Method of Moments Estimation (MME)


This is another recipe to get an estimator. If there is a single parameter, we choose it so that
the first moment (i.e., the mean) of the variable coincides with the sample mean. If there are
k parameters, we choose them so that the first k moments coincide with the sample moments
(I recall that the moments of a real random variable X are the expectations of Xˆk). As
with the Maximum Likelihood Method, we do not know anything about the quality of the
resulting estimator – it is often biased.
Let us use this method to study the Faithful geyser eruptions durations. Let X0 be a
Bernoulli random variable (i.e., a rnadom variable with two values, 0 and 1, or “heads” and
“tails”), with parameter p, and X1, X2, gaussian random variables of mean m1, m2 and
standard deviations s1, s2. We try to put our data Y under the forn
Y = X0 X1 + (1-X0) X2.


Noting that X0ˆ2=X0, (1-X0)ˆ2=1-X0 et X0*(1-X0), one can show that
Y^2 = X0 X1^2 + (1-X0) X2^2
Y^3 = X0 X1^3 + (1-X0) X2^3
Y^4 = X0 X1^4 + (1-X0) X2^4.


As X0, X1, X2 are independant,
E(Y) = X(X0) E(X1) + E(1-X0) E(X2)
E(Y^2) = X(X0) E(X1^2) + E(1-X0) E(X2^2)
E(Y^3) = X(X0) E(X1^3) + E(1-X0) E(X2^3)
E(Y^4) = X(X0) E(X1^4) + E(1-X0) E(X2^4)


But as
E(X0)=p
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E(X1) = m
E(X1^2) = m^2 + s^2
E(X1^3) = 3 m s^2 + m^3
E(X1^4) = 10 s^4 + 6 s^2 m^2 + m^4
E(X1^5) = 50 s^4 m + 5 s^2 m^3 + m^5


(and similarly for X2), we get
E(Y) = p m1 + (1-p) m2
E(Y^2) = p (m1^2 + s1^2) + (1-p) (m2^2 + s2^2)
E(Y^3) = p (3 m1 s1^2 + m1^3) + (1-p) (3 m2 s2^2 + m2^3)
E(Y^4) = p (10 s1^4 + 6 s1^2 m1^2 + m1^4) + (1-p) (10 s2^4 + 6 s2^2 m2^2 +


m2^4)
E(Y^4) = p (50 s1^4 m1 + 5 s1^2 m1^3 + m1^5) + (1-p) (50 s2^4 m2 + 5 s2^2 m2^3


+ m2^5)


We can then ask R to find (numerically) the values of those five parameters).
(Exercise left to the reader – I am not absolutely sure of my results.)
TODO
There is a function to find the minimum of a function of
several variables (optimize, optim, nlm, nls), there are
functions to find the zeros of a function of a single
variable (uniroot, polyroot), but what about the zeros of
a function of several variables, i.e., how do we
numerically solve a non-linear system???


(One can do that with the Newton algorithm, as in
dimension 1 -- the only difference being that the
derivative is a matrix.)


8.5.17 L-moments, TL-moments


Since the higher moments have a high variance, are very sensitive to outliers – or even, in
some cases, are not defined for the distribution at hand –, one can replace the moments by
the L-moments or the trimmed L-moments (TL-moments).


8.5.18 GMM (Generalized Method of Moments)


Least squares and maximum likelihood provide recipes to build new estimators. The Gen-
eralized Method of Moments is another recipe, that actually generalizes both Least Squares
and Maximum Likelihood.
Consider a (real-valued) random variable X, known to be gaussian, with unknown mean mu
and standard deviation sigma. We want to find those parameters, mu and sigma, from a
sample x1,x2,...,xn, drawn from the distribution of X. Remarking that
E[ X ] = mu
E[ X^2 ] = mu^2 + sigma^2


we can simply try to solve
1
--- Sum( x i ) = mu
n


1
--- Sum( x i^2 ) = mu^2 + sigma^2
n


There is no reason it will be a “good” estimator, but it will be an estimator – then, it is up
to us to study how good it is and to improve it if needed.
This idea is more general: if the distribution of the random variable X has a known form,
with unknown parameters theta 1, theta 2, ..., theta n, we can compute the first moments
of X as a function of those parameters
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E[ X ] = m 1( theta 1, ..., theta n )
E[ X^2 ] = m 2( theta 1, ..., theta n )
E[ X^3 ] = m 3( theta 1, ..., theta n )
...


Then, given the value of X on a sample, we can equate the mean of X, Xˆ2, etc. to their
theoretical values and solve the resolving equations. This is called the Method of Moments
Estimator (MME).
But this can be generalized further: instead of taking the moments E[X], E[Xˆ2], E[Xˆ3],
etc., we can consider the expectation of simpler quantities, that have a more direct inter-
pretationm or that can be more easily computed. Those quantites are called generalized
moments.
The recipe for our more GMM estimator is: find easy-to-compute and easy-to-interpret
quantities (e.g., X, Xˆ2, Xˆ3, etc.); compute their expectation in the population, as functions
of the unknown parameters; compute their average in the sample; equate expectations and
averages and solve: the law of large numbers tells you that the averages converge to the
expectations. Furthermore, the law of large numbers (often) tells you that the resulting
estimators are asymptotically gaussian.
For instance, if you have two random variables X and Y, linked by the relation Y = a + b
X + epsilon, where epsilon is a random variable with zero mean and a and b are unknown
parameters, then you can consider the generalized moments
E[ Y - ( a + b X ) ] = 0
E[ (Y - ( a + b X )) X ] = 0


The corresponding GMM estimator is the least squares estimator: the equations state that
the derivatives the of sum of squares appreaing the the definition of the least squares esti-
mator with respect to X and Y are zero.
The classical moments can be written as
E[ X - m1(theta) ] = 0
E[ X^2 - m2(theta) ] = 0
E[ X^3 - m3(theta) ] = 0;
...


we shall write the generalized moments as
E[ h1(X, theta) ] = 0
E[ h2(X, theta) ] = 0
E[ h3(X, theta) ] = 0
...


Quite often, you have more generalized moments than parameters: in this case, you cannot
hope that the moments will all be zero, and you will try to minimize a “weighted sum” of
squares of generalized moments. More precisely, if h = (h1,...,hn) is the vector of generalized
moments, you will minimize
h’ W h


where W is a weight matrix. If you are completely clueless about the properties of your
moments, you can set W to the identity matrix, but otherwise, the (limit, when the sample
size becomes large, of the) inverse of the variance-covariance matrix of the residuals is a
good choice
W = Var[ (1/N) Sum( h(x i, theta) ) ] ^ -1


The actual algorithm is usually:
W <- I
Until convergence:
Find theta that minimizes [(1/N)Sum(h(x i))]’ W [(1/N)Sum(h(x i))]
Set W = Var[residuals]^-1


TODO: Orthogonality conditions, Instrumental Variables (IV)
When you select you model, say Y = f(X, theta) + epsilon,
you want its residuals to be uncorrelated with all the
predictive variables, say







CHAPTER 8. ESTIMATORS AND STATISTICAL TESTS 619


epsilon = y - f(x, theta) uncorrelated with x (variables
included in the model)


epsilon = y - f(x, theta) uncorrelated with z (variables
not included in the model)


The first condition will be satisfied, but the second need
not: we have to impose it. This can be written as
E[ (y - f(x, theta)) \tens z ] = 0


where \tens is the tensor product (also called "Kroneker
product").


TODO: recall what it is.


The variables in z (the columns of z) are called
Instrument Variables (IV).


Tests, in the context of the Generalized Method of Moments, can look as follows:
H0: E[ h ] = 0, i.e., the model is right
H1: E[ h ] != 0, i.e., the model is wrong


You can use the following statistic:
J = N [(1/N)Sum(h(x i))]’ W [(1/N)Sum(h(x i))]


where N is the sample size.
You should remark that, with the GMM, we never really specify the model: we just specify
its moments. Thus, in this context, we cannot distinguish between models with the same
moments.
GMM are used in econometrics, because one can choose moments with an economic inter-
pretation – furthermore, as there is no real model behind the moments, once the moments
are meaningful, the “model” makes sense.
TODO: give more details


8.5.19 Cramer-Rao inequality


The Cramer-Rao inequality states that one cannot find arbitrarily good extimators: more
precisely, it gives a lower bound on the variance of an unbiased estimator.


8.5.20 Sufficient statistic


The first step to find the “best” estimator possible is to replace the data X1,X2,...,Xn by one
(or several) numbers that contain as much information: this number is called a “sufficient
statistic”. More precisely, if
P( (X1,X2,...,Xn) \in U | t(X1,...,Xn) = c )


only depends on U and C but not on the parameter we want to estimate, then t is a sufficient
statistic. There is a simple criterion (the Neyman factorization theorem) to recognize a
sufficient statistic. More precisely, we try to find a “minimal” sufficient statistic, i.e., one
whose “level lines” be as large as possible.


8.5.21 BUE (Best Unbiaised Estimators, aka UMVUE, Uniformly
Minimum Variance Unbiased Estimator)


Unbiased estimators whose variance is the lower bound in the Cramer-Rao inequality.


8.6 TO SORT


8.6.1 Information


TODO
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The information of a realization of a random variable is its degree of surprise. For instance,
if we flip a coin (i.e., if we consider a Bernoulli variable with probability 1/2) and get heads,
there is no real surprise: the information is rather low. This notion becomes more interesting
for more asymetric random variables. Let us consider the occurrence of an earthquake, given
that earthquakes are rare. Knowing that no earthquake occurred is not informative at all:
the information is low (even lower than in the coin flip experiment). On the contrary, if an
earthquake did occur, this is surprising, and the information is high.
For a Bernoulli variable
P(X=1) = p


the information of the event X=1 is
TODO: formulas


8.6.2 Entropy


TODO
The Kolmogorov-Chaitin entropy of a sequence of characters is the minimal length of a
program that produces this sequence.
It cannot really be computed but, if your sequence is sufficiently long, you can estimate its
entropy by compressing the sequence (with programs such as gzip or bzip2) and looking at
the length of the resulting file.
http://arxiv.org/abs/cond-mat/0108530 Language trees and zipping
http://arxiv.org/abs/cond-mat/0202383 Extended comments on "Language trees


and zipping"
http://arXiv.org/abs/cond-mat/0203275


8.6.3 Relative entropy (Kullback-Leibler distance)


TODO


8.6.4 Maximum Likelihood Methods and Statistical Tests


TODO: write this part...
Likelihood-Ratio test
LR = -2 ln ( L at H0 / L at MLE )
LR ~ Chi2
df = number of parameters (eg, 1).


Other tests for MLE: Wald test, Score test.


To compare two models fitted with MLE, compare AIC = LRChi^2 - 2 p
where p is the number of parameters. This is an approximative
criterion. There are other questionable such criteria, eg, BIC
(Bayesian Information Criterion).
r <- lm(...)
AIC(r)
library(nlme)
BIC(r)
r <- gls(...)
summary(r)


The AIC says that adding a useless parameter generally increases the
log likelihood by about 1 unit.
So if adding a parameter increases the log like- lihood by more than 1,
it is not useless.



http://arxiv.org/abs/cond-mat/0108530

http://arxiv.org/abs/cond-mat/0202383

http://arXiv.org/abs/cond-mat/0203275





Chapter 9


Regression


9.1 Model behind the regression


9.1.1 Model and assumptions


We have two random variables X and Y, and we try to predict the values of Y from those of
X (you should remark that the situation is asymetric: X and Y do not play the same role).
To this end, we assume that Y is obtained from X in the following way:
Y = a + b * X + noise


where a and b are real numbers (to be determined) and the noise follows a gaussian distri-
bution of zero mean.
More precisely, if we note X i and Y i the values corresponding to the ith observation, we
have Y i = a + b X i + e i where the e i are independant, identically distributed gaussian
random variables of zero mean.


9.1.2 Interpretation


There are two interpretations to this model: either the pairs (X,Y) are drawn at random,
or the values of X are fixed, we choose them (it corresponds to the experiments we design
and carry out) and get the values of Y as experimental results.
But this does not change the computations and the interpretation of the results (to be
precise, if X is also a random variable, it has to be independant from the noise).


9.1.3 Two-Stage Least Squares (2SLS) and Instrumental Variables
(IV) TODO: Put this somewhere else...


Let us consider the regression set-up
Y = a + b X + epsilon


where X and Y are observed random variables, epsilon is an unobserved random variable
(noise), and we want to estimate a and b. One usually assumes that either X is fixed,
chosen by the experimenter (a constant random variable) or that it is a random variable
independant from the noise. Here, we assume, on the contrary, that it is a random variable
correlated with the noise. In this situation, Ordinary Least Squares (OLS) will not work.
TODO: Add a legend...
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N <- 1000
a <- 1
b <- -1
Z <- rnorm(N)
epsilon <- rnorm(N)
eta <- rnorm(N)
aa <- runif(1)
bb <- runif(1)
X <- (aa + bb * Z + epsilon) + eta
Y <- a + b * X + epsilon
plot(X,Y)
abline(a,b, lty=2, lwd=3)
abline(lm(Y~X), col="red", lwd=3)


To solve the problem, we can try to find, among all the variables we can measure, a variable
Z that contains the same information as X, but is uncorrelated with the noise. This is called
an Instrumental Variable (IV) – actually, there can be several. More precisely,
X = c + d Z + eta


where Z is uncorrelated with epsilon – the correlation between X and epsilon is accounted for
by eta). The idea of 2-stage least squares is to first regress X against Z and then Y against
\hat X = c + d Z (\hat X is called an “instrument”). This gives more reliable estimates of
a and b. In R, this can be done with the “tsls” function from the “sem” package.
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library(sem)
r <- tsls(Y ~ X, instruments = ~ Z)
plot(X,Y)
abline(a,b, lty=2, lwd=3)
abline(lm(Y~X), col="red", lwd=3)
abline(r$coef[1], r$coef[2], col="blue", lwd=3)


In you want to do the computations by hand:
X = Z d + eta
d = (Z’ Z)^-1 Z’ X
\hat X = Z d


= Z (Z’ Z)^-1 Z’ X
b = (hatX’ hatX)^-1 hatX’ Y
= [ ( X’ Z’ (Z’ Z)^-1 Z’ ) ( Z (Z’ Z)^-1 Z’ X ) ]^-1 ( X’ Z’ (Z’ Z)^-1 Z’


) Y
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= [ X’ Z’ ( (Z’ Z)^-1 Z’ Z ) (Z’ Z)^-1 Z’ X ]^-1 ( X’ Z’ (Z’ Z)^-1 Z’
) Y


= [ X’ Z’ (Z’ Z)^-1 Z’ X ]^-1 ( X’ Z’ (Z’ Z)^-1 Z’
) Y


= (X’Z’(Z’Z)^-1Z’X)^-1 (X’Z’(Z’Z)^-1Z’) Y


TODO: Check those computations. Can we simplify the result further?
In case you want confidence intervals, or if you want to perform tests, it is wiser to use those
formulas – indeed, you cannot plug your data into the equations for the OLS confidence
intervals or tests: its inputs (\hat X) already result from a first estimation.
You might wonder: how can we see that there is such a problem? Well, we cannot. Only the
interpretation of the various variables, i.e., only domain-knowledge can tell you that there
is something wrong with Ordinary Least Squares.
TODO: Some more vocabulary...


9.1.4 Structural Equation Modeling (SEM) TODO: Put this else-
where


TODO: write an introduction
You posit a relation between several variables that cannot be observed directly (“latent
variables”), e.g.,
Y = a1 + b1 X + epsilon1
Z = a2 + b2 X + c2 Y + epsilon2


which can be repreented by the following diagram,
X ----------> Y
\
\ |
\ V
\
‘-> Z


and you measure proxies for the latent variables
x1 = a3 + b3 X + epsilon3
x2 = a4 + b4 X + epsilon4
x3 = a5 + b5 X + epsilon5


y1 = a6 + b6 Y + epsilon6
y2 = a7 + b7 Y + epsilon7


z1 = a8 + b8 Z + epsilon8
z2 = a9 + b9 Z + epsilon9


The game is now to estimate the coefficients.
As the latent variables are unknown, we can “rescale” (apply a linear transformation to)
them. To avoid this, we assume that X, Y and Z are measured on the same scale as x1, x2,
x3. Some of the equations above become
x1 = X + epsilon3
y1 = Y + epsilon6
z1 = Z + epsilon8


TODO: Explain how to do this in R
library(help=sem)
library(help=systemfit)


TODO: Explain the algorithms behind this (RAM, Reticular Action Model).
TODO: give comcrete examples where one would want to use such methods.
TODO: Mention specialized software to fit those models
Amos
EQS
Lisrel
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MPlus


TODO: URL Structural Equation Modeling with the sem package in R (John Fox)


9.1.5 Example


Here is an example.
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sample with 10000 observations


x


y


op <- par(mfrow=c(2,2))
for (n in c(10,1e2,1e3,1e4)) {
x <- runif(n)
y <- 1 - x + .2*rnorm(n)
plot(y~x, main=paste("sample with", n, "observations"))


}
par(op)


The very idea of regression is geometric: whenever you use a regression, you should first
look at the data to see if regression is a good idea.


9.1.6 Example


Here are, from the manual, four very different data sets that give the same regression line.
It stresses that you should always look at your data set, with plots.
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Anscombe's 4 Regression data sets


data(anscombe)
ff <- y ~ x
op <- par(mfrow = c(2,2),


mar = .1 + c(4,4,1,1),
oma = c(0,0,2,0))


for(i in 1:4) {
ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
## or ff[[2]] <- as.name(paste("y", i, sep=""))
## ff[[3]] <- as.name(paste("x", i, sep=""))
assign(paste("lm.",i,sep=""),


lmi <- lm(ff, data= anscombe))
#print(anova(lmi))


}
for(i in 1:4) {
ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
plot(ff, data = anscombe,


col = "red", pch = 21, bg = "orange", cex = 1.2,
xlim = c(3,19), ylim = c(3,13))


abline(get(paste("lm.",i,sep="")), col="blue")
}
mtext("Anscombe’s 4 Regression data sets",


outer = TRUE, cex = 1.5)
par(op)
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9.2 A few DIY regression lines


9.2.1 Brown–Mood Line


Put the data into two classes (the first and the second); take the center (median point) of
each, join them.


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


5 10 15 20 25


0
20


40
60


80
10


0
12


0


x


y


+
+


Brown−Mood Line
data(cars)
x <- cars$speed
y <- cars$dist
plot(y~x)
o <- order(x)
n <- length(x)
m <- floor(n/2)
p1 <- c( median(x[o[1:m]]), median(y[o[1:m]]) )
m <- ceiling(n/2)
p2 <- c( median(x[o[m:n]]), median(y[o[m:n]]) )
p <- rbind(p1,p2)
points(p, pch=’+’, lwd=3, cex=5, col=’red’ )
lines(p, col=’red’, lwd=3)
title(main="Brown-Mood Line")


9.2.2 Another line


Put the data into three classes, take their centers, draw the triangle, draw the line through
its center of gravity and parallel to its base.
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three.group.resistant.line <- function (y, x) {
o <- order(x)
n <- length(x)
o1 <- o[1:floor(n/3)]
o2 <- o[ceiling(n/3):floor(2*n/3)]
o3 <- o[ceiling(2*n/3):n]
p1 <- c( median(x[o1]), median(y[o1]) )
p2 <- c( median(x[o2]), median(y[o2]) )
p3 <- c( median(x[o3]), median(y[o3]) )
p <- rbind(p1,p2,p3)
g <- apply(p,2,mean)
plot(y~x)
points(p, pch=’+’, lwd=3, cex=3, col=’red’)
polygon(p, border=’red’)
a <- (p3[2] - p1[2])/(p3[1] - p1[1])
b <- g[2]-a*g[1]
abline(b,a,col=’red’)


}


three.group.resistant.line(cars$dist, cars$speed)


If the triangle is not flat, it is a sign that the relation is not linear...
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n <- 100
x <- runif(n,min=0,max=2)
y <- x*(1-x) + rnorm(n)
three.group.resistant.line(y,x)


9.2.3 The median line


Let b ij be the slope of the line through points i and j. Set
b = median b ij


a = median (yi - b xi)
i
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The median line
median.line <- function (y,x) {
n <- length(x)
b <- matrix(NA, nr=n, nc=n)
# Exercise: Write this without a loop
for (i in 1:n) {
for (j in 1:n) {
if(i!=j)
b[i,j] <- ( y[i] - y[j] )/( x[i] - x[j] )


}
}
b <- median(b, na.rm=T)
a <- median(y-b*x)
plot(y~x)
abline(a,b, col=’red’)
title(main="The median line")


}
median.line(cars$dist, cars$speed)


9.2.4 Another median line


b = median median b ij
i j!=i


a = median (yi - b xi)
i
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This yields:
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The median line
other.median.line <- function (y,x) {
n <- length(x)
b <- matrix(NA, nr=n, nc=n)
for (i in 1:n) {
for (j in 1:n) {
if(i!=j)
b[i,j] <- ( y[i] - y[j] )/( x[i] - x[j] )


}
}
b <- median( apply(b, 1, median, na.rm=T), na.rm=T ) # Only change
a <- median(y-b*x)
plot(y~x)
abline(a,b, col=’red’)
title(main="The median line")


}
other.median.line(cars$dist, cars$speed)


9.3 Correlation


9.3.1 Correlation Coefficient


The correlation coefficient (unitless, between -1 and 1), tells you if you can approximate a
data set with a line. In the following examples, the correlation coefficient goes from -1 to 1.
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do.it <- function (x, y) {
plot(x,y, main=paste("cor =", round(cor(x,y), digits=2)))
abline(lm(y~x), col=’red’, lwd=3)


}


n <- 100
x <- runif(n)
x <- x[order(x)]
y <- x
do.it(x,y)
abline(0,1,lty=2)
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y <- rnorm(n,x,.1)
do.it(x,y)
abline(0,1,lty=2)
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y <- rnorm(n,x,1)
do.it(x,y)
abline(0,1,lty=2)
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y <- runif(n)
do.it(x,y)
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x <- runif(n,-1,1)
y <- x*x
do.it(x,y)
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y <- rnorm(n, x*x, .1)
do.it(x,y)
x <- sort(x)
lines(x,x*x,lty=2)


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●
●


●●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


−1.0 −0.5 0.0 0.5 1.0


−
2


−
1


0
1


2
3


cor = 0.07


x


y


y <- rnorm(n, x*x, 1)
do.it(x,y)
x <- sort(x)
lines(x,x*x,lty=2)
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cor = −0.16


x


y


x <- runif(n)
y <- rnorm(n,-x,1)
do.it(x,y)
abline(0,-1,lty=2)
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cor = −0.94


x


y


y <- rnorm(n,-x,.1)
do.it(x,y)
abline(0,-1,lty=2)
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cor = −1


x


y


y <- -x
do.it(x,y)
abline(0,-1,lty=2)


9.3.2 Example: beta


TODO: the CAPM and the correlation...


9.3.3 Accuracy of the correlation


The correlation we compute from a sample is just an estimation of the correlation between
the random variables. The accuracy of this estimation depends on the sample size, of course,
but also on the correlation itself: the closer from zero, the more imprecise.


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●
●


●


●
●


●


●


●


●●●●●●●●●●●●●●●


−1 −0.8 −0.4 0 0.2 0.4 0.6 0.8 1


−
1.


0
−


0.
5


0.
0


0.
5


1.
0


True correlation


E
st


im
at


ed
 c


or
re


la
tio


n


library(mvtnorm)
k <- 100 # Number of samples for each correlation
N <- 20 # Size of the samples
r <- seq(-1, 1, by=.2) # The true correlations
n <- length(r)
rr <- matrix(NA, nr=n, nc=k)
for (i in 1:n) {
for (j in 1:k) {
x <- rmvnorm(N, sigma=matrix(c(1, r[i], r[i], 1), nr=2, nc=2))
rr[i,j] <- cor( x[,1], x[,2] )


}
}
estimated.correlation <- as.vector(rr)
true.correlation <- r[row(rr)]
boxplot(estimated.correlation ~ true.correlation,


col = "pink",
xlab = "True correlation",
ylab = "Estimated correlation" )
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col = "pink",
xlab = "True correlation", ylab = "Error" )
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N <- 20 # Sample size
n <- 1000 # Number of samples
true.correlation <- runif(n, -1, 1)
estimated.correlation <- rep(NA, n)
for (i in 1:n) {
x <- rmvnorm(N, sigma=matrix(c(1, true.correlation[i],


true.correlation[i], 1), nr=2, nc=2))
estimated.correlation[i] <- cor( x[,1], x[,2] )


}
plot(estimated.correlation ~ true.correlation)
abline(0,1, col="blue", lwd=3)
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plot(estimated.correlation - true.correlation ~ true.correlation, ylab="Error")
abline(h=0, lty=3)
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true.correlation


ab
s(


E
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or
)


plot(abs(estimated.correlation - true.correlation) ~ true.correlation,
ylab="abs(Error)")


lines(lowess(abs(estimated.correlation - true.correlation) ~ true.correlation),
col="red", lwd=3)


abline(h=0, lty=3)


TODO:
plotCorrPrecision(Hmisc)


Plot Precision of Estimate of Pearson
Correlation Coefficient


9.3.4 Testing the correlation


We can test wether the correlation is non-zero. In this example, it is not significantly
different from zero.
> n <- 10
> x <- rnorm(n)
> y <- rnorm(n)


> cor(x,y)
[1] -0.4132864
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> cor.test(x,y)
Pearson’s product-moment correlation


data: x and y
t = -1.2837, df = 8, p-value = 0.2352
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.8275666 0.2924366
sample estimates:


cor
-0.4132864


We even get a confidence interval for the correlation.


9.3.5 Spearman correlation


In some situations, there is clearly a relation between the two variables, but it is not linear.
Instead of the correlation between the variables, you can look at the correlation between
their ranks. This allows you to spot monotonic relations between variables.
> b <- (0:100)/100
> c <- b^2
> cor(b,c)
[1] 0.9676503
> cor(rank(b),rank(c))
[1] 1


TODO: cor(..., method=...)


9.3.6 Kendall’s tau


It is another rank-based measure of correlation but, contrary to the rank (Spearman) cor-
relation, it has a direct interpretation in terms of prababilities: it is the proportion of pairs
of observations that are in the same order for the two variables.
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Rank correlation and Kendall's tau contain the same information


Spearman rank correlation


K
en


da
ll'


s 
ta


u


N <- 1000
n <- 100
x <- matrix(nr=N, nc=3)
colnames(x) <- c("Pearson", "Spearman (rank)",


"Kendall’s tau")
y1 <- 1:n
for (i in 1:N) {
y2 <- sample(y1)
x[i,] <- c( cor(y1, y2),


cor(y1, y2, method="spearman"),
cor(y1, y2, method="kendall") )


}
plot(x[,2:3],


xlab="Spearman rank correlation",
ylab = "Kendall’s tau",
main="Rank correlation and Kendall’s tau contain the same information")
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Rank correlation and Kendall's tau contain the same information


Spearman rank correlation


K
en


da
ll'


s 
ta


u


N <- 1000
n <- 100
x <- matrix(nr=N, nc=3)
colnames(x) <- c("Pearson", "Spearman (rank)",


"Kendall’s tau")
y1 <- 1:n
for (i in 1:N) {
# We only shuffle k elements of the vector
k <- sample(2:n, 1) # At least two elements to shuffle
k <- sample(1:n, k)
y2 <- y1
y2[k] <- sample(y2[k])
# In order to have negative correlations, we also
# reverse the vector, from time to time
if (sample(c(T,F),1)) {
y2 <- n + 1 - y2


}
x[i,] <- c( cor(y1, y2),


cor(y1, y2, method="spearman"),
cor(y1, y2, method="kendall") )


}
plot(x[,2:3],


# Colour: usual (Pearson) correlation
col = rainbow(nrow(x))[rank(x[,1])],
xlab="Spearman rank correlation",
ylab = "Kendall’s tau",
main="Rank correlation and Kendall’s tau contain the same information")


abline(h=0, v=0, lty=3)
abline(0, 1, lwd=3)


Exercise: define a generalized Kendall tau as the proportion of pairs (x,y) in the same order
for both variables when x and y are in the first and third terciles of the first variable – this
should tell you if the two variables spot the same large values. Write a function to compute
it.


Pearson
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Generalized Kendall's tau


gkt <- function (x, y, n=3, ...) {
q <- quantile(x, c(1/n, 1-1/n), na.rm=T)
i1 <- which( x <= q[1] & ! is.na(y) )
i2 <- which( x >= q[2] & ! is.na(y) )
n <- 0
for (i in i1) {
n <- n + sum( y[i] <= y[i2] )


}
n <- n / length(i1) / length(i2)
2 * n - 1


}
gkt(1:100, sample(1:100))


N <- 1000
n <- 100
x <- matrix(nr=N, nc=4)
colnames(x) <- c("Pearson",


"Spearman (rank)",


"Kendall’s tau",
"Generalized Kendall’s tau")


y1 <- 1:n
for (i in 1:N) {
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# We only shuffle k elements of the vector
k <- sample(2:n, 1) # At least two elements to shuffle
k <- sample(1:n, k)
y2 <- y1
y2[k] <- sample(y2[k])
# In order to have negative correlations, we also
# reverse the vector, from time to time
if (sample(c(T,F),1)) {
y2 <- n + 1 - y2


}
x[i,] <- c( cor(y1, y2),


cor(y1, y2, method="spearman"),
cor(y1, y2, method="kendall"),
gkt(y1, y2) )


}
pairs(x)


9.3.7 Plotting correlation matrices


Visualizing a correlation matrix is not always very easy: people often present the numerical
values themselves, each with a p-value – apparently unawares that so many uncorrected
p-values are misleading.
Let us consider the following example. Variables 1 and 4 are correlated, variables 2 and 3
are correlated.
library(mvtnorm)
set.seed(1)
V <- matrix(c(
1, 0, 0, .5,
0, 1, .3, 0,
0, .3, 1, 0,
.5, 0, 0, 1), nr=4, nc=4)


stopifnot( eigen(V)$values > 0 )
n <- 20
x <- rmvnorm(n, sigma=V)


The correlation is
> cor(x)


[,1] [,2] [,3] [,4]
[1,] 1.0000000 -0.11412602 0.34961170 0.3808395
[2,] -0.1141260 1.00000000 0.01837415 0.1749909
[3,] 0.3496117 0.01837415 1.00000000 0.3219497
[4,] 0.3808395 0.17499092 0.32194969 1.0000000


> round( cor(x), digits=2 )
[,1] [,2] [,3] [,4]


[1,] 1.00 -0.11 0.35 0.38
[2,] -0.11 1.00 0.02 0.17
[3,] 0.35 0.02 1.00 0.32
[4,] 0.38 0.17 0.32 1.00


We can also compute the p-values of each of those correlations.
cor.pvalues <- function (x) {
k <- dim(x)[2] # Number of variables
res <- matrix(NA, nr=k, nc=k)
for (i in 1:k) {
for (j in 1:k) {
if (i != j) {
res[i,j] <- cor.test(x[,i], x[,j])$p.value


}
}
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}
res


}


We get
> cor.pvalues(x)


[,1] [,2] [,3] [,4]
[1,] NA 0.6318717 0.1307911 0.09759736
[2,] 0.63187172 NA 0.9387136 0.46056543
[3,] 0.13079106 0.9387136 NA 0.16627230
[4,] 0.09759736 0.4605654 0.1662723 NA


Actually, there is already a function to compute both the correlation matrix and its p-values
in the Hmisc package.
> library(Hmisc)
> rcorr(x)


[,1] [,2] [,3] [,4]
[1,] 1.00 -0.11 0.35 0.38
[2,] -0.11 1.00 0.02 0.17
[3,] 0.35 0.02 1.00 0.32
[4,] 0.38 0.17 0.32 1.00


n= 20


P
[,1] [,2] [,3] [,4]


[1,] 0.6319 0.1308 0.0976
[2,] 0.6319 0.9387 0.4606
[3,] 0.1308 0.9387 0.1663
[4,] 0.0976 0.4606 0.1663


Nothing is significant – and these were non-corrected p-values... Our sample is too small,
let us consider a more reasonable one.
> set.seed(1)
> n <- 200
> x <- rmvnorm(n, sigma=V)
> round(cor(x), digits=2)


[,1] [,2] [,3] [,4]
[1,] 1.00 -0.01 0.05 0.55
[2,] -0.01 1.00 0.28 -0.01
[3,] 0.05 0.28 1.00 -0.02
[4,] 0.55 -0.01 -0.02 1.00


> round(cor.pvalues(x), digits=4)
[,1] [,2] [,3] [,4]


[1,] NA 0.8566 0.4825 0.0000
[2,] 0.8566 NA 0.0001 0.8497
[3,] 0.4825 0.0001 NA 0.7753
[4,] 0.0000 0.8497 0.7753 NA


It remains significant even if we correct the p-values.
> round(1 - (1-cor.pvalues(x))^6, digits=5)


[,1] [,2] [,3] [,4]
[1,] NA 0.99999 0.98080 0.00000
[2,] 0.99999 NA 0.00045 0.99999
[3,] 0.98080 0.00045 NA 0.99987
[4,] 0.00000 0.99999 0.99987 NA


After examining the numeric values of a correlation matrix, we can start to plot it. The
simplest way is to draw a checker board and colour it according to the correlations – red for
positive correlations, green for negative ones.
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1


2


3


4


1 2 3 4 library(mvtnorm)
set.seed(1)
V <- matrix(c(
1, 0, 0, .5,
0, 1, .3, 0,
0, .3, 1, 0,
.5, 0, 0, 1), nr=4, nc=4)


stopifnot( eigen(V)$values > 0 )
n <- 200
x <- rmvnorm(n, sigma=V)
colnames(x) <- LETTERS[1:4]


library(sma)
plot.cor( cor(x), labels=T )


TODO: Understand why these is so much green...
Even though the correlation matrix has become a plot, it is still hard to interpret, especially
if there are many variables. One reason is that the variables (the rows and the columns) are
not in the “best” order: if, for instance, each variable is strongly correlated to an (unknown)
variable Y1 or Y2, we would expect to see two clusters of variables. How can we reorder the
variables to help spot such a structure?
We have already seen it when we presented correspondance analysis.
TODO:
give an example...


Another way of plotting a correlation matrix is to turn it into a distance. There are two
ways of doing so (as the correlation is defined with squares, we get something that behaves
like the square of a distance: if you really want a distance, just take the square root.
distance^2 = 1 - correlation
distance^2 = 1 - abs(correlation)


In the first case, the (squared) distance varies between 0 and 2, two variables with a corre-
lation of -1 are considered far apart. In the second case, the distance varies between 0 and 1
and two random variables with correlation close to -1 are consider very close – indeed, they
contain the same information.
With that distance, we can use Distance Analysis or MDS to plot the variables.
TODO


In some cases, this will not be enlightening: we then resort to Minimum Spanning Trees.
TODO


9.3.8 Correlation and missing values


Sometimes, you want to compute the correlation of two (or more) random variables, but
some of the values are missing.
One method is to discard all the observations (rows) in which at least one value is missing:
the problem is that you discard a lot of valuable information – in some extreme cases,
especially if you have many variables, you would end up discarding all the observations: it
suffices that there be at least one missing value in each row...
Another method is to compute the correlation coefficients one by one, i.e., just two variables
at a time. You discard much less information (but actually, you still discard some: if one
ariables contains fewer values that the other, you can use the fact that the two are correlated
to increase the precision of the estimation of the mean of the short one – and this mean, in
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turn, will be used in the computation of the correlation coefficient), but there is a drawback:
the coefficients of the correlation matrix will not be estimated using the same number of
observations. As a result, the correlation matrix need not be positive...
TODO: example
k <- 3
n <- 10
finished <- FALSE
while (!finished) {
x <- matrix(rnorm(n*k), nr=n, nc=k)
x[ sample( 1:(k*n), n ) ] <- NA
finished <- ! all(
eigen(
cor(x, use="pairwise.complete.obs")


)$values >= 0
)


}


This yields
> x


[,1] [,2] [,3]
[1,] -2.24222998 1.3181985 -2.4130672
[2,] NA 0.6912282 -0.2678092
[3,] NA -0.7577793 NA
[4,] NA -0.9019797 NA
[5,] 1.05577316 -0.1728323 NA
[6,] NA 0.2576251 1.0278166
[7,] NA -0.1183476 1.8332917
[8,] -0.51008918 1.5367152 NA
[9,] -1.75605793 NA 1.9852189
[10,] -0.05718876 0.2286824 -0.1190583


> cor(x, use="pairwise.complete.obs")
[,1] [,2] [,3]


[1,] 1.0000000 -0.7796932 0.2361549
[2,] -0.7796932 1.0000000 -0.9516614
[3,] 0.2361549 -0.9516614 1.0000000


> eigen(cor(x, use="pairwise.complete.obs")) $ value
[1] 2.3522275 0.7688139 -0.1210414


What you can do is find out how to compute a full-fledged maximum-likelyhood estimator
of correlation including missing values.
You encounter this situation in finance, when you want to computre the correlation between
the returns of two assets with a different history length. It goes by the name “Stambaugh
method”.
# Not tested...
stambaugh.covariance <- function (long, short) {
stopifnot( is.vector(long), is.vector(short),


length(long) == length(short),
( is.na(long) & is.na(short) ) | !is.na(long))


i.long <- ! is.na(long)
i.short <- ! is.na(short)
mu long ML <- mean(long[i.long])
Omega long long ML <- var(long[i.long])
mu long truncated <- mean(long[i.short])
mu short <- mean(short[i.short])
r <- lm( short[i.short] ~ long[i.short] )
a <- coef(r)[1]
b <- coef(r)[2]
Omega epsilon <- var(resid(r))
mu short ML <- mu short +
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b * (mu long ML - mu long truncated)
Omega short short ML <- Omega epsilon +
b * Omega long long ML * b


Omega short long ML <- b * Omega long long ML
Omega <- matrix(c(


Omega long long ML,
Omega short long ML,
Omega short long ML,
Omega short short ML),


nr = 2, nc = 2
)
colnames(Omega) <- rownames(Omega) <- c("long", "short")
mu <- c(long = mu long ML, short = mu short ML)
list( mu = mu, Omega = Omega )


}


V <- matrix(c(1, .5, .5, 2), 2, 2)
n <- 20 # Sample size
N <- 1000
res <- matrix(NA, nc=2, nr=N)
colnames(res) <- c("complete.obs", "stambaugh")
library(MASS) # For mvrnorm
for (i in 1:N) {
x <- mvrnorm(n, mu=c(0,0), Sigma=V)
x[ 1:ceiling(n/2) ,2 ] <- NA
res[i,2] <- stambaugh.covariance(x[,1], x[,2])$Omega[1,2]
res[i,1] <- cov(x[,1], x[,2], use="complete.obs")


}
histogram( ~ as.vector(res) |


colnames(res)[as.vector(col(res))],
xlab = "Estimated covariance",
layout = c(1,2),
panel = function (...) {
panel.histogram(...)
panel.abline(v=0.5, lty=3, lwd=3, col="blue")


} )
%--


There is a slight difference, in the right direction, but it is hardly noticeable.
> apply(res, 2, mean)
complete.obs stambaugh


0.4944555 0.4988373
> apply(res, 2, sd)
complete.obs stambaugh


0.5074997 0.5048349


9.3.9 Random Matrix Theory (RMT)


But the situation can be even worse: sometimes you want to estimate a correlation matrix,
you need to, but you do not have enough data. For instance, if you have 1000 variables and
100 observations of each, you cannot reliably estimate the 1000*1000 correlation coefficients
– you have 10 times more coefficients to estimate than actual data...
Luckily, the information in your data is not that large: it is probably reasonnable to as-
sume that the correlation between your variables can be explained by a few unobserved
variables, also called factors. In our previous example, if we have 10 (orthogonal) factors,
we “just” have to estimate the variance of each variable and its correlation with each factor:
10*1000+1000 coefficients to estimate, approximately 10 times less the number of actual
observations – I would be happier with 20, but it is much better...
You might wonder how we can retain 10 factors. Well, actually, it is very simple: compute
the correlation matrix, diagonalize it, zero out all the eigen values except the largest 10,
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compute the corresponding “correlation” matrix, scale it so that its diagonal entries are
back to 1.
But how do we know the number of factors to retain?
A simple idea is to compare the eigen values with those coming from random data. As we
do not know the distribution of the variables, we can simply shuffle each of them.


●●
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●●●


●
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●


●
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RMT <- function (x , # One variable per column
main="") {


k <- dim(x)[2] # Number of variables
N <- 100 # Number of permutations
r <- cov(x)
res0 <- eigen(r)$values
res <- matrix(NA, nr=N, nc=k)
for (i in 1:N) {
y <- apply(x, 2, sample)
res[i,] <- eigen(cov(y))$values


}
if (k>10) {
res <- res[,1:10]
res0 <- res0[1:10]


}
boxplot(as.vector(res) ~ as.vector(col(res)),


ylim=range(res0, res, 0),
col="pink", ylab="eigen values",


main=main)
lines(res0, col="blue", lwd=3)


}


k <- 10 # Number of variables
n <- 20 # Number of observations
x <- matrix(rnorm(n*k), nr=n, nc=k)
RMT(x, "Independant variables")


With simulated, correlated variables.
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k <- 10 # Number of variables
n <- 20 # Number of observations for each variable
m <- 3 # Number of factors
# Building the variance-covariance matrix
correlation.matrix <- function (x) {
# x contains the correlations, one column per factor
k <- dim(x)[2] # Number of factors
n <- dim(x)[1] # Number of variables
x %*% t(x)


}
covariance.matrix <- function (correlations.with.the.factors, variances) {
r <- correlations.with.the.factors %*% t(correlations.with.the.factors)
sqrt(variances %*% t(variances)) * r


}
V <- covariance.matrix(matrix(runif(k*m, -1,1), nr=k, nc=m),


runif(k, 1,2))
library(mvtnorm)
x <- rmvnorm(n, sigma=V)


RMT(x)


TODO: Understand/Explain why the eigen values are exactly zero...
With some noise on top of this.
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op <- par(mfrow=c(2,2), mar=c(2,2,3,1))
for (v in c(.1, .25, .5, 1)) {
RMT(x + v*rnorm(n*k), main=paste("noise sd =", v))


}
par(op)


TODO: An example with simulated non-gaussian variables
TODO: An example with real (financial) data
TODO: The misuses of Random Matrix Theory.


1. One can compute the distribution of the eigen values
when the variables are iid gaussian variables. Some people
use that even if the variables are known to be
non-gaussian.


2. The idea of permuting the values of each variable
implicitely assumes that those values are
independant. However, some people try to use this for time
series -- a situation where those values are likely to be
dependant...


9.3.10 Correlation beyond gaussian distributions: copulas


Computing the correlation of two random variables is a good idea if they are jointly gaussian:
the correlation then tells you the whole story. Unfortunately, variables are rarely jointly
gaussian: either they are gaussian but related in a non-linear way, or they are not gaussian
at all.
How can we describe, in general terms, the relation of two variables?
The first attempt should be to look at the data, for example with a scatterplot. If the
variables are not too dispersed, this will give you a glimpse of the relation between them.
But if they are very dispersed, if they have fat tails (it means: if they have more extreme
values than a gaussian distribution – this is the case of the Cauchy or T distributions), we
will not see much. In order to see something, you can transform each variable so that it be
uniformly distributed in [0,1] and then look at the scatterplot.
TODO: an example...
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The distributions are too dispersed
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N <- 1000
x <- rt(N, df=1)
y <- ifelse(sample( c(T,F), N, replace=T ), x, -x) + rt(N,df=1)


plot(x,y, main="The distributions are too dispersed")
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After uniformization


x


y


uniformize <- function (x) {
x <- rank(x, na.last="keep", ties.method="random")
x / max(x, na.rm=T)


}
x <- uniformize(x)
y <- uniformize(y)
plot(x, y, main="After uniformization")


Another way of looking at this scatterplot (useful when there are too many observations) is
to estimate the corresponding density.
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r <- kde2d(x, y)
image(r)
contour(kde2d(x,y), add=T, lwd=3)


TODO: a hexbin plot, as well.


This density is called the “copula” of the two variables. It replaces the correlation in non-
gaussian and/or non-linear situations.
As the density can be anything, it is a bit difficult to study. To this end, we often try to find
a “simple” copula sufficiently close to that of our data. Here are a few examples of families
of copulas to choose from.
The gaussian copulas are copulas of jointly gaussian variables with a given correlation matrix.
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op <- par(mfrow=c(2,2), mar=c(2,3,4,2))
for (r in c(-.9, -.5, 0, .5)) {
N <- 1000
x <- rnorm(N)
y <- rnorm(N)
y <- cbind(x,y) %*% chol( matrix(c(1,r,r,1), nr=2) )[,2]
cor(x,y)
x <- uniformize(x)
y <- uniformize(y)
s <- kde2d(x, y)
image(s, main=paste("Correlation =", r))
contour(s, add=T, lwd=3)


}
par(op)


The mixture-of-gaussian copulas are copulas of mixtures of gaussians.
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do.it <- function (seed, k=3, N=10000) {
set.seed( seed )
centers <- matrix(rnorm(2*k), nc=2)
cluster <- sample(1:k, N, replace=T)
x <- centers[cluster,1] + rnorm(N)
y <- centers[cluster,2] + rnorm(N)
x <- uniformize(x)
y <- uniformize(y)
s <- kde2d(x,y)
image(s)


}
do.it(1)
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do.it(2)


TODO: non-spherical gaussian variables... More plots?







CHAPTER 9. REGRESSION 647


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●
●


●


●


●●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


● ●
●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●●


●
●


●


●●


●●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●
●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●
●
●


●


●


●


●


●


●●
●


●
●


●
●


●
● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


● ●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


● ● ●


●


●


●


●


●


●
●


● ●
●
●


●


●


●


●


●
●


●
●


●


●
●


●●


●
●


●
●


●
●


● ●


●●


●


●


●


●


●


●


●


●


●●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●
●●


●


●


●


●●


●


●


●
●


●


●


●
●


●


●


●


●


●
●


●


● ●


●
●
●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●
●


●
●


●


●


●


●


●


●
●


●●


●


●


●
●


●


●●


● ●


● ●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●●
●


●●
●


●
●


●●


●
●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●
●


●
●●


●


●


●
●


●


●


●


●


●


●
●


●
●


●
●


●


●


●● ●


●


●


●●
●


●●


●●


●


●


●


●
●


●


●


●


●


●


●●
●●


●


●


●


●


●
●


●●


●


●


● ●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●
●


●


●


●


●●


●●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


● ●
●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


● ●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●●
●● ●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●


●
●


●
●●


●


●


●


● ●
●


●


●●
●


●
●


●


●●


●


●● ●●
●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●
●


●


●


●


●


●


●


●
●


●
●
●
●●


●


●
●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●
●


●


●


●
●


● ●
●


●


●


● ●
●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●


●
●


●
●


●
●


●


● ●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●
●


●
●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


● ●


●●


●


●


●


●


●


●


●


●


●●
● ●


●●


●


●


●


●


●


●


●●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●
●


●


●


●


●


●


●


●
●


●
●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●
●●


●


●


●●


●


●●●
●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●
● ●


●●
● ●


●● ●


●
●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●● ●


●


●


●●
●


●


●


●●


●


● ●


●


●
● ●


●


●


●


●●


●


●


●


●


●


●
●


●
●


●●


●
●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●
●●


●


●


●


●


●


●


●●
●


●●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●●


● ●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●
●


●
●


●


●
● ●●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
● ●●


●
●


●


●


●


●


●


●
●
●


●


●


●●
●


● ●


●●


●


●


●


● ●
●●


●


●


●
●


●


●


●
●


●


●


●


●
●●


●
●


● ●●
●


●
●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


● ●


●


●


●


●


●


●


●


●


●


● ●
● ●●
●


●


●


●


●


●


●


●
● ●


●


●
●


●


●


●
●


●


●


●


●


●
●


● ●


●


●●


●


●


●


●


●


● ●


●
●


●


●
●


●
●


●


●


●
●


●


●
●


●


●


● ●


●


●


● ●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●
● ●
●


●


●●


●
●


●
●


●


●
●


●


●
●


●
●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●
●


●


●
●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●
●


●


●
●


●


● ●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●●●


●


●


●


●


●
●


●


●


●


●●
●


●
● ●●


●


●
●


●●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●●


●
●


●


●


●


●


●
●


●


●
●


●●


●


●
●


●


●


●


●
●


●


●


●


●●
●


●


●


●
●


●


●●●
●


●


●


●


● ●●


●


●
●


●


●


●


●


●


●


●


●


●
● ●


●


●
●


●


●


●●


●
●


●


●


●


●●


●


●


●


●


●


●●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


● ●


●


●


●


●


●


●


●● ●


●


●


●


●


●


●


●
●


●
●


●


●
●


●


●


●


●


● ●
●


●
●


●


●


●


●


●


●


●●


●


●●
●


●


●●


●


●
●


●


●
●


●


●


●


●
●●


●


●


●


●


●


●●
●


●
●
●


●


●


●●
●


●
●●●


●


●


●


●


●


● ●●
●


●


●


●


●
●


●


●


●


●


●●


●
●


●


●


●
●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


● ● ●


●


●


●


●


●


●●


●


●


●


●


● ●


● ●


●


●


●


● ●


●
●


●


●


●


●


●


●


●
●


●


●


●


●
●● ●


●


●


●●


●


●
●


●● ●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●


●●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●
●


●


●


●


●
●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●●


●


● ●●●


●


●


●


●


● ●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●
●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●
●


● ●


●


●


●
●


●


●●


●


●


●
● ●


●
●


●


●


●
●


●●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


● ●●


●


●
●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●
●●


●


●
●
●


●


●


●


●


●


●●
●


●


●


●
●


●
●


●


● ●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


● ●


●
●


●


●


●


●
●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●● ●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●


●


●


●


●


●●


●●
●


●


●


●


●


● ●●
●


●


●
●


●


●


●


●


●


●


●


● ●


●●


●


● ●
●●


●


● ●


●●


●


●


●
●●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●


●
●
●


●


●


●


●● ●


●


●
●


●


●


●


●


●
●


●


●


●


●●
●


●


●●●


●
●
●


●


●●


●


●


●●
●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●


●


●


●


●●


●


●


●
● ●


●
●


●
●


●
●


● ●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●
●


●
● ●


●


●


● ●


●
●


● ●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●●●


●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


● ●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


● ●


●


●
●●


●
●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●
●


● ●


●


●


●


●
●


●


●


●


●
●


●
●


●


●


●


●


●


● ●


●


● ●


●
● ●


●


●
●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●
●●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●
●● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●
●


●


●


●


●


●●


●
●


●


●


●


●


● ●


●


●


●


●


●
●


●


●
●


●
● ●


●


●●


●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●●●


●
●●●


●


●


●


●


●
●


●


●●


●


●


●


● ●●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●●
●


●


●●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


● ●


●
●


●
●


●


●


●


●
●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●●


●
●


●


●


● ●


●
●


●


●


●


●


●●●


●


●


●


●


●


●


●●


●●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


● ●
●
●


●


●


●
●


●


●


●


● ●


●
●


●


●
●


● ●


●


●


●


●●●


●


●


●


●●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●●


●●
●


●


●


●


●


●


●
●


●


●


●


●


●


●●●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●


●


●
●●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●●●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●●
●●


●


●


●
●


●


●


●


●


● ●●


●


●


● ●


●


●
●


●
●


●


●


●


●


●


●


●
●


●


● ●


●
●


● ●


●


●


●


●


●


●


●


●
●


●


●●
●


●


●


●


●
●


●


●


●


●
●


●


●


●●


●


●


●


●


●
●


●


●
●


● ● ●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●●


●


●


● ●


●


●
●


●


●●
● ●


●


●


●●●
● ●
●


●


●


●


●●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●●


●


●
●


●


●
●


●


●


●


●
●


●


●
●


●
●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●
●
●


●


●


●●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●●
●


●
●


●


●


●●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●
● ●


●


●
●


●
●


● ●


●


●


●


●


●


●


●
●


●


● ●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●●
●


●


●
●


●●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●
●●


●


●


●


●
●


●
●


●


●


●


●


●●


●


●


●●


●


●●


●


●


●


●
●


●


● ●


● ●
●


●


●


●


●


●


●


●


●
●


●
●


●


●
●


●


●


● ●●


●


●


●


●


●


●


●●
●


●


●●


●


●


●●


●
●


●●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●
●


●●
●


●


●●


●


●


● ●


●


●
●


●
●


●
●


●


●


●


●
●


●


●


●


●●


●
●


●
● ●


●


●


●


●


●


●


●


●


●●


●


●●


●
●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●
●●


●


●●
●


●


●


●


●


●●
●●


●●
●●


●
●


●● ●


●


●


●


●


●
●


●


●


●


●●


●


●
●●●


●●


●


●


●


●


●●


●


●


●


●
●


●


●


●
●


●
●


●


● ●


●


●


●


●


●


●


●●


●●●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●●


●


●


●


●
●


●


●


●


●


●
●●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●●


●


●


●●


●


●


● ●


●


●
●


●
●


●


●


●


●


●
●


●


●


● ●


●


●
●●


●


●


●


●


●
●


●


●


●
●●
●●


●
●


●


●


●●


●●


●
● ●


●


●


●
●


●
●


●


●


●


●
●


●


●


●


●
●


●


●


●


●
●●


●


●
●


●


●


●


●


●


●
●


●


●


●
●


●


●


●●●


●


●
●


●
●●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●
●


●
●


● ●


●


●


●●


●


●


●


●●
●


●


●


●
●


●
●


●


●
●


●
●●


●


●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●


●● ●


●


●


●


●


●


●


●


●


●


●
●


●


●
●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●●


●
●●


●
●


●


●


●


●


●


●


● ●
●●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●●


●


●


●


●


●●


●
●


●
●


●


● ●


●
●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●●
●


●


●
●●


●


●


●
●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●
●


●


●


●
●


●
●


● ●


●


●


●
●


● ●


●


●


●


●


● ●


●


●


●


●


●


●


●●


●


●
●● ●


●


●


●


●


●


● ●


●
●


●
●


●
●


●● ●


● ●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●
●


●


●


●
●●


●


● ●


●


●
●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●●


●


●


●


●


●


●


●


● ●
●


●


●


●
●


●
● ●


● ●
●


●
●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●●


●●


●●●


●
●


●
●


●


●


●


●


●
●


●
●


●
●


●
●


● ●●
●


●


●
●


●
●●


●


●


●


●


●


●


●


●


●


●


●


● ●●


●●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●
●


● ●


●●


●


●


●


●


●
●●●


●
●


●


●●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●
●
●


●


●


●
●


●
●


●


●
●


●


●


●


●


●


●


●


●
●


●


●●


●


●
●


● ●


●


●
●●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●


●


●


●
● ●●


●
●


●


●
●● ●


●


●


●


●


●


●


●


●


●
●


● ● ●
●


●


●
●


●


●
● ●


●


●●●


●● ●


●


●


●
●


●
●


●


●


●


●
● ●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●●●


●


●


●
●


●


●●


●
●


●


●


●●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●●


● ●●
●


●


●
●


● ●


●
●


●
●●●●


●
●
●●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●
●


●●


●


●


● ●●


●


●
●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●
●●


●


●


●●


●
●


●


● ●


●●


● ●


●


●


●


●


●
●


●


●
●


● ●


●●


●


●


● ●


●


●
● ●●


●


●


● ●●


●
●


●


●
● ●


●
●


●


●


●


●


●


●


● ●


●


●


●


● ●


●


●


●


●


●
●


●
●


●


●


●


●


●


●
●


●


●


●


● ●


●


●
●


●
●


●


●


●


●
●


●


●
●


●
●


●


●


●


●


●●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●●


●
●


● ●


●


●
●


●


●


●


●


●●●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●
●


●


●


●●


●


●
●


● ●


●
●●


●


●
●


●


●


●●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●
●


●


●


●


● ●● ●


●


●


●
●


●


●
●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●
●


●


●
●


●


●●


● ●


● ●


● ●


● ●
●


●


●


●


●


●


●


●


●


●●


●


●●


●


●


●


●


●
●


●


●


●
●


●


●


● ●●● ●●


●


●
●


●●


●


●


●


●


●


●
●


●


●
●


●


●●


●


●


●


●
●


●


●


●●


●
●


●


●


●●


●


●
●


●
●


●


●


●●
●●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●●


●


●
●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●●


●


●


●●


●●


●
●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


● ●●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


● ●


●


●


● ●


●


●


●


●
●


●


●● ●


●


●


●


●


●


●
●


● ● ●


●


●


●


●


●


●
●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●
●●


●


●


●


●
●


●


●


●


●


●
●


● ●


● ●


●


●
●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●
●


●


● ●
●


●
●


●


●


●


●


●


●


●
●


●


● ●


●


● ●


●


●


●


●●


●


●
●●


●


●


●


● ●


●


●


●
●


●
●


●


●


● ●


●


●
●● ●


●


●


●


●


●


●


●


●


●


●
● ●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●●


●


●


●


●


●●
●


●


●
●


●


●


●
●


●
●


●


●


●


●


●●


●


●


●


●


●
●


●
●
● ●


●●
●


●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●
●


●


●
● ●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●●


●


●


●


●


●●


● ●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●●●


●●


●
●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


● ●
●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●
●


● ●


●
●


●


●


●


●


● ●


●


●
●


●


●


●●


●


●


●


●


●


●


● ●


●


●


●


●●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


● ●


●


●
●●


●


●
●


●
●


●


●


●


●


●●


●
●


●


●


●


●


●
●


●


●


●


●


●


●
●


●●


●●


●


●


●


●
●


●


●


● ●


●


●


●


●


●
●


● ●
●


●
●●


●


●


●●
●●


●


●


●


● ●


●●
●


●
●


●


●
●


●
●●


●


●
●


●


●


●
●


●


●●
●


●
●


●


●


●


●


●


●


●


●
●


●


●●


● ●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●●


●
●●


● ●


●
●●


●●


●


●


●


●
●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●
●


●


●


●
●


●●
●


●


●


●


●
●


●


●
●


●
● ●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●
●


● ●


●


●


●●● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●●


●


●
●●


●
●


●


●


●
●


●


●


● ●


●
●


●


●●


●


●●


●●


●


●
●●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●
●


●


●


●


●


●


●
●


●
●


●


●
● ●


●●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


● ●
● ●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


● ●


●


●


●


●
●


●●


●


●
●


●


●


●


●


●


●
●


●


●


●●
●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●
●●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●


●


●
●


●●


●


● ●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●●


●


●
●


●


●


●
●


●


●


●


●
●


●


●


●


●


● ●


●


●
●


●


● ●


●


● ●


●
●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


● ●


●


●
●


● ●


●
●


●


●


●


●


●
●


●●


●


●


●


●


●●
●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●
●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


● ●
●●


●


●


●


●


●●


●●


●


● ●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●
●


●


●


●


●
● ●●●


●


●


●●
●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●●


●


●


●
●


●
●


●


●


●●
●


●


●
●


●
●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●
●


●


●
●


●


● ●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●●


●


●


●●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


● ●


●


●


●


●


●


●●


●
●


●


● ●


●
●


●
●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●
●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●
●


●


●
●


●
●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●
●


●


● ●


●


●


●


●
●


●
●


●
●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●
●●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●
●


●


●
●


●●


● ●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●


● ●


●


●●


●


●
●


●
●●


●


●


●
●


●


●
● ● ●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●
●●


●


●
●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●


●


● ●


●


●●


●


●●


●


●


● ●


●


●
●


●


●
●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●●
●


●


●


●
●


●


●


● ●


●


●●


●


●


●
●


●


●
●


●


●
●
●


●


●●


●


●


●


●●


● ●


●
●


●
●


●


●


●


●
●


●


●


●


●● ●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●
●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●
●●


●
●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●●


●
●


●


●
●


●
●


●


●


●


●


●


●


●●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●●


●


●


●
●●


●
● ●


●


●●


●●


●
●


●


●


●
●


●


●


●


●
● ●


●
●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●●


●


●
●


●


●
●
●●


●


●


●
●


●


●


● ●


●
●


● ●
●


●


●


●


●●


●


●
●


●
●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●
●


●● ● ●


●
●


●


●●


●


●


●


●


●


●


● ●


●●


●●


●●


●


●
●


●


●
●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●●
●


●


●
●


●


●
●


●
●


●


●


●


●●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


● ●
●


●
●


●


●


● ●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


● ● ●


●


●


●


●
●


●


●


●
●


●●


●●
● ●


●


●


●


●


●
● ●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●
●


●


●


●
●


●


●


●
●


●●


●


●


●


●
●●


●


●
●


●


●


●


●


●


●


●


●
●


●


● ●


●
●


●


●


●
●


●


●


●


●


●


●


●●
●


●●


●


●


● ●


●


●
●


●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●●
●


●
●


●


●


●●


●


●●


●


●


●


●


● ●●
●
●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●
● ●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●
●


● ●
●


●●


●


●


●


●


● ●
●


●●


●●


●


●●


●


●
●


●


●


●


●


●


●


●


●
● ● ●


●


●●


●


●


●


●●
●


●


●


●


●


●


●


●


●


● ●


●


● ●
●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●●
●


●●


●
●


●●
●


●
●


●


● ●


●●


●
●


●●


●
●


●


●
●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●●


● ●
●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


● ●


●


●


●


●


●


●
●


●


●● ●
●●


● ●


●
●


●


●


●


●
●


●


●
●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●●
●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●
●


●


●
●


●


●


●


● ●


●


●
●


●


●


●


● ●
●


●


●


●
●●


●


●


●


●●
●


●


●


●


●


●


●
●


●
●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●●


●


● ●
●


●
●●●


●


●


●●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●●


●


●


●


●
●


●


●


●


●
●


●


●
●


●


●


●●


●


●


●


●
●


●


●
●


●


●


●
●


●


●


●


●
●


●
●


●● ●●


●


●


●


●


●●


●


● ●


●


●


● ●


●


●


●


●


●
●


●


●
●


●●


● ●


●
● ●


●


●●
●


●


●


●


●


●


●●


●


●
●


●
●


●


●


●


●


●●


●


●


●


●●


●
●


●


●


●


●


●


●●


●


●


● ●


●


●


●


●


●


●
● ●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●● ●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●
●●


●


●● ●


●


● ●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●
●


●


●
●●


●


●


●


●


●


●
●


●


●


●
●


●


●


●●


●


●
●


●
●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●●


●●


●


●


●


●


●


●


●
●


●


●


●●
● ●


●


●


●


●


●


●
●


●


●
●


●


●


●●


●
●


●


●


●


●


●


●
●


●


●
●


●


●


●


●●
●●●


●


●


●


●


●● ●


●
●


●


●


●


●●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●●


●


●
●


●


●


●


●


●
●


●●
●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●●


●


●


●


●
●
●


●


●


●
●●


●


●


●
● ● ●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●●●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●
●●


●


●


●


●


●●


●


●
●


●


●


● ●


●


●


●


●


●


●
●


●


● ●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●
●


●


●


●


●


●● ●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●●


●●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●
●


●


●


●●


●


● ● ●


●


●●


●
●●


●


●
●


● ●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●●


●
●


●


●


●


●


●


●


● ●


●


●


●


● ●
●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●
● ●


●


●


●


●●


●


●


●
●


●●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●●


●


●


●
●


●●


●


●
●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


● ●


●


●
●●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●●
●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●
●


●


●
●


●


●●
●


●


●●


●


●
●


●
●


●
●●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


● ●


●●


●


●


●
●


●


●


●


●


●●


●


● ●
●


●


●


●●
● ●


●


●


●


●


●


●


●
●


●


●
●


●


●●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


● ●


●


●
●


●


●


●●


●●●


●


●
●
●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●
●


●


●


●
●


●
●●


●


●
●


●


●


●


●


●


●


●
●


●
●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●
●
●


●


●●
● ●


●


● ●


●


●


● ●●
●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●●
●


●
●


●


●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●●


●
●


●


●


●


●
●


●


●●


●
●


●


●


●
●


●
●


●


●


●
●


●


●


●
●


●●


●
●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


● ●
●●


●
●


●


●


●


●


●


●


●


●
●


●
●●


●
●


●


●


●


●


●
●●


●


●


●


●


●
● ●


●
●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●●


●


●


●
●


●●


●●


● ●


●


● ●


●


●
●


●


●


●


●


●


●


●●
●


●


● ●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●
●


● ●


●


●


●●


●
●


●


●
●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●●


●
●


●


●


●


●


●


●


●


● ●


●●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●
●


●●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●
●


●


●
● ●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●● ●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●●


●
●


● ●


●


●


●


●
●


●


●


●


●


● ●


●


●


●
●


●


●


●


●
●


●


●


●
●


●●● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●
●


●●
●


●


●


●


●●


● ●
●


●


●


●●


●
●


● ● ●


●


●
●


● ●


●
●


●


●


●


●
●


●


● ●
●


●


●● ●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


● ●


●


●


●


●


●
●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●
●


●


●


●●


●


●


●


●


●


●●
●


●


●
●


●


●


●


●


● ●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●
●


●


●
●


●
●


●


●
●


●


●


●
●


●


●


●


●


●
●


●


●
●


●


●


●


● ●


●


●
●


●
●●


●
●


●


●


●


●


●


●


●
●


● ●
●


●


●


●
●


●
●


●


● ●


●


●


●
●


●


● ●


●


● ●
● ● ●


●


●


●


●●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●● ●


●


●


●●


●
● ●●


●


●


●


●
●


●
●


●


● ● ●


●
●●


●


●


●●


●


●
●


●


●


●
●
●


●●


●


●


●
●


●


●●


●


●


●


●


●●
●


●


●


●
●●


●


●


●
● ●


●


●


●


●


●


●


●


●
●


●●


●
●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
● ●●


●●
●
●●


●
●


−2 0 2 4


−
10


−
5


0
5


10


Mixture of gaussians


−2 0 2 4


−
10


−
5


0
5


10


Density of a mixture of gaussians


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


● ●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●
●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●


● ●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


● ●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●
●


●
●


●
●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●● ●


●


●


●●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●
●


●


●
●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


● ●●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●●


●


●
●


●● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●●


●


●


●


●


● ●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●
●


● ●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●● ●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


● ●


●
●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●


●


●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


●


●
● ●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


● ●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●
●●


●


●


●


●●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●●


●


●


●


●


●


●


●


●


● ●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●●
●


●


●


●


● ●


●


●
●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●●


●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●●


●


●


●


●


●


●
●


●●


●●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


● ●
●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


● ●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


●


●


● ●


●


●


●


●
●


●


●●


●


●


●
● ●


●


●


●


●


●


● ●


●●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


● ●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


● ●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


● ● ●


●


●


●


●


●


●


●
●


●


●●


●


●
●


●


●


●


● ●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●●●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●
●


●


●


●


●●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●
●


●


●


●●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


● ●


●●


●


●


●
●


●


●


●


●
●


●


●


●
●●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●●


●


●


●


● ●


●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


●●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


● ●


●


●


●
●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


● ●
●


●


●


●


●


●


●
●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


● ●


●


●


●


●●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●


●


●


● ●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


● ●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●
●


● ●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●
●
●


●
●


●


●


●


●●


●


●


●


● ●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●
●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●
●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●●


●


●


●


●


●


●


● ●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


● ●
●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●
●


●


●


●


●


●


●


● ●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


● ●
●


●
●


●●


●


●●


●


●


●


●


●


●


●


●


●


●


●


● ● ●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


● ●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●
●


●
●


●


●


●


●


●


●


●
●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●●
●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


● ●


●


●


●
●


●


●


●


●
●


●


●


●●


●


●


●
● ●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●● ●


●


●


●


●


●


●●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●
●


●●


● ●


●


●


●


●


●
●


●


●


●


●


●●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●
●


●


●


●


●


●


●●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
● ●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●●


●


●
●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●●


●


●
●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●


● ●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●


● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


● ●


●●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●


●
●


●
●


●


●


●


●●


●


●


●
●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●
●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


● ●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●● ●


●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
● ●●


●


●


●


●
●


●
●


0.0 0.2 0.4 0.6 0.8 1.0


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


Uniformized variables
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Mixture−of−gaussians copula


library(bayesm)
do.it <- function (seed=2, k=3, N=10000) {
set.seed( seed )
r <- list()
for (i in 1:k) {
m <- matrix(rnorm(4), nr=2)
r <- append(r, list(list( rnorm(2), solve(chol( t(m) %*% m)))))


}
p <- runif(k)
p <- p / sum(p)
s <- rmixture(N, p, r) # Very long...
op <- par(mfrow=c(2,2), mar=c(2,3,4,2))
plot(s$x, col=s$z, main="Mixture of gaussians", xlab="", ylab="")
image(kde2d(s$x[,1], s$x[,2]), main="Density of a mixture of gaussians",


col=rev(heat.colors(100)))
box()
x <- uniformize(s$x[,1])
y <- uniformize(s$x[,2])


plot(x, y, col=s$z, main="Uniformized variables", xlab="", ylab="")
r <- kde2d(x,y)
image(r, main="Mixture-of-gaussians copula")
box()
contour(r, add=T, lwd=3)
par(op)


}
do.it()


The Gumbel copula is defined by
C(u,v) = exp - ( (-log u)^a + (-log v)^a )^(1/a)
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Gumbel copula, a = −10
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Gumbel copula, a = −2
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Gumbel copula, a = 0
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Gumbel copula, a = 5


f <- function (u, v, a) {
exp( -( (-log(u))^a + (-log(v))^a )^(1/a) )


}
N <- 50
v <- u <- ppoints(N)
uu <- rep(u, N)
vv <- rep(v, each=N)
op <- par(mfrow=c(2,2), mar=c(2,2,4,1))
for (a in c(-10, -2, 0, 5)) {
w <- matrix( f(uu, vv, a), nr=N )
image(w, main=paste("Gumbel copula, a =", a))


}
par(op)


TODO: How to sample from it???


More generally, archimedian copulas are defined by
C(u,v) = f^{-1} ( f(u) + f(v) )


TODO: plots
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For more about copulas in R, check:
library(help=copula)
library(help=fgac) # generalized archimedian copula
http://www.crest.fr/pageperso/charpent/ENSAI.htm


9.4 Least Squares


9.4.1 Least squares


The idea is to find the values of a and b that minimize the sum of the squared distances
between the predicted values of Y and the actual values (on the preceding plot, it means we
measure the vertical distance between each point and the line, and we try to move the line
so that the sum of the squares of these distances be as small as possible).
If you do the computations by hand (write the sum of squares, write that the partial deriva-
tives with respect to a and b are zero, solve), you get:
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my.lss <- function (x, y, ...) {
n <- length(x)
sx <- sum(x)
sy <- sum(y)
sxx <- sum(x*x)
sxy <- sum(x*y)
d <- n*sxx-sx*sx
a <- (sxx*sy - sx*sxy)/d
b <- (-sx*sy + n*sxy)/d
plot(x,y, ...)
abline(a, b, col=’red’, ...)
c(a,b)


}


n <- 10
x <- runif(n)
y <- 1 - 2*x + .3*rnorm(n)
my.lss(x,y)


To do the same in higher dimensions, it suffices to write the computations with matrices.
my.lss <- function (x,y, ...) {
x <- as.matrix(x)
x <- cbind(rep(1,dim(x)[1]), x)
t(solve( t(x) %*% x, t(x) %*% y ))


}


n <- 50
x1 <- runif(n)
x2 <- runif(n)
x <- cbind(x1,x2)
y <- 1+x1-x2 + .3*rnorm(n)
my.lss(x, y)


You can get this formula pretty easily. The model states:
Y = X B + Bruit


so
X’ Y = X’ X B + X’ Bruit


thus
(X’ X)^-1 X’ Y = B + (X’ X)^-1 X’ Bruit



http://www.crest.fr/pageperso/charpent/ENSAI.htm
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hence
E[ (X’ X)^-1 X’ Y ] = E [ B + (X’ X)^-1 X’ Bruit ]


ie,
E[ (X’ X)^-1 X’ Y ] = E [ B ] + E [ (X’ X)^-1 X’ Bruit ]


ie,
E[ (X’ X)^-1 X’ Y ] = B + 0


ie, (X’ X)ˆ-1 X’ Y is an unbiased estimator of B (we do not know if it is a good one, but at
least it is unbiased).


9.4.2 Geometric Interpretation


You can see linear regression as an orthogonal projection of Y onto the subspace generated
by 1, X1, X2, etc. (here, 1 is the vector all of whose coordinates are 1).


9.4.3 The Gauss–Markov Theorem


The estimators from the least squares method are the Best (their variance is the lowest)
Linear Unbiased Estimators (BLUE).
However, some biased estimators have a lower variance, a lower Meas Square Error (MSE)
and are thus more interesting.
Furthermore, some non-linear estimators are more robust and thus better suited to non-
normal noise distributions.
In the real world, I suggest looking at the data (did I already stress the importance of
plotting your data?) and comparing least squares regression and other regression.


9.5 Regression with R


TODO: Rewrite this section:
1. Plot the data. The figure suggests that regression is a good


idea.
2. Perform the computations, plot the result.
3. Read the numeric results.
4. Look at the diagnostic plots.


Check that the assumptions were not flagrantly breached.


9.5.1 Computations with R – reading the result


Of course, there is already a function to perform this kind of computation. The following
line asks R to try to write Y as an affine function of X (we never explicitely add the intercept,
but it is always there: if you really want to remove it – you shoudn’t – you can, by writing
y˜-1+X).
res <- lm( y ~ x )


(If you want to write your own functions that accept such formulas as argument, you can
use the “model.matrix” function to turn the formula into a matrix.)
The “res” object contains the regression result. You can plot it as follows (the “plot(res)”
command would give you plots to assess the relevance of this regression – more about this
later).
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n <- 10
x <- runif(n)
y <- 1 - x + .2*rnorm(n)
res <- lm( y ~ x )
plot(y~x, pch=16)
abline(res, col=’red’)


Let us look at the contents of this object, with the “str” function.
> str(res)
List of 12
$ coefficients : Named num [1:2] 0.946 -0.925
..- attr(*, "names")= chr [1:2] "(Intercept)" "x"
$ residuals : Named num [1:10] -0.218 0.201 0.109 0.148 0.127 ...
..- attr(*, "names")= chr [1:10] "1" "2" "3" "4" ...
$ effects : Named num [1:10] -1.053 -0.725 0.196 0.208 0.219 ...
..- attr(*, "names")= chr [1:10] "(Intercept)" "x" "" "" ...
$ rank : int 2
$ fitted.values: Named num [1:10] 0.212 0.637 0.160 0.270 0.140 ...
..- attr(*, "names")= chr [1:10] "1" "2" "3" "4" ...
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:10, 1:2] -3.162 0.316 0.316 0.316 0.316 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:10] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "(Intercept)" "x"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.32 1.46
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
$ df.residual : int 8
$ xlevels : list()
$ call : language lm(formula = y ~ x)
$ terms :Classes ’terms’, ’formula’ length 3 y ~ x
.. ..- attr(*, "variables")= language list(y, x)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "y" "x"
.. .. .. ..$ : chr "x"
.. ..- attr(*, "term.labels")= chr "x"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=length 6 <environment>
.. ..- attr(*, "predvars")= language list(y, x)
$ model :‘data.frame’: 10 obs. of 2 variables:
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..$ y: num [1:10] -0.00579 0.83807 0.26913 0.41728 0.26766 ...


..$ x: num [1:10] 0.792 0.334 0.849 0.731 0.870 ...


..- attr(*, "terms")=Classes ’terms’, ’formula’ length 3 y ~ x


.. .. ..- attr(*, "variables")= language list(y, x)


.. .. ..- attr(*, "factors")= int [1:2, 1] 0 1


.. .. .. ..- attr(*, "dimnames")=List of 2


.. .. .. .. ..$ : chr [1:2] "y" "x"


.. .. .. .. ..$ : chr "x"


.. .. ..- attr(*, "term.labels")= chr "x"


.. .. ..- attr(*, "order")= int 1


.. .. ..- attr(*, "intercept")= int 1


.. .. ..- attr(*, "response")= int 1


.. .. ..- attr(*, ".Environment")=length 6 <environment>


.. .. ..- attr(*, "predvars")= language list(y, x)
- attr(*, "class")= chr "lm"


The “print” function prints those contents in a terser way: just the coefficients.
> res


Call:
lm(formula = y ~ x)


Coefficients:
(Intercept) x


0.9457 -0.9254


But usually, you want more details. And ideed, the result object contains much more
information. First, the residuals (i.e., the difference between the predicted value and the
actual value – this is NOT the noise that appears in the model: to compute this noise,
you would have to know the exact values of the coefficients a and b; here, we just have an
estimation of those coefficients: the residuals are just an estimation of the noise). Then, the
coefficients with, for each of them, an estimation of the standard error and a test to know
if the coefficient is zero or not. Here, the two stars tell us that the slope is non zero with a
confidence of 0.1% (.001926). Same for the intercept.
The R-squared, between 0 and 1, tells us if the model is close to the data: we shall come back
on it when we speak of ANalysis Of VAriance (Anova). The adjusted R-squared corrects
this value by taking into account a potential overfit of the data – for instance, if there are
as many parameters as data, you will have Rˆ2=1, but your regression will be meaningless.
The F-test and the corresponding p-value are the results of a comparison of this model and
the null model (the null model is the model Y = contant + noise, i.e., the model with no
slope, i.e., y˜1).
> summary(res)


Call:
lm(formula = y ~ x)


Residuals:
Min 1Q Median 3Q Max


-0.21828 -0.12899 0.01060 0.12269 0.20110


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 0.9457 0.1444 6.548 0.000179 ***
x -0.9254 0.2043 -4.529 0.001926 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.16 on 8 degrees of freedom
Multiple R-Squared: 0.7194, Adjusted R-squared: 0.6844
F-statistic: 20.51 on 1 and 8 DF, p-value: 0.001926
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There is yet another way of printing the result, that gives the same information as the
last three lines of the “summary” function. We shall come back on this later: the “anova”
function allows you to compare regression models.
> anova(res)
Analysis of Variance Table


Response: y
Df Sum Sq Mean Sq F value Pr(>F)


x 1 0.52503 0.52503 20.514 0.001926 **
Residuals 8 0.20475 0.02559
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


In the sequel, we shall mainly use the “summary” function.


9.6 Regression: general definition


We try to predict a random variable Y from another variable X. Both are quantitative,
The regression curve of Y on X is the function f that minimizes
E( Y - f(X) )^2.


We can get it as follows:
f(x) = E[ Y | X=x ].


The problem is that to compute this regression, we need to know the distribution of Y—X
– but all we have is a sample. If you really have a lot of data, you can try to compute the
regression with, e.g., weighted moving averages.
But usually, you have to downgrade your expectations: you will restrict your attention to a
class of simple functions, for instance, a linear (or rather, affine) function or a polynomial –
the simpler the model, the more reliable the results. In the linear case, we want to minimize
E( Y - (aX+b) )^2.


This is linear regression.
TODO: Stress the problems
1. This is asymetric, X and Y play different roles.
2. This only works for functional relations.


For instance, if the relation is x^2 + y^2 = 1 (more generally,
if the distribution of Y|X=x is bimodal for some values of x),
we will not get anything reliable.
TODO: Plot.


3. This also assumes that taking the mean of Y|X=x is a good idea.
You might want to take the median (this is called quantile
regression) or the mode.


9.7 Regression asymetry and PCA (Principal Compo-
nent Analysis)


Linear regression tries to minimize the sum of the squared distances between the line and
the cloud of points – the distance is measured vertically.
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dist ~ speed regression
data(cars)
plot(cars)
abline(lm(cars$dist ~ cars$speed), col=’red’)
title(main="dist ~ speed regression")


This is not symetric: if you interchange the variables, you get something different. However,
you will notice that both lines will run through the center of gravity of the cloud of points.
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dist ~ speed and speed ~ dist regressions
plot(cars)
r <- lm(cars$dist ~ cars$speed)
abline(r, col=’red’)
r <- lm(cars$speed ~ cars$dist)
a <- r$coefficients[1] # Intercept
b <- r$coefficients[2] # slope
abline(-a/b , 1/b, col="blue")
title(main="dist ~ speed and speed ~ dist regressions")


In both cases we minimize the (sum of squared) distances between the cloud of points
and the line, but in one case, those distances are measured vertically, in the other they
are measured horizontally. These are two reasonable but different means of measuring the
distance between a cloud of points and a line. That is why we get different results.
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dist ~ speed: distances measured vertically
plot(cars)
r <- lm(cars$dist ~ cars$speed)
abline(r, col=’red’)
segments(cars$speed, cars$dist, cars$speed, r$fitted.values,col="red")
title(main="dist ~ speed: distances measured vertically")
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speed ~ dist: distances measured horizontally
plot(cars)
r <- lm(cars$speed ~ cars$dist)
a <- r$coefficients[1] # Intercept
b <- r$coefficients[2] # slope
abline(-a/b , 1/b, col="blue")
segments(cars$speed, cars$dist, r$fitted.values, cars$dist, col="blue")
title(main="speed ~ dist: distances measured horizontally")


There is another sensible way of measuring the distance between a cloud of points and a line:
the sum of the squared distances between the points and the line, measured orthogonally to
the line. This is called PCA (Principal Component Analysis, aka “orthogonal regression”
or “perpendicular sums of squares” or “total least squares”) – and this time, it is symetric.
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Comparing three "regressions"
plot(cars)
r <- lm(cars$dist ~ cars$speed)
abline(r, col=’red’)
r <- lm(cars$speed ~ cars$dist)
a <- r$coefficients[1] # Intercept
b <- r$coefficients[2] # slope
abline(-a/b , 1/b, col="blue")
r <- princomp(cars)
b <- r$loadings[2,1] / r$loadings[1,1]
a <- r$center[2] - b * r$center[1]
abline(a,b)
title(main=’Comparing three "regressions"’)


In this example, the blue and black lines are almost the same. In the following example,
they are distinct.
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Comparing three "regressions"
set.seed(1)
x <- rnorm(100)
y <- x + rnorm(100)
plot(y~x)
r <- lm(y~x)
abline(r, col=’red’)
r <- lm(x ~ y)
a <- r$coefficients[1] # Intercept
b <- r$coefficients[2] # slope
abline(-a/b , 1/b, col="blue")
r <- princomp(cbind(x,y))
b <- r$loadings[2,1] / r$loadings[1,1]
a <- r$center[2] - b * r$center[1]
abline(a,b)
title(main=’Comparing three "regressions"’)
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PCA: distances measured perpendicularly to the line
plot(y~x, xlim=c(-4,4), ylim=c(-4,4) )
abline(a,b)
# Change-of-base matrix
u <- r$loadings
# Projection onto the first axis
p <- matrix( c(1,0,0,0), nrow=2 )
X <- rbind(x,y)
X <- r$center + solve(u, p %*% u %*% (X - r$center))
segments( x, y, X[1,], X[2,] )
title(main="PCA: distances measured perpendicularly to the line")


9.8 TO SORT


9.9 Other regressions


9.10 TO SORT


9.10.1 nlme


TODO: this part is not written yet...
library(help=nlme)


(It is here, for instance, that you will find a "gls" function, for
generalized least squares.)


Just a few examples from the manual.


library(help=nlme)
library(nlme)
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Fitted values (mm)
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Female library(nlme)
data(Orthodont)
fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
# standardized residuals versus fitted values by gender
plot(fm1, resid(., type = "p") ~ fitted(.) | Sex, abline = 0)
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# box-plots of residuals by Subject
plot(fm1, Subject ~ resid(.))
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F11 # observed versus fitted values by Subject
plot(fm1, distance ~ fitted(.) | Subject, abline = c(0,1))


The "nlme" package contains a "plot" function for non linear model.


TODO


9.11 TODO: TO SORT


9.11.1 Regression Plots


The “plot” function produces four plots that help assess the quality and relevance of a
regression.
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data(crabs)
n <- length(crabs$RW)
r <- lm(FL~RW, data=crabs)
op <- par(mfrow=c(2,2))
plot(r)
par(op)


Those plots remain useful in higher dimensions. Here is the example from the manual (you
try to predict a variable from four others).
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op <- par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
plot(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings))
par(op)
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## 4 plots on 1 page; allow room for printing model formula in outer margin:
op <- par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
#plot(lm.SR)
#plot(lm.SR, id.n = NULL) # no id’s
#plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers
plot(lm.SR, panel = panel.smooth)
## Gives a smoother curve
#plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))
par(op)


9.12 Preparing the data: transformations, missing val-
ues, outliers


9.13 Transformations


Before performing a regression, it is a good idea to transform the data so that they look
more or less gaussian. The important points are the symetry of the distributions and the
lack of outliers, that can bear too much impact on the regression results. In most cases
(lucky us!) the transformation also removes residual problems, such as heteroskedasticity.
You can perform the transformations by hand, with qqplots to estimate the quality of the
transformation – for instance with a Tk Widget.
n <- 100
x <- abs(rnorm(n)) ^ runif(1,min=0,max=2)


library(tkrplot)
bb <- 1
my.qqnorm <- function () {
qqnorm(x^bb, main=paste(’k =’,bb, ", p-valeur (Shapiro) =", shapiro.test(x^bb)$p.value))
qqline(x^bb)


}
tt <- tktoplevel()
img <-tkrplot(tt, my.qqnorm)
f<-function(...) {


b <- as.numeric(tclvalue("bb"))
if (b != bb) {


bb <<- b
tkrreplot(img)


}
}
s <- tkscale(tt, command=f, from=0.05, to=2.00, variable="bb",


showvalue=TRUE, resolution=0.05, orient="horiz")
tkpack(img,s)
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You can also directly use Shapiro’s test.
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exponent
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Shapiro's test
n <- 100
x <- abs(rnorm(n)) ^ runif(1,min=0,max=2)
kk <- seq(.01,5,by=.01)
N <- length(kk)
pv <- rep(NA, N)
for (i in 1:N) {
pv[i] <- shapiro.test( x^kk[i] )$p.value


}
plot( pv ~ kk, type=’l’, xlab=’exponent’, ylab=’p-value’ )
seuil <- .05
abline( v = kk[ range( (1:N)[pv>seuil] ) ], lty=3 )
abline( v = kk[pv==max(pv)], lty=3 )
abline( h = seuil, lty=3 )
title(main="Shapiro’s test")


The “boxcox” function already does this.







CHAPTER 9. REGRESSION 663


−2 −1 0 1 2


−
70


0
−


60
0


−
50


0
−


40
0


−
30


0
−


20
0


λλ


lo
g−


Li
ke


lih
oo


d


 95%
x <- exp( rnorm(100) )
y <- 1 + 2*x + .3*rnorm(100)
y <- y^1.3
library(MASS)
boxcox(y~x, plotit=T)


There is another one in the “car” library.
> summary( box.cox.powers(cbind(x,y)) )
Box-Cox Transformations to Multinormality


Est.Power Std.Err. Wald(Power=0) Wald(Power=1)
x 0.3994 0.0682 5.8519 -8.8011
y 0.2039 0.0683 2.9868 -11.6596


L.R. test, all powers = 0: 50.8764 df = 2 p = 0
L.R. test, all powers = 1: 263.585 df = 2 p = 0


To ease the interpretation of the transformation, you will strive to choose a simple exponent
(say, a simple fraction): it will be easier to explain to your boss why you chose a cubic
root than to explain that you needed to raise an easy-to-understand quantity to the power
0.3994.
my.box.cox <- function (x, lambda=seq(-2,2,.01)) {
b <- boxcox(x, lambda=lambda)
# Confidence interval (from "boxcox")
lim <- max(b$y) - qchisq(19/20,1)/2
l1 <- min(b$x[ b$y>lim ])
l2 <- max(b$x[ b$y>lim ])
# A simple fraction between l1 and l2
done <- F
den <- 0
while (!done) {
den <- den+1
num <- floor(den*min(lambda))-1
nummax <- ceiling(den*max(lambda))
#cat(paste("DEN", den, "NUMMAX", nummax, "\n"))
while ((!done) & (num<=nummax)) {
num <- num+1
#cat(paste("den",den,"num",num,"\n"))
if( l1<=num/den & num/den<=l2 ){
done <- T


}
}


}
list(value=num/den, numerator=num, denominator=den,


exact=b$x[ b$y==max(b$y) ],
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int=c(l1,l2) )
}
my.box.cox(y~x) # 3/4


Here is a comparison the the initial data and the transformed ones.
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bc <- boxcox(y ~ x, plotit=F)
a <- bc$x[ order(bc$y, decreasing=T)[1] ]
op <- par( mfcol=c(1,2) )
plot( y~x )
plot( y^a ~ x )
par(op)


More concrete examples.
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boxcox(Volume ~ Girth, data = trees)
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boxcox(Volume ~ log(Height) + log(Girth), data = trees )


9.14 Missing values


TODO: I have not finished writing this part.
TODO
help.search("impute")
library(help=norm)
?aregImpute
na.omit
plot(approx(...))


9.14.1 Introduction


Data sets sometimes contain missing values, because they could not be observed, because
they were lost, or because we realized that they were erroneous and could not redo the
experiments. Simply discarding the corresponding subjects may not be that good an idea:
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if a single variable is missing for a given subject, you would also discard all the other variables
for that subject. If the data are displayed in a table, one row per subject, one column per
variable, you would discard a row whenever it contains a missing value.
If the missing data are few, you can discard the corresponding observations.
If the missing values are missing at random, you can get by by replacing the missing values
with their mean or median.
But quite often, the fact that a value is missing depends on the value itself: for instance, of
we ask people their income, in an opinion poll, high-earning people will be more reluctant
to answer. This must be taken into account.
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No missing value


n <- 100
v <- .1
x1 <- rlnorm(n)
x2 <- rlnorm(n)
x3 <- rlnorm(n)
x4 <- x1 + x2 + x3 + v*rlnorm(n)
m1 <- cbind(x1,x2,x3,x4)
pairs(m1, main="No missing value")
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A few missing values


remove.higher.values <- function (x) {
n <- length(x)
ifelse( rbinom(n,1,(x-min(x))/(max(x)+1))==1 , NA, x)


}
x1 <- remove.higher.values(x1)
x2 <- remove.higher.values(x2)
x3 <- remove.higher.values(x3)
x4 <- remove.higher.values(x4)
m2 <- cbind(x1,x2,x3,x4)
pairs(m2, main="A few missing values")


The mean is lower that what it should be.
> apply(m2, 2, mean, na.rm=T)


x1 x2 x3 x4
1.158186 1.160651 1.298134 3.966040
> apply(m1, 2, mean, na.rm=T)


x1 x2 x3 x4
1.438024 1.652619 1.472807 4.710466
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TODO: is this a good example? Do missing values have a real effect on the result of the
regression or the forecasts?
> lm(m2[,4]~m2[,-4]-1)
Coefficients:
m2[, -4]x1 m2[, -4]x2 m2[, -4]x3


1.026 1.030 1.021


> lm(m1[,4]~m1[,-4]-1)
Coefficients:
m1[, -4]x1 m1[, -4]x2 m1[, -4]x3


1.014 1.029 1.013


9.14.2 Decision trees


To see of the values are missing at random or of the missing-ness follows a certain pattern,
one can use a decision tree.
library(rpart)
for (i in 1:4) {
r <- rpart(factor(is.na(m2[,i]))~m2[,-i])
cat(paste("Coordinate number", i, "\n"))
print(r)


}


It yields:
Coordinate number 1
n= 100
node), split, n, loss, yval, (yprob)


* denotes terminal node
1) root 100 9 FALSE (9.1e-01 9.0e-02) *


Coordinate number 2
n= 100
node), split, n, loss, yval, (yprob)


* denotes terminal node
1) root 100 9 FALSE (9.1e-01 9.0e-02) *


Coordinate number 3
n=99 (1 observations deleted due to missing)
node), split, n, loss, yval, (yprob)


* denotes terminal node
1) root 99 13 FALSE (0.8686869 0.1313131) *


Coordinate number 4
n= 100
node), split, n, loss, yval, (yprob)


* denotes terminal node
1) root 100 12 FALSE (0.88000000 0.12000000)
2) m2[, -i].x2< 3.397467 93 9 FALSE (0.90322581 0.09677419)
4) m2[, -i].x1< 1.066317 55 3 FALSE (0.94545455 0.05454545) *
5) m2[, -i].x1>=1.066317 38 6 FALSE (0.84210526 0.15789474)
10) m2[, -i].x1>=1.469563 31 2 FALSE (0.93548387 0.06451613) *
11) m2[, -i].x1< 1.469563 7 3 TRUE (0.42857143 0.57142857) *


3) m2[, -i].x2>=3.397467 7 3 FALSE (0.57142857 0.42857143) *


Here, we see that the fact that one of the first three variables is missing does not depend on
the value of the other variables; on the contrary, the fact that the last variable is missing
depends on the value of the other values. For the first variables, if we want to fill in the
missing values, we can use the mean or the median; for the last one, we can try to predict
it from the first variables.
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There is another R funtion to fit regression trees: “tree”. But it is only there for compatibility
reasons with S-Plus: you should prefer “rpart”.


9.14.3 Taxonomy of decision trees


The first algorithm to build decision trees was the ID3 algorithm, by Quinlan. It was
then extended to account for missing values, under the name C4.5. The program itself is a
commercial product, so you will not find it in R. However, if you want a free implementation
of the same ideas, you can look into their reimplementation by Weka (a Java machine learning
environment), christened J4.8.
http://www.cs.waikato.ac.nz/ml/weka/
TODO: URL about C4.5 and J4.8


The idea used by R is CART (in its commercial incarnation, so we cannot use that name)
or “recursive partitionning”.
The main differences between C4.5 and rpart are as follows.
Rpart trees are binary while C4.5 can be more general.
C4.5 used the “information gain” or the “informormation ratio” as a splitting criterion;
Rpart replaces the information by the Gini index.
Rpart pruning is based on cross-validation, which can be time-consuming but produces
smaller trees; C4.5 uses a simpler pruning algorithm.
C4.5 penalizes for missing values, Rpart does not; Rpart
The following document details those differences:
Decision tree discovery, Kohavi and Quinlan
http://ai.stanford.edu/~ronnyk/treesHB.pdf


9.14.4 Logistic regression


Usually, the regression tree gives the best results to assess missing values, bu you can try
other methods.
TODO: delete this section?


We should get the same result with a logistic regression, but this
is not the case. WHY?


for (i in 1:4) {
cat(paste("Coordinate number", i, "\n"))
print(summary(glm( is.na(m2[,i]) ~ m2[,-i], family=binomial )))


}


We can also look if the fact that a variable is missing depends on the fact that other variables
are missing., for instance with a logistic regression.
TODO: We could also use a Chi2 test.


m3 <- data.frame(m2)
summary(glm(is.na(x4) ~ is.na(x1) + is.na(x2) + is.na(x3), data=m3, family=binomial))


This yields:
Coefficients:


Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8926 0.3613 -5.239 1.62e-07 ***
is.na(x1)TRUE 0.8266 0.7473 1.106 0.269
is.na(x2)TRUE -0.2042 0.7146 -0.286 0.775
is.na(x3)TRUE 0.7278 0.8865 0.821 0.412


Here, the fact that x4 is missing does mot depend on the fact that the other variables are
missing. We could also check for more complicated relations, with interactions (yes, this
starts to look like a decision tree):
summary(glm(is.na(x4) ~ is.na(x1) * is.na(x2) * is.na(x3), data=m3, family=binomial))



http://www.cs.waikato.ac.nz/ml/weka/

http://ai.stanford.edu/~ronnyk/treesHB.pdf
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Same conclusion.
Lest us now try to predict the fact that a variable is missing from the value of the other
variables.
If we try directly,
r1 <- glm(is.na(x4) ~ x1+x2+x3, data=m3, family=binomial)
r2 <- glm(is.na(x4) ~ 1, data=m3, family=binomial)
anova(r1,r2)


it crashes, because to compute the first regression, ot starts to discard the subjects with
at least one missing value (so that is.na(x4) is always false: the “TRUE” cases have been
discarded...).
m4 <- m3[!is.na(apply(m3,1,sum)),]
r1 <- glm(is.na(x4) ~ x1+x2+x3, data=m4, family=binomial)
r2 <- glm(is.na(x4) ~ 1, data=m4, family=binomial)
anova(r1,r2)


TODO: interpret those results.
TODO: understand


9.14.5 naclus, naplot


The “naclus” and “naplot” allow you to see where the data are missing.
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op <- par(mfrow=c(2,2))
library(Design)
r <- naclus(data.frame(m2))
naplot(r)
par(op)
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op <- par(mfrow=c(2,2))
for(m in c("ward","complete","median")) {
plot(naclus(data.frame(m2), method=m))
title(m)


}
plot(naclus(data.frame(m2)))
title("Default")
par(op)


9.14.6 Discussion


Let us now show, on this example, that it is useful to take missing values into account.
Let us first perform a regression, without investigating the missing values.
> lm(x4~x1+x2+x3)


Call:
lm(formula = x4 ~ x1 + x2 + x3)


Coefficients:
(Intercept) x1 x2 x3


0.1332 0.9874 1.0112 1.0133


Now, we replace the missing values with the mean (or the median) (the values are biased
towards zero).
median.impute <- function (x) {
x[ is.na(x) ] <- median(x)
x


}
y1 <- median.impute(x1)
y2 <- median.impute(x2)
y3 <- median.impute(x3)
y4 <- median.impute(x4)


> lm(y4 ~ x1+x2+x3)
Call:
lm(formula = y4 ~ x1 + x2 + x3)


Coefficients:
(Intercept) x1 x2 x3


0.2205 0.9890 0.9876 0.9732


And now, with the “transcan” function.
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library(Hmisc)
op <- par(mfrow=c(2,2))
w <- transcan(~x1+x2+x3+x4, imputed=T, transformed=T, trantab=T, impcat=’tree’,


data=data.frame(x1,x2,x3,x4), pl=TRUE)
par(op)


y1 <- impute(w,x1)
y2 <- impute(w,x2)
y3 <- impute(w,x3)
y4 <- impute(w,x4)


This yields:
> lm(y4~y1+y2+y3)


Call:
lm(formula = y4 ~ y1 + y2 + y3)


Coefficients:
(Intercept) y1 y2 y3


-0.4539 1.1403 1.2540 1.1498


On this example, the values are too high, but this is not always the case.
TODO: compare those three methods (discard, median, transcan)


# The transcan function changed since I wrote this code...
remove.higher.values <- function (x) {
n <- length(x)
ifelse( rbinom(n,1, ((x-min(x))/(max(x)+1))^.3 )==1 , NA, x)


}


N <- 100
# Discrad
c1 <- matrix(NA, nr=N, nc=4)
# Transcan
c2 <- matrix(NA, nr=N, nc=4)
# Median
c3 <- matrix(NA, nr=N, nc=4)
n <- 100
v <- .1
for (i in 1:N) {
x1 <- rlnorm(n)
x2 <- rlnorm(n)
x3 <- rlnorm(n)
x4 <- x1 + x2 + x3 + v*rlnorm(n)
m1 <- cbind(x1,x2,x3,x4)
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x1 <- remove.higher.values(x1)
x2 <- ifelse(sample(c(T,F),n,replace=T), NA, x2)
x3 <- remove.higher.values(x3)
x4 <- remove.higher.values(x4)
m2 <- cbind(x1,x2,x3,x4)
d <- data.frame(x1,x2,x3,x4)
try( c1[i,] <- lm(x4~x1+x2+x3)$coefficients )
w <- NULL
try( w <- transcan(~x1+x2+x3+x4, imputed=T, transformed=T, impcat=’tree’,


data=d) )
if(!is.null(w)){
y1 <- impute(w,x1,data=d)
y2 <- impute(w,x2,data=d)
y3 <- impute(w,x3,data=d)
y4 <- impute(w,x4,data=d)
try( c2[i,] <- lm(y4~y1+y2+y3)$coefficients )


}
median.impute <- function (x) {
x[ is.na(x) ] <- median(x)
x


}
y1 <- median.impute(x1)
y2 <- median.impute(x2)
y3 <- median.impute(x3)
y4 <- median.impute(x4)
try( c3[i,] <- lm(y4~x1+x2+x3)$coefficients )


}
boxplot(c2 ~ col(c2), col=’pink’)
abline(h=c(0,1),lty=3)
%--


If you compare those values with those you would get by simply discarding the subjects with
at least one missing value, we wonder if imputation is that good an idea...
#%G
boxplot( cbind(c1,c3,c2) ~


cbind( 3*col(c1)-2, 3*col(c3)-1, 3*col(c2)),
border=c(par(’fg’), ’red’, ’blue’)[rep(c(1,2,3),4)],
ylim=c(-2,3)


)
abline(h=c(0,1),lty=3)
legend( par("usr")[1], par("usr")[3], yjust=0,


c("discard", "median", "transcan"),
lwd=1, lty=1,
col=c(par(’fg’),’red’, ’blue’) )


title(main="Handling missing values")
%--


TODO: provide a more convincing example
TODO: Try to explain why the results are that bad. Transcan does not assume that the
data are gaussian and first transforms them – here, they were already gaussian. But it
should not have a drastic effect.


9.14.7 Other functions


There are other functions to impute missing values:
TODO
?transace


TODO:
# The "most related" variables
plot(varclus(~x1+x2+x3))
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TODO: validate the imputations of the missing values (for instance, with bootstrap: one
you have chosen a model, evaluate it on a 90% of the data and validate it on the remaining
10%).


9.15 Outliers


TODO
You can handle them as the missing values.


TODO:
Explain how to spot them (graphically, looking at the variables one
at a time (boxplot, histogram, density, qqnorm), two at a timr
(pairs, PCA), looking at the residuals, etc.)
TODO: more details
TODO: other methods (clustering)


People can be tempted to test for the presence of outliers and remove them, automatically:
we shall see that there are better ways (“robust methods”) that this crude procedure.
TODO


9.16 TODO: TO SORT


See also “GAM” (Generalized Additive Models), later.


9.16.1 ACE (Alternating Conditionnal Expectation)


TODO: what is it?
Find g, f1, ..., fn to maximize R^2 of the model
g(Y) = f1(X1) + ... + fn(Xn)


What is the difference with GAM?
We also transfrom the variable to predict


library(acepack)
?ace


Example from the manual
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library(acepack)
TWOPI <- 8*atan(1)
x <- runif(200,0,TWOPI)
y <- exp(sin(x)+rnorm(200)/2)
a <- ace(x,y)
op <- par(mfrow=c(3,1))
plot(a$y,a$ty) # view the response transformation
plot(a$x,a$tx) # view the carrier transformation
plot(a$tx,a$ty) # examine the linearity of the fitted model
par(op)


9.16.2 AVAS (Additivity and Variance Selection)


TODO
Similar to ACE.


library(acepack)
?avas
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library(acepack)
TWOPI <- 8*atan(1)
x <- runif(200,0,TWOPI)
y <- exp(sin(x)+rnorm(200)/2)
a <- avas(x,y)
op <- par(mfrow=c(3,1))
plot(a$y,a$ty) # view the response transformation
plot(a$x,a$tx) # view the carrier transformation
plot(a$tx,a$ty) # examine the linearity of the fitted model
par(op)


9.17 Example


TODO:
Complete this example.
Provide the data as a file.
Add missing data and outliers.
Add a test sample.
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In the model, suggest and compare several methods (with bootstrap).


In particular:
regression with and without transformation of the data
handling of missing data: discard the observations


mean
median


Linear regression, splines, svm, etc.


9.18 Example


Consider the following data
y x1 x2 x3 x4 x5


1 0.17737252 0.255593371 -0.01877868 55.041698 1.06486649 1.601552
2 0.12867410 0.960419271 -0.19436940 1.198466 1.29289552 1.746549
3 0.13069250 0.863139268 -1.75373604 1.235540 1.62006050 1.474043
4 0.24660910 0.545280691 0.77253952 1.729689 -0.96193294 1.819215
5 0.06068440 0.678051326 -0.52889122 6.262365 2.02333474 2.784879
6 0.01562173 0.751754458 -1.15476842 1.525834 3.45646388 1.621467
7 0.12855980 0.440126896 0.48876004 3.591808 0.93048007 2.760134
8 0.01311403 0.387135598 -1.14240969 2.416364 3.60703700 1.664418
9 0.12805800 0.084511305 -1.35014687 5.811351 1.44654008 2.129711
10 0.07289424 0.216225055 1.94773238 1.629576 1.66476647 1.243259
11 0.20015592 0.375460150 -0.10764990 33.271750 0.60030701 2.554126
12 0.00967752 0.420041527 -0.69493709 15.786367 3.91269188 2.943540
13 0.18532207 0.252310834 -0.16696766 1.652677 1.09072717 1.570431
14 0.14099584 0.666372093 0.76253962 1.060118 0.34173217 1.363799
15 0.07331360 0.048310076 0.04428767 1.743556 1.92284974 1.517609
16 0.39708878 0.323382935 0.95223442 2.270229 -0.41723736 1.550922
17 0.12408025 0.044613951 0.41033758 3.831911 1.31146354 1.636827
18 0.12769826 0.053085268 0.59687579 1.908977 1.10201039 1.550858
19 0.20857330 0.972532847 -0.90311733 1.290658 1.26966839 1.447662
20 0.15594300 0.081915355 -1.15742730 1.405443 1.05322479 2.940306
21 0.37840463 0.649070143 -0.35228245 1.917989 0.36974761 1.356612
22 0.66522777 0.260343743 -2.47825418 4.795896 0.54582777 1.162321
23 0.63918773 0.513310948 -0.14159619 1.332781 -0.26621952 2.991911
24 0.11260928 0.543954646 1.06146044 6.681447 1.07751157 2.989188
25 0.09960026 0.403813454 0.55095958 7.279781 1.50800580 1.611078
26 -0.61535539 0.706742991 -1.20051134 7.564472 -0.56472250 2.157740
27 0.24971773 0.748126270 -0.26498237 1.117801 0.73077297 2.904779
28 0.06268585 0.764109087 -2.05296785 1.218234 2.24522236 2.527298
29 0.22153778 0.402428063 1.43230181 2.624402 -0.52847371 2.189166
30 0.21088420 0.497645303 1.47542866 1.518825 -0.19523074 1.472104
31 0.13608028 0.291170579 -1.46970914 1.516058 1.34040053 1.863857
32 0.75431108 0.478386517 0.31657036 1.225444 -0.58215047 2.218527
33 0.05093748 0.331470089 -0.07112817 1.007887 2.24270617 2.430400
34 0.04495159 0.261359577 1.14768074 13.174180 2.27230911 1.753251
35 0.19566843 0.129011235 0.32604949 2.475796 0.66536288 2.146549
36 0.46863291 0.067206315 0.86525243 1.208705 -0.62951123 2.062168
37 -1.74756315 0.378743229 -1.25873494 1.179726 -0.85146758 2.799012
38 0.04493936 0.617941440 0.10186404 1.103134 2.36010564 1.245357
39 0.08532079 0.659343313 1.47558024 1.515066 1.19388336 1.649593
40 0.10020669 0.203460848 -0.44762778 3.175103 1.38946612 2.967908
41 -16.03253190 0.110310319 0.01567256 2.266611 -0.26535524 2.495451
42 0.14614080 0.009384898 -0.22534736 15.678337 1.06682652 2.379440
43 0.16193855 0.985065327 0.28556123 5.103220 0.16327102 1.808208
44 0.04025704 0.749261997 0.65743242 4.235644 2.39118753 2.013844
45 -0.49303230 0.664672238 -1.42673466 1.111907 -0.73723968 1.532473
46 0.15835584 0.149211494 -0.23719301 3.172205 0.86034783 2.481339
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47 0.27790539 0.165996711 0.64921865 3.399877 -0.06153391 2.339315
48 0.12971347 0.387604755 0.38543904 4.045104 1.05940996 2.211520
49 0.04955036 0.417031078 0.43766860 5.399120 2.17897848 2.339830
50 0.41876667 0.131038313 0.48986874 4.725115 0.33483485 1.238809


and try to predict y from x1, x2, x3, x4, x5


9.18.1 Let us first look at the variables one at a time
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m <- read.table("faraway")
op <- par(mfrow=(c(6,1)))
for (i in 1:6) {
boxplot(m[,i], horizontal=T, main=names(m)[i])


}
par(op)
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Histogram of m[, i]
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m <- read.table("faraway")
op <- par(mfrow=(c(3,2)))
for (i in 1:6) {
hist(m[,i], col=’light blue’, probability=T, xlab=names(m)[i])
lines(density(m[,i]), col=’red’, lwd=2)


}
par(op)
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m <- read.table("faraway")
op <- par(mfrow=(c(3,2)))
for (i in 1:6) {
qqnorm(m[,i], main=names(m)[i])
qqline(m[,i], col=’red’)


}
par(op)


The variables y and x3 have to be transformed
TODO: find the transformation
TODO: redraw the plots for Y and X3
TODO: Are there still outliers? Remove them
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9.18.2 TODO: go on...


9.18.3 Source


This example comes from Faraway’s book, who says he gave it it to his students who provides
wildly differing results. The model is the following:
faraway.sample <- function (n=50) {
n <- 50
x1 <- runif(n)
x2 <- rnorm(n)
x3 <- 1/runif(n)
x4 <- rnorm(n,1,1)
x5 <- runif(n,1,3)
e <- rnorm(n)
y <- 1/(x1+.57*x1^2+4*x1*x2+2.1*exp(x4)+e)
data.frame(y,x1,x2,x3,x4,x5)


}


9.18.4 Validation


TODO: check the quality of my forecasts
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Other regressions


TODO: Introduction


10.1 Polynomials: curvilinear regression


Let us go back to our car stoping distance example: the recollections you may have from
physics courses suggest that the distance could linearly depend on the square of the speed
– in other words, that it be a degree-2 polynomial in the speed.
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y <- cars$dist
x <- cars$speed
o = order(x)
plot( y~x )
do.it <- function (model, col) {
r <- lm( model )
yp <- predict(r)
lines( yp[o] ~ x[o], col=col, lwd=3 )


}
do.it(y~x, col="red")
do.it(y~x+I(x^2), col="blue")
do.it(y~-1+I(x^2), col="green")
legend(par("usr")[1], par("usr")[4],


c("affine function", "degree-2 polynomial", "degree 2 monomial"),
lwd=3,
col=c("red", "blue", "green"),


)


When you define a model with such a formula, the ”ˆ” character has a precise meaning; for
instance, (a+b+c)ˆ2 means a+b+c+a:b+a:c+b:c. If you add I(...), it is not interpreted and
remains a square. Likewise, the ”+” and ”*” characters have a meaning of their own.
If you want to get rid of the intercept (it is usually a bad idea: it can encompass the effect
of potentially missing variables (variables that influence the result but that have not been
measured)), you can add ”-1” to the formula.
We gave an example with monomials, but any function will do.
n <- 100
x <- runif(n,min=-4,max=4) + sign(x)*.2
y <- 1/x + rnorm(n)
plot(y~x)
lm( 1/y ~ x )


n <- 100
x <- rlnorm(n)^3.14
y <- x^-.1 * rlnorm(n)
plot(y~x)


679







CHAPTER 10. OTHER REGRESSIONS 680


lm(log(y) ~ log(x))


Actually, this is equivalent to transforming the variables.


10.1.1 Orthogonal polynomials


To perform a polynomial regression, you can proceed progressively, adding the terms one by
one.
y <- cars$dist
x <- cars$speed
summary( lm(y~x) )
summary( lm(y~x+I(x^2)) )
summary( lm(y~x+I(x^2)+I(x^3)) )
summary( lm(y~x+I(x^2)+I(x^3)+I(x^4)) )
summary( lm(y~x+I(x^2)+I(x^3)+I(x^4)+I(x^5)) )


Here are a few chunks of the result.
lm(formula = y ~ x)


Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
x 3.9324 0.4155 9.464 1.49e-12 ***


lm(formula = y ~ x + I(x^2))
Estimate Std. Error t value Pr(>|t|)


(Intercept) 2.47014 14.81716 0.167 0.868
x 0.91329 2.03422 0.449 0.656
I(x^2) 0.09996 0.06597 1.515 0.136


lm(formula = y ~ x + I(x^2) + I(x^3))
Estimate Std. Error t value Pr(>|t|)


(Intercept) -19.50505 28.40530 -0.687 0.496
x 6.80111 6.80113 1.000 0.323
I(x^2) -0.34966 0.49988 -0.699 0.488
I(x^3) 0.01025 0.01130 0.907 0.369


lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.845412 60.849115 0.753 0.455
x -18.962244 22.296088 -0.850 0.400
I(x^2) 2.892190 2.719103 1.064 0.293
I(x^3) -0.151951 0.134225 -1.132 0.264
I(x^4) 0.002799 0.002308 1.213 0.232


lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.650e+00 1.401e+02 -0.019 0.985
x 5.484e+00 6.736e+01 0.081 0.935
I(x^2) -1.426e+00 1.155e+01 -0.124 0.902
I(x^3) 1.940e-01 9.087e-01 0.214 0.832
I(x^4) -1.004e-02 3.342e-02 -0.300 0.765
I(x^5) 1.790e-04 4.648e-04 0.385 0.702


You can use the results in both directions: either you start with a simple model and you
terms intil their effect becomes non-significant, or you start with a complicated model and
remove the terms until the highest-degree monomial has a significant effect.
In this example, in both cases, we get a linear model (but we know, from the physics that
rule the phenomenon, that is is a degree-2 polynomial).
However, the coefficients that are significantly non-zero at the begining are no longer so at
the end. Even worse, at the end, there is no significant term and the p-value of the terms
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we want to keep is the highest!
Hopefully, we can alter this procedure so that the coefficients do not influence each other by
choosing a basis other that 1, x, xˆ2, xˆ3, etc. – an orthonormal basis.
y <- cars$dist
x <- cars$speed
summary( lm(y~poly(x,1)) )
summary( lm(y~poly(x,2)) )
summary( lm(y~poly(x,3)) )
summary( lm(y~poly(x,4)) )
summary( lm(y~poly(x,5)) )


The results are clearer: the p-values hardly change.
lm(formula = y ~ poly(x, 1))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.980 2.175 19.761 < 2e-16 ***
poly(x, 1) 145.552 15.380 9.464 1.49e-12 ***


lm(formula = y ~ poly(x, 2))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.980 2.146 20.026 < 2e-16 ***
poly(x, 2)1 145.552 15.176 9.591 1.21e-12 ***
poly(x, 2)2 22.996 15.176 1.515 0.136


lm(formula = y ~ poly(x, 3))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.98 2.15 19.988 < 2e-16 ***
poly(x, 3)1 145.55 15.21 9.573 1.6e-12 ***
poly(x, 3)2 23.00 15.21 1.512 0.137
poly(x, 3)3 13.80 15.21 0.907 0.369


lm(formula = y ~ poly(x, 4))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.980 2.139 20.090 < 2e-16 ***
poly(x, 4)1 145.552 15.127 9.622 1.72e-12 ***
poly(x, 4)2 22.996 15.127 1.520 0.135
poly(x, 4)3 13.797 15.127 0.912 0.367
poly(x, 4)4 18.345 15.127 1.213 0.232


lm(formula = y ~ poly(x, 5))
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.980 2.160 19.899 < 2e-16 ***
poly(x, 5)1 145.552 15.273 9.530 2.88e-12 ***
poly(x, 5)2 22.996 15.273 1.506 0.139
poly(x, 5)3 13.797 15.273 0.903 0.371
poly(x, 5)4 18.345 15.273 1.201 0.236
poly(x, 5)5 5.881 15.273 0.385 0.702


We can plot the evolution of those p-values.
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Evolution of the p−values (orthonormal polynomials)
n <- 5
p <- matrix( nrow=n, ncol=n+1 )
for (i in 1:n) {
p[i,1:(i+1)] <- summary(lm( y ~ poly(x,i) ))$coefficients[,4]


}
matplot(p, type=’l’, lty=1, lwd=3)
legend( par("usr")[1], par("usr")[4],


as.character(1:n),
lwd=3, lty=1, col=1:n


)
title(main="Evolution of the p-values (orthonormal polynomials)")
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Evolution of the p−values (non orthonormal polynomials)
p <- matrix( nrow=n, ncol=n+1 )
p[1,1:2] <- summary(lm(y ~ x) )$coefficients[,4]
p[2,1:3] <- summary(lm(y ~ x+I(x^2)) )$coefficients[,4]
p[3,1:4] <- summary(lm(y ~ x+I(x^2)+I(x^3)) )$coefficients[,4]
p[4,1:5] <- summary(lm(y ~ x+I(x^2)+I(x^3)+I(x^4)) )$coefficients[,4]
p[5,1:6] <- summary(lm(y ~ x+I(x^2)+I(x^3)+I(x^4)+I(x^5)) )$coefficients[,4]
matplot(p, type=’l’, lty=1, lwd=3)
legend( par("usr")[1], par("usr")[4],


as.character(1:n),
lwd=3, lty=1, col=1:n


)
title(main="Evolution of the p-values (non orthonormal polynomials)")


You can build this polynomial basis yourself, by hand, by starting with the family (1,x,xˆ2,...)
and by orthonormalizing it (here, you should not see it as a polynomial, but as the predictive
variable: it is a vector of dimension n; xˆ2 is the vector obtained by squaring its components;
the family 1,x,xˆ2,... is a family of vectors in Rˆn, which we orthonormalize).
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Idem, orthonormalisation by hand
# The matrix
n <- 5
m <- matrix( ncol=n+1, nrow=length(x) )
for (i in 2:(n+1)) {
m[,i] <- x^(i-1)


}
m[,1] <- 1
# Orthonormalization (Gram--Schmidt)
for (i in 1:(n+1)) {
if(i==1) m[,1] <- m[,1] / sqrt( t(m[,1]) %*% m[,1] )
else {
for (j in 1:(i-1)) {
m[,i] <- m[,i] - (t(m[,i]) %*% m[,j])*m[,j]


}
m[,i] <- m[,i] / sqrt( t(m[,i]) %*% m[,i] )


}
}
p <- matrix( nrow=n, ncol=n+1 )


p[1,1:2] <- summary(lm(y~ -1 +m[,1:2] ))$coefficients[,4]
p[2,1:3] <- summary(lm(y~ -1 +m[,1:3] ))$coefficients[,4]
p[3,1:4] <- summary(lm(y~ -1 +m[,1:4] ))$coefficients[,4]
p[4,1:5] <- summary(lm(y~ -1 +m[,1:5] ))$coefficients[,4]
p[5,1:6] <- summary(lm(y~ -1 +m[,1:6] ))$coefficients[,4]
matplot(p, type=’l’, lty=1, lwd=3)
legend( par("usr")[1], par("usr")[4],


as.character(1:n),
lwd=3, lty=1, col=1:n


)
title(main="Idem, orthonormalisation by hand")


Actually, we are tackling the multilinearity problem (we will mention it agian shortly, with
1,x1,x2,x3... instead of 1,x,xˆ2,xˆ3...): by orthonormalizing the variables, we get rid of it.
Other example.
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library(ts)
data(beavers)
y <- beaver1$temp
x <- 1:length(y)
plot(y~x)
for (i in 1:10) {
r <- lm( y ~ poly(x,i) )
lines( predict(r), type="l", col=i )


}
summary(r)


We get
> summary(r)


Estimate Std. Error t value Pr(>|t|)
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(Intercept) 36.86219 0.01175 3136.242 < 2e-16 ***
poly(x, i)1 0.86281 0.12549 6.875 4.89e-10 ***
poly(x, i)2 -0.73767 0.12549 -5.878 5.16e-08 ***
poly(x, i)3 -0.09652 0.12549 -0.769 0.44360
poly(x, i)4 -0.20405 0.12549 -1.626 0.10700
poly(x, i)5 1.00687 0.12549 8.023 1.73e-12 ***
poly(x, i)6 0.07253 0.12549 0.578 0.56457
poly(x, i)7 0.19180 0.12549 1.528 0.12950
poly(x, i)8 0.06011 0.12549 0.479 0.63294
poly(x, i)9 -0.22394 0.12549 -1.784 0.07730 .
poly(x, i)10 -0.39531 0.12549 -3.150 0.00214 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.1255 on 103 degrees of freedom
Multiple R-Squared: 0.6163, Adjusted R-squared: 0.579
F-statistic: 16.54 on 10 and 103 DF, p-value: < 2.2e-16


Note, however, that not all relations are polynomial. (The following example is not realistic:
when facing it you would first try to transform the data so that ot looks normal, and that
would also solve the non-linearity problem).
> n <- 100; x <- rnorm(n); y <- exp(x); summary(lm(y~poly(x,20)))


Call:
lm(formula = y ~ poly(x, 20))


Residuals:
Min 1Q Median 3Q Max


-4.803e-16 -9.921e-17 -3.675e-19 4.924e-17 1.395e-15


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 1.562e+00 2.250e-17 6.943e+16 < 2e-16 ***
poly(x, 20)1 1.681e+01 2.250e-16 7.474e+16 < 2e-16 ***
poly(x, 20)2 1.174e+01 2.250e-16 5.219e+16 < 2e-16 ***
poly(x, 20)3 5.491e+00 2.250e-16 2.441e+16 < 2e-16 ***
poly(x, 20)4 1.692e+00 2.250e-16 7.522e+15 < 2e-16 ***
poly(x, 20)5 4.128e-01 2.250e-16 1.835e+15 < 2e-16 ***
poly(x, 20)6 8.163e-02 2.250e-16 3.628e+14 < 2e-16 ***
poly(x, 20)7 1.495e-02 2.250e-16 6.645e+13 < 2e-16 ***
poly(x, 20)8 2.499e-03 2.250e-16 1.111e+13 < 2e-16 ***
poly(x, 20)9 3.358e-04 2.250e-16 1.493e+12 < 2e-16 ***
poly(x, 20)10 3.825e-05 2.250e-16 1.700e+11 < 2e-16 ***
poly(x, 20)11 3.934e-06 2.250e-16 1.749e+10 < 2e-16 ***
poly(x, 20)12 3.454e-07 2.250e-16 1.536e+09 < 2e-16 ***
poly(x, 20)13 2.893e-08 2.250e-16 1.286e+08 < 2e-16 ***
poly(x, 20)14 2.235e-09 2.250e-16 9.933e+06 < 2e-16 ***
poly(x, 20)15 1.524e-10 2.250e-16 6.773e+05 < 2e-16 ***
poly(x, 20)16 1.098e-11 2.250e-16 4.883e+04 < 2e-16 ***
poly(x, 20)17 6.431e-13 2.250e-16 2.858e+03 < 2e-16 ***
poly(x, 20)18 3.628e-14 2.250e-16 1.613e+02 < 2e-16 ***
poly(x, 20)19 1.700e-15 2.250e-16 7.558e+00 6.3e-11 ***
poly(x, 20)20 5.790e-16 2.250e-16 2.574e+00 0.0119 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 2.25e-16 on 79 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 1
F-statistic: 4.483e+32 on 20 and 79 DF, p-value: < 2.2e-16
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Non−polynomial relation
n <- 100
x <- rnorm(n)
y <- exp(x)
plot(y~x)
title(main="Non-polynomial relation")


If you add some noise:
> n <- 100; x <- rnorm(n); y <- exp(x) + .1*rnorm(n); summary(lm(y~poly(x,20)))


Call:
lm(formula = y ~ poly(x, 20))


Residuals:
Min 1Q Median 3Q Max


-2.059e-01 -5.577e-02 -4.859e-05 5.322e-02 3.271e-01


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 1.617035 0.010222 158.185 <2e-16 ***
poly(x, 20)1 15.802708 0.102224 154.588 <2e-16 ***
poly(x, 20)2 11.282604 0.102224 110.371 <2e-16 ***
poly(x, 20)3 4.688413 0.102224 45.864 <2e-16 ***
poly(x, 20)4 1.433877 0.102224 14.027 <2e-16 ***
poly(x, 20)5 0.241665 0.102224 2.364 0.0205 *
poly(x, 20)6 -0.009086 0.102224 -0.089 0.9294
poly(x, 20)7 -0.097021 0.102224 -0.949 0.3455
poly(x, 20)8 0.133978 0.102224 1.311 0.1938
poly(x, 20)9 0.077034 0.102224 0.754 0.4533
poly(x, 20)10 0.200996 0.102224 1.966 0.0528 .
poly(x, 20)11 -0.168632 0.102224 -1.650 0.1030
poly(x, 20)12 0.161890 0.102224 1.584 0.1173
poly(x, 20)13 -0.049974 0.102224 -0.489 0.6263
poly(x, 20)14 0.090020 0.102224 0.881 0.3812
poly(x, 20)15 -0.228817 0.102224 -2.238 0.0280 *
poly(x, 20)16 -0.005180 0.102224 -0.051 0.9597
poly(x, 20)17 -0.015934 0.102224 -0.156 0.8765
poly(x, 20)18 0.053635 0.102224 0.525 0.6013
poly(x, 20)19 0.059976 0.102224 0.587 0.5591
poly(x, 20)20 0.226613 0.102224 2.217 0.0295 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.1022 on 79 degrees of freedom
Multiple R-Squared: 0.9979, Adjusted R-squared: 0.9974
F-statistic: 1920 on 20 and 79 DF, p-value: < 2.2e-16
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Non−polynomial relation
n <- 100
x <- rnorm(n)
y <- exp(x) + .1*rnorm(n)
plot(y~x)
title(main="Non-polynomial relation")


10.1.2 Splines


The broken line regression is local (what happens for a given value of X does not depend on
what happens for very different values of X), but not smooth. On the contrary, polynomial
regression is smooth but not local. Spline regression provides a local and smooth regression.
Splines should be used (at least) when looking for a model: they allow you to see, graphically,
if a non-linear model is a good idea and, if not, gives some insight on the shape of that model.
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library(modreg)
plot(cars$speed, cars$dist)
lines( smooth.spline(cars$speed, cars$dist), col=’red’)
abline(lm(dist~speed,data=cars), col=’blue’, lty=2)
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plot(quakes$long, quakes$lat)
lines( smooth.spline(quakes$long, quakes$lat), col=’red’, lwd=3)


There are several kinds of splines: cubic splines (of class Cˆ2, obtained by glueing degree-3
polynomials), that we have just used, or restricted cubic splines (idem but the polynomials
at both end of the interval are affine – otherwise, extrapolating outside the interval would
not yield reliable results), obtained by the “rcs” function in the “Design” package.
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Regression with rcs


4 knots
10 knots


library(Design)
# 4-node spline
r3 <- lm( quakes$lat ~ rcs(quakes$long) )
plot( quakes$lat ~ quakes$long )
o <- order(quakes$long)
lines( quakes$long[o], predict(r)[o], col=’red’, lwd=3 )
r <- lm( quakes$lat ~ rcs(quakes$long,10) )
lines( quakes$long[o], predict(r)[o], col=’blue’, lwd=6, lty=3 )
title(main="Regression with rcs")
legend( par("usr")[1], par("usr")[3], yjust=0,


c("4 knots", "10 knots"),
lwd=c(3,3), lty=c(1,3), col=c("red", "blue") )


There are also a few functions in the “splines” package: “bs” for splines and “ns” for
restricted splines.
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x


y


library(splines)
data(quakes)
x <- quakes[,2]
y <- quakes[,1]
o <- order(x)
x <- x[o]
y <- y[o]
r1 <- lm( y ~ bs(x,df=10) )
r2 <- lm( y ~ ns(x,df=6) )
plot(y~x)
lines(predict(r1)~x, col=’red’, lwd=3)
lines(predict(r2)~x, col=’green’, lwd=3)


TODO
?SafePrediction
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# The manual asks us to be cautious with predictions
# for ither values of x: I do not see any problem.
plot(y~x)
xp <- seq(min(x), max(x), length=200)
lines(predict(r2) ~ x, col=’green’, lwd=3)
lines(xp, predict(r2,data.frame(x=xp)), col=’blue’, lwd=7, lty=3)


10.1.3 Regression in other bases


TODO: wavelets


10.1.4 Regression in other bases


The data can suggest a regression in a certain basis. Thus, in higher dimensions, you can
try to write Y as a sum of gaussians: you will use various heuristics to find the number, the
center and the variance of those gaussians (this is not linear at all), then, you would use
least squares to find the coefficients.
TODO: example
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10.2 Non linear regression


You can also consider really non-linear models (the preceding polynomial regressions were
linear: the polynomials were considered as a linear combination of monomials – in the end,
it was always a linear regression). You should only use them with a valid reason, e.g., a
well-established physical model of the phenomenon – this is often the case in chemistry –
more generally, when you know that there should be asymptotes somewhere.
Here are a few examples.
Expenential growth or decrease, Y = a eˆ(bX) + noise


−2 −1 0 1 2


0
2


4
6


x


y


Expenential growth
n <- 100
x <- seq(-2,2,length=n)
y <- exp(x)
plot(y~x, type=’l’, lwd=3)
title(main=’Expenential growth’)


−2 −1 0 1 2


0
2


4
6


x


y


Exponential Decrease
x <- seq(-2,2,length=n)
y <- exp(-x)
plot(y~x, type=’l’, lwd=3)
title(main=’Exponential Decrease’)


Negative exponential, Y = a(1-eˆ(bX)) + noise
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−2 −1 0 1 2 3 4
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y


Negative Exponential
x <- seq(-2,4,length=n)
y <- 1-exp(-x)
plot(y~x, type=’l’, lwd=3)
title(main=’Negative Exponential’)


Double exponential, Y = u/(u-v) * (eˆ(-vX) - eˆ(-uX)) + noise
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Double Exponential
x <- seq(0,5,length=n)
u <- 1
v <- 2
y <- u/(u-v) * (exp(-v*x) - exp(-u*x))
plot(y~x, type=’l’, lwd=3)
title(main=’Double Exponential’)


Sigmoid growth (“sigmoid” means “S-shaped”), Y = a/( 1+ceˆ(-bX) ) + noise
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Sigmoid Growth
x <- seq(-5,5,length=n)
y <- 1/(1+exp(-x))
plot(y~x, type=’l’, lwd=3)
title(main=’Sigmoid Growth’)


Less symetric sigmoid, Y = a exp( -ceˆ(-bX) ) + noise
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Less Symetric Sigmoid
x <- seq(-2,5,length=n)
y <- exp(-exp(-x))
plot(y~x, type=’l’, lwd=3)
title(main=’Less Symetric Sigmoid’)


To perform those regressions, you can still use the Least Squares (LS) method, but you get
a non-linear system: you can solve it with numeric methods, such as the Newton-Raphson.
library(help=nls)
library(nls)
?nls


You define an f(x,p) function, where x is the variable and p a vector containing the param-
eters. You will use it as f(x,c(a,b,c)). You HAVE to provide initial estimates (guesses) of
the paramters. They need not be too precise, but they should not be too far away from
minimum of the function to minimize: otherwise, the algorithm could diverge, take a long
time to converge, or (more likely) converge to a local minimum...
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library(nls)
f <- function (x,p) {
u <- p[1]
v <- p[2]
u/(u-v) * (exp(-v*x) - exp(-u*x))


}
n <- 100
x <- runif(n,0,2)
y <- f(x, c(3.14,2.71)) + .1*rnorm(n)
r <- nls( y ~ f(x,c(a,b)), start=c(a=3, b=2.5) )
plot(y~x)
xx <- seq(0,2,length=200)
lines(xx, f(xx,r$m$getAllPars()), col=’red’, lwd=3)
lines(xx, f(xx,c(3.14,2.71)), lty=2)


Here is the result.
> summary(r)
Formula: y ~ f(x, c(a, b))


Parameters:
Estimate Std. Error t value Pr(>|t|)


a 3.0477 0.3358 9.075 1.23e-14 ***
b 2.6177 0.1459 17.944 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.1059 on 98 degrees of freedom


Correlation of Parameter Estimates:
a


b -0.06946


You can plot the confidence intervals.


2.0 2.2 2.4 2.6 2.8 3.0


0.
0


0.
5


1.
0


1.
5


2.
0


ττ


2.4 2.5 2.6 2.7 2.8 2.9 3.0


0.
0


0.
5


1.
0


1.
5


2.
0


ττ


2.0 2.2 2.4 2.6 2.8 3.0


−
2


−
1


0
1


2


ττ


2.4 2.5 2.6 2.7 2.8 2.9 3.0


−
2


−
1


0
1


2


ττ


op <- par(mfrow=c(2,2))
p <- profile(r)
plot(p, conf = c(95, 90, 80, 50)/100)
plot(p, conf = c(95, 90, 80, 50)/100, absVal = FALSE)
par(op)
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There are a few predefined non-linear models. For some of the, R can find good starting
values for the parameters.
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biexponential
rm(r)
while(!exists("r")) {
x <- runif(n,0,2)
y <- SSbiexp(x,1,1,-1,2) + .01*rnorm(n)
try( r <- nls(y ~ SSbiexp(x,a,u,b,v)) )


}
plot(y~x)
xx <- seq(0,2,length=200)
lines(xx, SSbiexp(xx,


r$m$getAllPars()[1],
r$m$getAllPars()[2],
r$m$getAllPars()[3],
r$m$getAllPars()[4]
), col=’red’, lwd=3)


title(main=’biexponential’)
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op <- par(mfrow=c(2,2))
try(plot(profile(r)))
par(op)







CHAPTER 10. OTHER REGRESSIONS 694


●


●


●
●


●


●


●


●


●


●


●
●


●
●


●


●● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


−4 −2 0 2 4


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


1.
2


x


y


logistic
rm(r)
while(!exists("r")) {
x <- runif(n,-5,5)
y <- SSlogis(x,1,0,1) + .1*rnorm(n)
try( r <- nls(y ~ SSlogis(x,a,m,s)) )


}
plot(y~x)
xx <- seq(-5,5,length=200)
lines(xx, SSlogis(xx,


r$m$getAllPars()[1],
r$m$getAllPars()[2],
r$m$getAllPars()[3]
), col=’red’, lwd=3)


title(main=’logistic’)
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4−parameter logistic model
rm(r)
while(!exists("r")) {
x <- runif(n,-5,5)
y <- SSfpl(x,-1,1,0,1) + .1*rnorm(n)
try( r <- nls(y ~ SSfpl(x,a,b,m,s)) )


}
plot(y~x)
xx <- seq(-5,5,length=200)
lines(xx, SSfpl(xx,


r$m$getAllPars()[1],
r$m$getAllPars()[2],
r$m$getAllPars()[3],
r$m$getAllPars()[4]
), col=’red’, lwd=3)


title(main=’4-parameter logistic model’)
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Michaelis−Menten
rm(r)
while(!exists("r")) {
x <- runif(n,-5,5)
y <- SSmicmen(x,1,1) + .01*rnorm(n)
try( r <- nls(y ~ SSmicmen(x,m,h)) )


}
plot(y~x, ylim=c(-5,5))
xx <- seq(-5,5,length=200)
lines(xx, SSmicmen(xx,


r$m$getAllPars()[1],
r$m$getAllPars()[2]
), col=’red’, lwd=3)


title(main=’Michaelis-Menten’)
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Michaelis−Menten
rm(r)
while(!exists("r")) {
x <- runif(n,0,5)
y <- SSmicmen(x,1,1) + .1*rnorm(n)
try( r <- nls(y ~ SSmicmen(x,m,h)) )


}
plot(y~x)
xx <- seq(0,5,length=200)
lines(xx, SSmicmen(xx,


r$m$getAllPars()[1],
r$m$getAllPars()[2]
), col=’red’, lwd=3)


title(main=’Michaelis-Menten’)
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SSfol
rm(r)
while(!exists("r")) {
x <- runif(n,0,1)
y <- SSfol(1,x,1,2,1) + .1*rnorm(n)
try( r <- nls(y ~ SSfol(1,x,a,b,c)) )


}
plot(y~x)
xx <- seq(0,1,length=200)
lines(xx, SSfol(1,


xx,
r$m$getAllPars()[1],
r$m$getAllPars()[2],
r$m$getAllPars()[3]


), col=’red’, lwd=3)
title(main=’SSfol’)
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SSasymp
rm(r)
while(!exists("r")) {
x <- runif(n,0,2)
y <- SSasymp(x,1,.5,1) + .1*rnorm(n)
try( r <- nls(y ~ SSasymp(x,a,b,c)) )


}
plot(y~x, xlim=c(-.5,2),ylim=c(0,1.3))
xx <- seq(-1,2,length=200)
lines(xx, SSasymp(xx,


r$m$getAllPars()[1],
r$m$getAllPars()[2],
r$m$getAllPars()[3]
), col=’red’, lwd=3)


title(main=’SSasymp’)
# See also SSasympOff et SSasympOrig


The manual explains how to interpret those parameters.
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Parameters in the SSasymp model


x


y


φφ1


φφ2


t0.5


# Copied from the manual
xx <- seq(0, 5, len = 101)
yy <- 5 - 4 * exp(-xx/(2*log(2)))
par(mar = c(0, 0, 4.1, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),


xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSasymp model")


usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text(-0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 2, lwd = 0)
arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
segments(-0.4, 1, 0, 1, lty = 2, lwd = 0.75)
arrows(-0.3, 0.25, -0.3, 0, length = 0.07, angle = 25)


arrows(-0.3, 0.75, -0.3, 1, length = 0.07, angle = 25)
text(-0.3, 0.5, expression(phi[2]), adj = c(0.5, 0.5))
segments(1, 3.025, 1, 4, lty = 2, lwd = 0.75)
arrows(0.2, 3.5, 0, 3.5, length = 0.08, angle = 25)
arrows(0.8, 3.5, 1, 3.5, length = 0.08, angle = 25)
text(0.5, 3.5, expression(t[0.5]), adj = c(0.5, 0.5))


Parameters in the SSasympOff model


x


y


φφ1


φφ3


t0.5


# Copied from the manual
xx <- seq(0.5, 5, len = 101)
yy <- 5 * (1 - exp(-(xx - 0.5)/(2*log(2))))
par(mar = c(0, 0, 4.0, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),


xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSasympOff model")


usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text(-0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 2, lwd = 0)
arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
segments(0.5, 0, 0.5, 3, lty = 2, lwd = 0.75)
text(0.5, 3.1, expression(phi[3]), adj = c(0.5, 0))


segments(1.5, 2.525, 1.5, 3, lty = 2, lwd = 0.75)
arrows(0.7, 2.65, 0.5, 2.65, length = 0.08, angle = 25)
arrows(1.3, 2.65, 1.5, 2.65, length = 0.08, angle = 25)
text(1.0, 2.65, expression(t[0.5]), adj = c(0.5, 0.5))
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Parameters in the SSasympOrig model


x


y


φφ1


t0.5


# Copied from the manual
xx <- seq(0, 5, len = 101)
yy <- 5 * (1- exp(-xx/(2*log(2))))
par(mar = c(0, 0, 3.5, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),


xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSasympOrig model")


usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text(-0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 2, lwd = 0)
arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
segments(1, 2.525, 1, 3.5, lty = 2, lwd = 0.75)
arrows(0.2, 3.0, 0, 3.0, length = 0.08, angle = 25)


arrows(0.8, 3.0, 1, 3.0, length = 0.08, angle = 25)
text(0.5, 3.0, expression(t[0.5]), adj = c(0.5, 0.5))


Parameters in the SSfpl model


x


y


φφ1


φφ2


φφ3


φφ4


# Copied from the manual
xx <- seq(-0.5, 5, len = 101)
yy <- 1 + 4 / ( 1 + exp((2-xx)))
par(mar = c(0, 0, 3.5, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),


xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSfpl model")


usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text(-0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 2, lwd = 0)
arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
abline(h = 1, lty = 2, lwd = 0)
arrows(-0.3, 0.25, -0.3, 0, length = 0.07, angle = 25)


arrows(-0.3, 0.75, -0.3, 1, length = 0.07, angle = 25)
text(-0.3, 0.5, expression(phi[2]), adj = c(0.5, 0.5))
segments(2, 0, 2, 3.3, lty = 2, lwd = 0.75)
text(2, 3.3, expression(phi[3]), adj = c(0.5, 0))
segments(3, 1+4/(1+exp(-1)) - 0.025, 3, 2.5, lty = 2, lwd = 0.75)
arrows(2.3, 2.7, 2.0, 2.7, length = 0.08, angle = 25)
arrows(2.7, 2.7, 3.0, 2.7, length = 0.08, angle = 25)
text(2.5, 2.7, expression(phi[4]), adj = c(0.5, 0.5))
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Parameters in the SSlogis model


x


y


φφ1


φφ2


φφ3


# Copied from the manual
xx <- seq(-0.5, 5, len = 101)
yy <- 5 / ( 1 + exp((2-xx)))
par(mar = c(0, 0, 3.5, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),


xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSlogis model")


usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text(-0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 2, lwd = 0)
arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
segments(2, 0, 2, 4.0, lty = 2, lwd = 0.75)
text(2, 4.0, expression(phi[2]), adj = c(0.5, 0))


segments(3, 5/(1+exp(-1)) + 0.025, 3, 4.0, lty = 2, lwd = 0.75)
arrows(2.3, 3.8, 2.0, 3.8, length = 0.08, angle = 25)
arrows(2.7, 3.8, 3.0, 3.8, length = 0.08, angle = 25)
text(2.5, 3.8, expression(phi[3]), adj = c(0.5, 0.5))


Parameters in the SSmicmen model


x


y


φφ1


φφ2


# Copied from the manual
xx <- seq(0, 5, len = 101)
yy <- 5 * xx/(1+xx)
par(mar = c(0, 0, 3.5, 0))
plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),


xlab = "", ylab = "", lwd = 2,
main = "Parameters in the SSmicmen model")


usr <- par("usr")
arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
text(-0.1, usr[4], "y", adj = c(1, 1))
abline(h = 5, lty = 2, lwd = 0)
arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
segments(1, 0, 1, 2.7, lty = 2, lwd = 0.75)
text(1, 2.7, expression(phi[2]), adj = c(0.5, 0))


For other models, the big problem is to find good starting values of the parameters, not too
far from the actual values.
x <- runif(100)
w <- runif(100)
y <- x^2.4*w^3.2+rnorm(100,0,0.01)
# Linear regression to get the initial guesses
r1 <- lm(log(y) ~ log(x)+log(w)-1)
r2 <- nls(y~x^a*w^b,start=list(a=coef(r1)[1],b=coef(r1)[2]))


> coef(r1)
log(x) log(w)


1.500035 2.432708
> coef(r2)


a b
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2.377525 3.185556


When doing all those computations, I realize that those methods do not always work. Here
are some sample error messages I got. (It might not be a problem with real data – but on
the contrary, it might: be careful, check that the algorithm has not crashed and that it has
converged.) This is why I used the “try” command in the examples above.
> r <- nls(y ~ SSfol(1,x,a,b,c))
Error in numericDeriv(form[[3]], names(ind), env):
Missing value or an Infinity produced when evaluating the model


In addition: Warning messages:
1: NaNs produced in: log(x)
2: NaNs produced in: log(x)


> r <- nls(y ~ SSfol(1,x,a,b,c))
Error in nls(resp ~ (Dose * (exp(-input * exp(lKe)) - exp(-input * exp(lKa))))/(exp(lKa)


- :
singular gradient


Error in nls(y ~ cbind(exp(-exp(lrc1) * x), exp(-exp(lrc2) * x)), data = xy,
:


step factor 0.000488281 reduced below ‘minFactor’ of 0.000976562


Comparing non-linear models is trickier. There is however an “anova.nls” function.
library(nls)
?anova.nls


TODO...


10.2.1 Robust non-linear least squares


See the rnls function, in the sfsmisc package.


10.2.2 TODO


Did I stress the difference between parametric and non-parametric non-linear regression?
TODO: Also check the “drc” package (sometimes presented as an extension of “nls”).


10.3 Local regressions


10.3.1 Broken line


A very simple way of seeing wether a linear regression is a good idea (or if a more complex
model is advisable) consists in putting the data into two clusters, according to the values of
one of the predictive variables (say, X1<median(X1) and X1>median(X1)) and performing
a linear regression on each of those two sub-samples.
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broken.line <- function (x, y) {
n <- length(x)
n2 = floor(n/2)
o <- order(x)
m <- mean(c(x[o[n2+0:1]]))
x1 <- x[o[1:n2]]
y1 <- y[o[1:n2]]
n2 <- n2+1
x2 <- x[o[n2:n]]
y2 <- y[o[n2:n]]
r1 <- lm(y1~x1)
r2 <- lm(y2~x2)
plot(y~x)
segments(x[o[1]], r1$coef[1] + x[o[1]]*r1$coef[2],


m, r1$coef[1] + m *r1$coef[2],
col=’red’)


segments(m, r2$coef[1] + m*r2$coef[2],
x[o[n]], r2$coef[1] + x[o[n]] *r2$coef[2],


col=’blue’)
abline(v=m, lty=3)


}
set.seed(1)
n <- 10
x <- runif(n)
y <- 1-x+.2*rnorm(n)
broken.line(x,y)
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z <- x*(1-x)
broken.line(x,z)


This is not continuous: you can ask that the two segments touch each other.
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broken.line <- function (x,y) {
n <- length(x)
o <- order(x)
n1 <- floor((n+1)/2)
n2 <- ceiling((n+1)/2)
m <- mean(c( x[o[n1]], x[o[n2]] ))
plot(y~x)
B1 <- function (xx) {
x <- xx
x[xx<m] <- m - x[xx<m]
x[xx>=m] <- 0
x


}
B2 <- function (xx) {
x <- xx
x[xx>m] <- x[x>m] -m
x[xx<=m] <- 0
x


}
x1 <- B1(x)
x2 <- B2(x)
r <- lm(y~x1+x2)
xx <- seq(x[o[1]],x[o[n]],length=100)
yy <- predict(r, data.frame(x1=B1(xx), x2=B2(xx)))
lines( xx, yy, col=’red’ )
abline(v=m, lty=3)


}
broken.line(x,y)
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broken.line(x,z)


Exercise left to the reader: Modify the preceding function so that it uses an arbitrary number
of segments (given as argument of the function).


10.3.2 Segmented regression


There is already a function to perform those “broken-line regressions”.
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set.seed(5)
n <- 200
x <- rnorm(n)
k <- rnorm(1)
x1 <- ifelse( x < k, x - k, 0 )
x2 <- ifelse( x < k, 0, x - k )
a <- rnorm(1)
b1 <- rnorm(1)
b2 <- rnorm(1)
y <- a + b1 * x1 + b2 * x2 + .2*rnorm(n)
plot( y ~ x, col = ifelse(x < k, "blue", "green") )
abline(a - k*b1, b1, col="blue", lwd=2, lty=2)
abline(a - k*b2, b2, col="green", lwd=2, lty=2)
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library(segmented)
r <- segmented( lm(y~x),


x, # Variable along which we are allowed to cut
0 # Initial values of the cut-points


) # (there can be several)
plot(x, y)
o <- order(x)
lines( x[o], r$fitted.values[o], col="red", lwd=3 )


> summary( segmented( lm(y ~ x), x, psi=c(0) ) )


***Regression Model with Segmented Relationship(s)***


Call:
segmented.lm(obj = lm(y ~ x), Z = x, psi = c(0))


Estimated Break-Point(s):
Est. St.Err


-0.14370 0.02641


t value for the gap-variable(s) V: 4.173e-16


Meaningful coefficients of the linear terms:
Estimate Std. Error t value


(Intercept) -0.1528 0.03836 -3.983
x 1.0390 0.03788 27.431
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U.x -1.7816 0.04829 -36.896


Residual standard error: 0.202 on 196 degrees of freedom
Multiple R-Squared: 0.875, Adjusted R-squared: 0.873


Convergence attained in 4 iterations with relative change 0
> k
[1] -0.1137


See also
library(structchange)
?breakpoints


10.3.3 Other broken line: lowess


TODO: is it a line?
The “lowess” function yields a curve (a generalization of our previous “continuous broken
line”) “close” to the cloud of points.
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set.seed(1)
n <- 10
x <- runif(n)
y <- 1-x+.2*rnorm(n)
z <- x*(1-x) # Same data as above
plot(y~x)
lines(lowess(x,y), col="red")
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plot(z~x)
lines(lowess(x,z), col="red")
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t


data(quakes)
plot(lat~long, data=quakes)
lines(lowess(quakes$long, quakes$lat), col=’red’, lwd=3)


The “scatter.smooth” has a similar purpose.
TODO: example


10.3.4 Moving Average (MA), Moving quartiles


Here, for each point for which we want a prediction, we compute the mean of the nearby
points (if the observations are ordered, as for time series, we would the n previous points,
so as not to peer into the future).
In other words, we try to locally approximate the cloud of points by a horizontal line.
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y


n <- 1000
x <- runif(n, min=-1,max=1)
y <- (x-1)*x*(x+1) + .5*rnorm(n)
# Do not use this code for large data sets.
moyenne.mobile <- function (y,x, r=.1) {
o <- order(x)
n <- length(x)
m <- floor((1-r)*n)
p <- n-m
x1 <- vector(mode=’numeric’,length=m)
y1 <- vector(mode=’numeric’,length=m)
y2 <- vector(mode=’numeric’,length=m)
y3 <- vector(mode=’numeric’,length=m)
for (i in 1:m) {
xx <- x[ o[i:(i+p)] ]
yy <- y[ o[i:(i+p)] ]
x1[i] <- mean(xx)
y1[i] <- quantile(yy,.25)


y2[i] <- quantile(yy,.5)
y3[i] <- quantile(yy,.75)


}
plot(y~x)
lines(x1,y2,col=’red’, lwd=3)
lines(x1,y1,col=’blue’, lwd=2)
lines(x1,y3,col=’blue’, lwd=2)


}
moyenne.mobile(y,x)


TODO: take the previous example with the “filter” command – no loop.
There is a similar function in the “gregmisc” bundle.
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library(gregmisc)
bandplot(x,y)


TODO: give the other alternatives.
The “ksmooth” function is very similar (the observations are weighted by a kernel).
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ca
rs


$d
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t


library(modreg)
plot(cars$speed, cars$dist)
lines(ksmooth(cars$speed, cars$dist, "normal", bandwidth=2), col=’red’)
lines(ksmooth(cars$speed, cars$dist, "normal", bandwidth=5), col=’green’)
lines(ksmooth(cars$speed, cars$dist, "normal", bandwidth=10), col=’blue’)


10.3.5 Weighted Local Least Squares: loess


The method we have just presented, the Moving Average (MA), has many variants. First,
we can change the kernel.
TODO: I keep on using the word “kernel”: be sure to define it. (above, when I use the
“filter” function to compute MAs).


−3 −2 −1 0 1 2 3
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0


x


dn
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m
(x


)


noyau gaussien
noyau d'Epanechikov
noyau tricube


Differents kernels
curve(dnorm(x), xlim=c(-3,3), ylim=c(0,1.1))
x <- seq(-3,3,length=200)
D.Epanechikov <- function (t) {
ifelse(abs(t)<1, 3/4*(1-t^2), 0)


}
lines(D.Epanechikov(x) ~ x, col=’red’)
D.tricube <- function (t) { # aka "triweight kernel"
ifelse(abs(t)<1, (1-abs(t)^3)^3, 0)


}
lines(D.tricube(x) ~ x, col=’blue’)
legend( par("usr")[1], par("usr")[4], yjust=1,


c("noyau gaussien", "noyau d’Epanechikov", "noyau tricube"),
lwd=1, lty=1,
col=c(par(’fg’),’red’, ’blue’))


title(main="Differents kernels")


More formally, if D is one of the functions above, the smoothing procedure finds the function
f that minimizes
RSS(f,x0) = Sum K(x0,xi)(yi-f(xi))^2


where
K lambda(x0,x) = D( abs(x-x0) / lambda )


for a user-chose value of lambda.
(You can also imagine kernels that are automatically adapted to the data, kernels whose
window width is not constant but changes with the density of observations – a narrower
window where there are few observations, a wider one when there are more.)
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Here is another direction in which to generalize moving averages: when computed a moving
average (weighted or not), you are trying to approximate the data, locally, woth a constant
function. Instead, you can consider an affine function or even a degree-2 polynomial.
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Local Polynomial Regression
# With real data...
library(KernSmooth)
data(quakes)
x <- quakes$long
y <- quakes$lat
plot(y~x)
bw <- dpill(x,y) # .2
lines( locpoly(x,y,degree=0, bandwidth=bw), col=’red’ )
lines( locpoly(x,y,degree=1, bandwidth=bw), col=’green’ )
lines( locpoly(x,y,degree=2, bandwidth=bw), col=’blue’ )
legend( par("usr")[1], par("usr")[3], yjust=0,


c("degree = 0", "degree = 1", "degree = 2"),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="Local Polynomial Regression")
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Local Polynomial Regression (wider window)
plot(y~x)
bw <- .5
lines( locpoly(x,y,degree=0, bandwidth=bw), col=’red’ )
lines( locpoly(x,y,degree=1, bandwidth=bw), col=’green’ )
lines( locpoly(x,y,degree=2, bandwidth=bw), col=’blue’ )
legend( par("usr")[1], par("usr")[3], yjust=0,


c("degree = 0", "degree = 1", "degree = 2"),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="Local Polynomial Regression (wider window)")


The Moving Average (aka Nadaraya-Watson regression) is biased at the ends of the domain;
local linear regression (aka kernel regression) is biased when the curvature is high.
You can check this on simulated data: in the following example, the degree-0 local polynomial
regression is far from the sample values.
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−
1


0
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2


x


y


degree = 0
degree = 1
degree = 2


n <- 50
x <- runif(n)
f <- function (x) { cos(3*x) + cos(5*x) }
y <- f(x) + .2*rnorm(n)
plot(y~x)
curve(f(x), add=T, lty=2)
bw <- dpill(x,y)
lines( locpoly(x,y,degree=0, bandwidth=bw), col=’red’ )
lines( locpoly(x,y,degree=1, bandwidth=bw), col=’green’ )
lines( locpoly(x,y,degree=2, bandwidth=bw), col=’blue’ )
legend( par("usr")[1], par("usr")[3], yjust=0,


c("degree = 0", "degree = 1", "degree = 2"),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))
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06


degree = 0
degree = 1
degree = 2


MSE (Mean Square Error)
a <- locpoly(x,y,degree=0, bandwidth=bw)
b <- locpoly(x,y,degree=1, bandwidth=bw)
c <- locpoly(x,y,degree=2, bandwidth=bw)
matplot( cbind(a$x,b$x,c$x), abs(cbind(a$y-f(a$x), b$y-f(b$x), c$y-f(c$x)))^2,


xlab=’’, ylab=’’,
type=’l’, lty=1, col=c(’red’, ’green’, ’blue’) )


legend( .8*par("usr")[1]+.2*par("usr")[2], par("usr")[4], yjust=1,
c("degree = 0", "degree = 1", "degree = 2"),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="MSE (Mean Square Error)")


If the curve is “more curved” (if its curvature is high), higher-degree polynomial give a
better approximation.
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x


y


degree = 0
degree = 1
degree = 2


f <- function (x) { sqrt(abs(x-.5)) }
y <- f(x) + .1*rnorm(n)
plot(y~x)
curve(f(x), add=T, lty=2)
bw <- dpill(x,y)
lines( locpoly(x,y,degree=0, bandwidth=bw), col=’red’ )
lines( locpoly(x,y,degree=1, bandwidth=bw), col=’green’ )
lines( locpoly(x,y,degree=2, bandwidth=bw), col=’blue’ )
legend( par("usr")[1], par("usr")[3], yjust=0,


c("degree = 0", "degree = 1", "degree = 2"),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


0.0 0.2 0.4 0.6 0.8 1.0


0.
00


0.
01


0.
02


0.
03


0.
04


0.
05


degree = 0
degree = 1
degree = 2


MSE (Mean Square Error)
a <- locpoly(x,y,degree=0, bandwidth=bw)
b <- locpoly(x,y,degree=1, bandwidth=bw)
c <- locpoly(x,y,degree=2, bandwidth=bw)
matplot( cbind(a$x,b$x,c$x), abs(cbind(a$y-f(a$x), b$y-f(b$x), c$y-f(c$x)))^2,


xlab=’’, ylab=’’,
type=’l’, lty=1, col=c(’red’, ’green’, ’blue’) )


legend( .8*par("usr")[1]+.2*par("usr")[2], par("usr")[4], yjust=1,
c("degree = 0", "degree = 1", "degree = 2"),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="MSE (Mean Square Error)")


Remark: instead of using least squares for those local regressions, you could use Maximum
Likelihood methods.
TODO: what is the difference? the benefit?


There are many other similar functions:
loess (modreg) local polynomial regression, with a ticubic kernel


(if you do not know what to choose, choose this one)
lowess (base)
locpoly (KernSmooth) local polynomial regression, with a gaussian


kernel, whise degree you can choose.
smooth (eda) With medians
supsmu (modreg)
density (base)


On particular, one uses thes regressions to see if a linear model is a good idea or not.
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# It is linear
library(modreg)
n <- 10
op <- par(mfrow=c(2,2))
for (i in 1:4) {
x <- rnorm(n)
y <- 1-2*x+.3*rnorm(n)
plot(y~x)
lo <- loess(y~x)
xx <- seq(min(x),max(x),length=100)
yy <- predict(lo, data.frame(x=xx))
lines(xx,yy, col=’red’)
lo <- loess(y~x, family=’sym’)
xx <- seq(min(x),max(x),length=100)
yy <- predict(lo, data.frame(x=xx))
lines(xx,yy, col=’red’, lty=2)
lines(lowess(x,y),col=’blue’,lty=2)


# abline(lm(y~x), col=’green’)


# abline(1,-2, col=’green’, lty=2)
}
par(op)
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# It is not linear
n <- 10
op <- par(mfrow=c(2,2))
for (i in 1:4) {
x <- rnorm(n)
y <- x*(1-x)+.3*rnorm(n)
plot(y~x)
lo <- loess(y~x)
xx <- seq(min(x),max(x),length=100)
yy <- predict(lo, data.frame(x=xx))
lines(xx,yy, col=’red’)
lo <- loess(y~x, family=’sym’)
xx <- seq(min(x),max(x),length=100)
yy <- predict(lo, data.frame(x=xx))
lines(xx,yy, col=’red’, lty=2)
lines(lowess(x,y),col=’blue’,lty=2)


# curve(x*(1-x), add = TRUE, col = "green", lty=2)
}


par(op)


10.4 Variants of the Least Squares Method


Least Squares are not the only method of approximating a function Y=f(X): here are a few
others.


10.4.1 L1 Regression (aka LAR (Least Absolute Residuals) or LAD
(Least Absolute Deviation))


Instead of miniming
Sum ( y i - a - b x i ) ^ 2
i


we replace the squares by absolute values and minimize
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Sum abs( y i - a - b x i )
i
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Least Squares
Least Absolute Values


x <- cars$speed
y <- cars$dist
my.lar <- function (y,x) {
f <- function (arg) {
a <- arg[1]
b <- arg[2]
sum(abs(y-a-b*x))


}
r <- optim( c(0,0), f )$par
plot( y~x )
abline(lm(y~x), col=’red’, lty=2)
abline(r[1], r[2])
legend( par("usr")[1], par("usr")[4], yjust=1,


c("Least Squares", "Least Absolute Values"),
lwd=1, lty=c(2,1),
col=c(par(’fg’),’red’))


}
my.lar(y,x)


TODO:
library(quantreg)
?rq


10.4.2 M-estimators, Huber Regression


In least squares, we try to minimize
Sum( rho( (yi - \hat yi) / sigma ) )
i


where \hat yi = a + b xi and rho(x) = xˆ2. M-estimators are estimators obtained with a dif-
ferent choice of the “rho” function. For instance, in L1 regression, we just set rho(x)=abs(x).
Huber regression is between Least Squares and L1-regression: we still try to minimize this
sum, but now with
rho(x) = x^2/2 if abs(x) <= c


c * abs(x) - c^2/2 otherwise


(where c is chosen arbitrarily, proportionnal to a robust estimator of the noise median).
On can also interpret Huber regression as a weighted regression, in which the weights are
w(u) = 1 if abs(u) < c


c/abs(u) else


This regression is useful if the error term distribution is very dispersed.
In R, Huber regression is achieved by the “rlm” function, in the “MASS” package.
In the following example, we remark that Huber regression is not very resistant: with
outliers, it gives the same result as classical regression.
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library(MASS)
n <- 20
x <- rnorm(n)
y <- 1 - 2*x + rnorm(n)
y[ sample(1:n, floor(n/4)) ] <- 10
plot(y~x)
abline(1,-2,lty=3)
abline(lm(rlm(y~x)), col=’red’)
abline(lm(y~x), lty=3, lwd=3)


On the contrary, it is supposed to be robustL
TODO (recall that in the following situation, one would first try to
transform the data to make them more "gaussian")
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n <- 100
x <- rnorm(n)
y <- 1 - 2*x + rcauchy(n,1)
plot(y~x)
abline(1,-2,lty=3)
abline(lm(rlm(y~x)), col=’red’)
abline(lm(y~x), lty=3, lwd=3)


TODO: understand. Compare with the following plot
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Huber regression (rlm)
#library(lqs) # now merged into MASS
x <- rnorm(20)
y <- 1 - x + rnorm(20)
x <- c(x,10)
y <- c(y,1)
plot(y~x)
abline(1,-1, lty=3)
abline(lm(y~x))
abline(rlm(y~x, psi = psi.bisquare, init = "lts"), col=’orange’,lwd=3)
abline(rlm(y~x), col=’red’)
abline(rlm(y~x, psi = psi.hampel, init = "lts"), col=’green’)
abline(rlm(y~x, psi = psi.bisquare), col=’blue’)
title(main=’Huber regression (rlm)’)


10.4.3 Least Trimmed Squares (LTS)


We no longer try to minimize the sum of all the squared error, but just the sum of the
smallest squared errors. If you want exact computations, it will be time-consuming (if there
are n observations and if you want to remoce k of them, you have to consider all the sets of
n-k observations and retain the one with the smallest sum of squares) – we shall therefore
use an empirical, approximate method.
?ltsreg
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Linear regression
Trimmed regression


Least Trimmed Squares (LTS)
n <- 100
x <- rnorm(n)
y <- 1 - 2*x + rnorm(n)
y[ sample(1:n, floor(n/4)) ] <- 7
plot(y~x)
r1 <- lm(y~x)
r2 <- lqs(y~x, method=’lts’)
abline(r1, col=’red’)
abline(r2, col=’green’)
abline(1,-2,lty=3)
legend( par("usr")[1], par("usr")[3], yjust=0,


c("Linear regression", "Trimmed regression"),
lty=1, lwd=1,
col=c("red", "green") )


title("Least Trimmed Squares (LTS)")


If you just look at the classical regression diagnosis plots, you do not see anything...
TODO...
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op <- par(mfrow=c(2,2))
plot(r1)
par(op)


TODO: estimate the error with bootstrap


This is a resistant regression.
Trimmed regression has several variants:
lqs: it is almost a normal regression, but instead of minimizing the
sum of all the squared residuals, we sort them and minimize the
middle one.


lqs(..., method=’lms’): idem, but with the residual number
"floor(n/2) + floor((p+1)/2)" where n is the number of observations
and p the number of predictive variables.


lqs(..., method=’S’): dunno.
TODO


10.4.4 Generalized Least Squares (GLS)


This generalization of the Least Squares method tackles the problem of correlated and/or
heteroskedastic (it means “different variances”) errors. More about this later.


10.4.5 Generalized Least Squares


The least squares method assumes that the error term (the noise) is made of idenpendant
gaussian variables, of the same variance. Generalized Least Squares tackle the case of dif-
ferent variances (but you have to know the variances), non-gaussian noises (e.g., asymetric),
non-independant noises (e.g., with time series: but you have to choose a model to describe
this dependancy).
We shall detail those situations later in this document
TODO: where???
library(MASS)
?lm.gls
library(nlme)
?gls
TODO: read...
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10.4.6 Weighted Least Squares (WLS)


The weighted least squares method consists to compute the regression, the residuals, to
assign a weight to the observations (low weight for high residuals) and to perform a new
regression.
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Weighted Regression
# Evil data...
n <- 10
x <- rnorm(n)
y <- 1 - 2*x + rnorm(n)
x[1] <- 5
y[1] <- 0
my.wls <- function (y,x) {
# A first regression
r <- lm(y~x)$residuals
# The weights
w <- compute.weights(r)
# A new regression
lm(y~x, weights=w)


}
compute.weights <- function (r) {
# Compute the weights as you want, as long as they are positive,
# sum up to 1 and the high-residuals have low weights.
# My choice might be neither standard nor relevant.


w <- r*r
w <- w/mean(w)
w <- 1/(1+w)
w <- w/mean(w)


}
plot(y~x)
abline(1,-2, lty=3)
abline(lm(y~x))
abline(my.wls(y,x), col=’red’)
title(main="Weighted Regression")


Weighted least squares can be seen as a standard regression after data transformation: it
has a purely geometric interpretation.


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


● ●


●


●


●


●


●


●


●
●


●


●


●


●
●


● ●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


● ●


●


●


●


●


● ●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●●


●


●


●


●
●


●


●
●


Weighted least squares


# Situation in which you would like to use weighted least squares
N <- 500
x <- runif(N)
y <- 1 - 2 * x + (2 - 1.5 * x) * rnorm(N)
op <- par(mar = c(1,1,3,1))
plot(y ~ x, axes = FALSE,


main = "Weighted least squares")
box()
for (u in seq(-3,3,by=.5)) {
segments(0, 1 + 2 * u, 1, -1 + .5 * u,


col = "blue")
}
abline(1, -2, col = "blue", lwd = 3)
par(op)
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10.4.7 Iteratively Reweighted Least Squares (IRLS)


We do the same as Weighted Least Squares (WLS), but we iterate until the results stabilize.
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Iteratively Reweighted Least Squares
my.irls.plot <- function (y,x, n=10) {
plot(y~x)
abline(lm(y~x))
r <- lm(y~x)$residuals
for (i in 1:n) {
w <- compute.weights(r)
print(w)
r <- lm(y~x, weights=w)
abline(r, col=topo.colors(n)[i], lwd=ifelse(i==n,3,1))
r <- r$residuals


}
lm(y~x, weights=w)


}
my.irls.plot(y,x)
abline(1,-2, lty=3)
abline(my.wls(y,x), col=’blue’, lty=3, lwd=3)
title(main="Iteratively Reweighted Least Squares")


TODO: IRLS
plot( weights ~ residuals )
It is a bell-shaped on which we see the "influent" points (their
weight is low). We can try to compute a new regression without those
points. If the results are different, it is a bad sign...


10.4.8 Quantile regression


The idea behind regression of a variable Y against a variable X is simply to find the function
f(x) = E[ Y | X=x ].


If we knew the joint distribution of (X,Y), we could exactly compute this regression function
– but we only have a sample, so we try to estimate it by assuming that it has a simple form.
Similarly, median regression (aka Lˆ1 regression or LAD regression) focuses on the condi-
tionnal median,
f(x) = Median[ Y | X=x ].


Instead of the median, we can consider any quantile (typically, we shall consider several
quantiles, say all the quartiles, or all the deciles) and focus on
f(x) = tau-th quantile of ( Y | X=x ).


Instead of having a single line or a single curve, we get several – this allows us to spot (and
measure) phenomena such as heteroskedasticity or even the bimodality of Y—X=x for some
values of x.
But how do we compute it? The mean of y1,...,yn can be defined as the real mu that
minumizes
Sum( (y i - mu)^2 ).
i


Similarly, the median is a real that minimizes
Sum( abs(y i - m) ).
i


For the tau-th quantile (where tau is in the interval (0,1): the 0th quantile is the minimum,
the .25-th quantile is the first quartile, the .5-th quantile is the median, etc.), we can minimize







CHAPTER 10. OTHER REGRESSIONS 718


Sum( r tau( y i - q ) )
i


where r tau is the function
r tau(x) = tau * x if x >= 0


(tau - 1) * x if x < 0


You can check that r .5 is the absolute value (well, half the absolute value).
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op <- par(mfrow=c(2,2), mar=c(2,4,4,2))
r <- function (tau, x) { ifelse(x<0, (tau-1)*x, tau*x) }
curve(r(0,x), xlim=c(-1,1), ylim=c(0,1), lwd=3, main="Minimum", xlab="")
abline(0,1,lty=2)
abline(0,-1,lty=2)
abline(h=c(0,.25,.5,.75), lty=3)
curve(r(.25,x), xlim=c(-1,1), ylim=c(0,1), lwd=3, main="First quartile")
abline(0,1,lty=2)
abline(0,-1,lty=2)
abline(h=c(0,.25,.5,.75), lty=3)
curve(r(.5,x), xlim=c(-1,1), ylim=c(0,1), lwd=3, main="Median")
abline(0,1,lty=2)
abline(0,-1,lty=2)
abline(h=c(0,.25,.5,.75), lty=3)
curve(r(.75,x), xlim=c(-1,1), ylim=c(0,1), lwd=3, main="Third quartile")
abline(0,1,lty=2)
abline(0,-1,lty=2)
abline(h=c(0,.25,.5,.75), lty=3)


par(op)


Let us now switch from the mean, median or quantile computation to the mean, median or
quantile regression. OLS (mean) regression find a and b that minimize
Sum( (y i - (a + b * x))^2 ).
i


Median regression finds a and b that minimize
Sum( abs(y i - (a + b * x)) ).
i


Similarly, quantile regression (for a given tau – and you will want to consider several) finds
a and b that minimizes
Sum( r tau(y i - (a + b * x)) ).
i


From a computationnal point of view, this can be expressed as a Linear Program – one can
solve it with algorithms such as the simplex.
TODO: understand how it becomes a linear program.


It is high time for a few examples.
TODO: find some data...
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plot(y~x)
for (a in seq(.1,.9,by=.1)) {
r <- lprq(x,y,


h=bw.nrd0(x), # See ?density
tau=a)


lines(r$xx, r$fv, col="blue", lwd=3)
}
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op <- par(mar=c(3,2,4,1))
r <- rq(y~x, tau=1:49/50)
plot(summary(r), nrow=1)
par(op)


How do we interpret those plots? Let us look at more “normal” data: the intercept of the
quantile regression correspond to the noise quantiles; the slope should be constant.
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y <- -1 + 2 * x + rnorm(N)
op <- par(mar=c(3,2,4,1))
r <- rq(y~x, tau=1:49/50)
plot(summary(r), nrow=1)
par(op)


TODO:
plot(rq(..., tau=1:99/100)


TODO
?anova.rq # To compare models?
?nlrq # For non-linear models


# 2-dimensionnal kernel estimation?
# (this uses the akima and tripack packages, that are not free)
plot( rqss( z ~ qss(cbind(x,y), lambda=0.8) ) )


TODO
library(quantreg)
?rq
rq(y~x, tau=.5) # Median regression
?table.rq
http://www.econ.uiuc.edu/~econ472/tutorial15.html



http://www.econ.uiuc.edu/~econ472/tutorial15.html
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10.4.9 Comparing those regressions
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Linear Regression
LTS
lqs
lms
S


LTS and variants
# library(lqs) # now part of MASS
n <- 100
x <- rnorm(n)
y <- 1 - 2*x + rnorm(n)
y[ sample(1:n, floor(n/4)) ] <- 7
plot(y~x)
abline(1,-2,lty=3)
r1 <- lm(y~x)
r2 <- lqs(y~x, method=’lts’)
r3 <- lqs(y~x, method=’lqs’)
r4 <- lqs(y~x, method=’lms’)
r5 <- lqs(y~x, method=’S’)
abline(r1, col=’red’)
abline(r2, col=’green’)
abline(r3, col=’blue’)
abline(r4, col=’orange’)
abline(r5, col=’purple’)
legend( par("usr")[1], par("usr")[3], yjust=0,


c("Linear Regression", "LTS",
"lqs", "lms", "S"),
lty=1, lwd=1,
col=c("red", "green", "blue", "orange", "purple") )


title("LTS and variants")


10.4.10 Other robust or resistant linear regressions


A regression is said to be resistant if it is not very sensitive to outliers. It is robust if it
remains valid when its asumptions (often, gaussian data, homoscedasticity, independance)
are no longer satisfied.
We have already seen some examples, such as trimmed regression (lqs) or Huber regression
(rlm). Here are a few others – I shall not dive into the details.
TODO: modify those examples to get a comparison of those different
regressions, in various situations (one outliers, several outliers,
non-gaussian predictive variable, non-normal errors).
TODO: idem with non-linear regressions.
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Classical regression
# Example
x <- rnorm(20)
y <- 1 - x + rnorm(20)
x <- c(x,10)
y <- c(y,1)
plot(y~x)
abline(lm(y~x), col=’blue’)
title(main="Classical regression")


5 10 15 20


0
5


10
15


20


Cook's distance


Obs. number


C
oo


k'
s 


di
st


an
ce


lm(y ~ x)


Cook's distance


21


84


# How bad usual regression is
plot(lm(y~x), which=4,


main="Cook’s distance")
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Classical regression minus one point
plot(y~x)
for (i in 1:length(x))
abline(lm(y~x, subset= (1:length(x))!=i ), col=’red’)


title(main="Classical regression minus one point")
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"line", in the "eda" package
# line (in the eda package)
library(eda)
plot(y~x)
abline(1,-1, lty=3)
abline(lm(y~x))
abline(coef(line(x,y)), col=’red’)
title(main=’"line", in the "eda" package’)
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Trimmed regression (lqs)
# Trimmed regression
#library(lqs)
plot(y~x)
abline(1,-1, lty=3)
abline(lm(y~x))
abline(lqs(y~x), col=’red’)
title(main=’Trimmed regression (lqs)’)
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"glm" regression
# glm (from the manual, it should be IWLS, but we get the same
# result...)
plot(y~x)
abline(1,-1, lty=3)
abline(lm(y~x))
abline(glm(y~x), col=’red’)
title(main=’"glm" regression’)
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Huber regression (rlm)
plot(y~x)
abline(1,-1, lty=3)
abline(lm(y~x))
abline(rlm(y~x, psi = psi.bisquare, init = "lts"), col=’orange’,lwd=3)
abline(rlm(y~x), col=’red’)
abline(rlm(y~x, psi = psi.hampel, init = "lts"), col=’green’)
abline(rlm(y~x, psi = psi.bisquare), col=’blue’)
title(main=’Huber regression (rlm)’)


You will usually use those robust regressions as follows: perform a linear regression and a
robust one; if the coincide, use the linear regression; if they do not, try to find why (it is a
bad omen).


10.5 Penalized regression


TODO: Introduction. In particular, explain what PCR and PLS are here: compare them
with ridge regression.


10.5.1 Regularized Regression (PCR: Principal Component Re-
gression)


This is a regression on the first principal components (see “Principal Component Analysis
(PCA)”, somewhere in this document) of the predictive variables.
You can compute it by hand.
# The change-of-base matrix
e <- eigen(cor(x)))
# Normalize x and perform the change of base
enx <- scale(x) %*% e$vec
# Regression on those new vectors
lm(y ~ enx)


More directly:
lm(y ~ princomp(x)$scores)


If you just want the first three variables:
lm(y ~ princomp(x)$scores[,1:3])


Interpreting the new coordinates requires some work/thinking – but the “biplot(princomp(x))”
command will help you.
You can replace the Principal Component Analysis (PCA) by an Independant Component
Analysis, thereby obtaining an “Independant Component Regression” – if your data are not
gaussian, this may work.
TODO: URL
Independant variable selection: application of independant
component analysis to forecasting a stock index


There is, however, a slight problem: when we chose the new basis, we only looked at the pre-
dictive variables x, not the variable to predict y: but some of the predictive variables might
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appear irrelevant in the PCA and nonetheless be tightly linked to y – or, conversely, some
predictive variables might seem pivotal from the PCA while being irrelevant (orthogonal)
to the variable to predict.


10.5.2 Partial Least Squares (PLS)


Partial Least Squares (PLS) tackle this problem: it is a regression on a new basis, that looks
like a principal component analysis computed “with respect to” the variable to predict y.
library(help=pls)
library(pls)
?simpls.fit


TODO: understand...
On Internet, you can find the following algorithm to compute the PCA
from NIPALS (Non-Llinearly Iterated PArtial Least Squares).
(t=scores, p=loadings)


begin loop
select a proxy t-vector (any large column of X)
small = 10^(-6) (e.g.)
begin loop
p = X’*t
p is normalised to length one: abs(p)=1
t = X*p


end loop if convergence: (t new - t old) << small
remove the modelled information from X: X new = X old - t*p’


end loop (if all PCs are calculated)
http://www.bitjungle.com/~mvartools/muvanl/


PLS = somewhere between classical ("multiple") regression and
principal component regression. You can also imagine other methods
inbetween (by changing the value of a parameter: 0 for linear
regression, 1 for principal component regression, 0.5 for PLS).


PCR: Factors from X’X
PLS: Factors from Y’XX’Y
The difference between PCR and PLS is the way factor scores are extracted.


Remark: multi-way data analysis
This is stil "linear algebra", but with 3-dimensional arrays (or
more) instead of 2-dimensional matrices.


There is a “pls” library:
http://cran.r-project.org/src/contrib/Devel/
http://www.gsm.uci.edu/~joelwest/SEM/PLS.html


library(help="pls.pcr")


10.5.3 Penalized Least Squares


Least Squares Regression looks for a function f that minimizes
RSS(f) = Sum (y i - f(x i))^2


i


But this can yield “naughty”, pathological functions. To stay in the realm of “nice” func-
tions, we can add a term
PRSS(f) = Sum (y i - f(x i))^2 + lambda J(f)


i



http://www.bitjungle.com/~mvartools/muvanl/

http://cran.r-project.org/src/contrib/Devel/

http://www.gsm.uci.edu/~joelwest/SEM/PLS.html
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where J increases with the “naughtiness” of the function and lambda is a user-chosen positive
real. For instamce, if you want functions whose curvature (i.e., second derivative) is not too
high, you can choose
J(f) = \int f’’^2


(actually, one can define splines like that).


10.5.4 Ridge regression


Classical regression computes
b = (X’X)^-1 X’ y.


The problem is that sometimes, when the data are multicolinear (i.e., if some of the predic-
tive variables are (almost) linearly dependant, for instance if X1 = X2 + X3 (if X2 is almost
equal to X2 + X3)), then the X’X matrix is (almost) singular: the resulting estimator has a
very high variance. You can circumvent the problem by shifting all the eigen values of the
matrix and by computing
b = (X’X + kI)^-1 X’ y.


This reduces the variance – but, of course, the resulting estimator is biased. If the reduction
invariance is higher than the increase in bias, the Mean Square Error (MSE) decreases and
this new estimator is worthy of our interest.
You can also see ridge regression as a penalized regression: instead of looking for a b that
minimizes
Sum( y i - b0 - Sum( xij bj ) )^2
i j


you look for a b that minimizes
Sum( y i - b0 - Sum( xij bj ) )^2 + k Sum bj^2
i j j>0


This avoids overly large coefficients (this is waht happens with multicolinearity: you can
have one large positive coefficient compensated by a large negative one).
It is equivalent to look for a b that minimizes
Sum( y i - b0 - Sum( xij bj ) )^2
i j


under the condition
Sum bj^2 <= s
j>0


The problem is then to choose the value of k (or s) so that the variance be low and the bias
not too high: you can use heuristics, graphics or crossed validation – none of those methods
are satisfactory.
Practically, we first center and normalize the columns of X – there will be no constant term.
You could program ot yourself:
my.lm.ridge <- function (y, x, k=.1) {
my <- mean(y)
y <- y - my
mx <- apply(x,2,mean)
x <- x - matrix(mx, nr=dim(x)[1], nc=dim(x)[2], byrow=T)
sx <- apply(x,2,sd)
x <- x/matrix(sx, nr=dim(x)[1], nc=dim(x)[2], byrow=T)
b <- solve( t(x) %*% x + diag(k, dim(x)[2]), t(x) %*% y)
c(my - sum(b*mx/sx) , b/sx)


}


or using the definition in terms of penalized least squares:
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my.ridge <- function (y,x,k=0) {
xm <- apply(x,2,mean)
ym <- mean(y)
y <- y - ym
x <- t( t(x) - xm )
ss <- function (b) {
t( y - x %*% b ) %*% ( y - x %*% b ) + k * t(b) %*% b


}
b <- nlm(ss, rep(0,dim(x)[2]))$estimate
c(ym-t(b)%*%xm, b)


}
my.ridge.test <- function (n=20, s=.1) {
x <- rnorm(n)
x1 <- x + s*rnorm(n)
x2 <- x + s*rnorm(n)
x <- cbind(x1,x2)
y <- x1 + x2 + 1 + rnorm(n)
lambda <- c(0, .001, .01, .1, .2, .5, 1, 2, 5, 10)


b <- matrix(nr=length(lambda), nc=1+dim(x)[2])
for (i in 1:length(lambda)) {
b[i,] <- my.ridge(y,x,lambda[i])


}
plot(b[,2], b[,3],


type="b",
xlim=range(c(b[,2],1)), ylim=range(c(b[,3],1)))


text(b[,2], b[,3], lambda, adj=c(-.2,-.2), col="blue")
points(1,1,pch="+", cex=3, lwd=3)
points(b[8,2],b[8,3],pch=15)


}
my.ridge.test()


TODO: Add a title to this plot
(ridge regression and multicolinearity)
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
my.ridge.test()


}
par(op)


TODO: Add a title to this plot
(ridge regression and milder multicolinearity)
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
my.ridge.test(20,10)


}
par(op)


But there is already a “lm.ridge” function in the “MASS” package: we shall use it.
Let us first remark (as we stated above) that in some cases (here, multicolinearity), the vari-
ance of the regression coefficients is very high. On the contrary, that of the ridge regression
coefficients is lower – but they are biased.
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my.sample <- function (n=20) {
x <- rnorm(n)
x1 <- x + .1*rnorm(n)
x2 <- x + .1*rnorm(n)
y <- 0 + x1 - x2 + rnorm(n)
cbind(y, x1, x2)


}


n <- 500
r <- matrix(NA, nr=n, nc=3)
s <- matrix(NA, nr=n, nc=3)
for (i in 1:n) {
m <- my.sample()
r[i,] <- lm(m[,1]~m[,-1])$coef
s[i,2:3] <- lm.ridge(m[,1]~m[,-1], lambda=.1)$coef
s[i,1] <- mean(m[,1])


}
plot( density(r[,1]), xlim=c(-3,3),


main="Multicolinearity: high variance")
abline(v=0, lty=3)
lines( density(r[,2]), col=’red’ )
lines( density(s[,2]), col=’red’, lty=2 )
abline(v=1, col=’red’, lty=3)
lines( density(r[,3]), col=’blue’ )
lines( density(s[,3]), col=’blue’, lty=2 )
abline(v=-1, col=’blue’, lty=3)
# We give the mean, to show that it is biased
evaluate.density <- function (d,x, eps=1e-6) {
density(d, from=x-eps, to=x+2*eps, n=4)$y[2]


}
x<-mean(r[,2]); points( x, evaluate.density(r[,2],x) )
x<-mean(s[,2]); points( x, evaluate.density(s[,2],x) )
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x<-mean(r[,3]); points( x, evaluate.density(r[,3],x) )
x<-mean(s[,3]); points( x, evaluate.density(s[,3],x) )
legend( par("usr")[1], par("usr")[4], yjust=1,


c("intercept", "x1", "x2"),
lwd=1, lty=1,
col=c(par(’fg’), ’red’, ’blue’) )


legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,
c("classical regression", "ridge regression"),
lwd=1, lty=c(1,2),
col=par(’fg’) )


We can compute the mean and variance of our estimators:
# LS regression
> apply(r,2,mean)
[1] -0.02883416 1.04348779 -1.05150408
> apply(r,2,var)
[1] 0.0597358 2.9969272 2.9746692


# Ridge regression
> apply(s,2,mean)
[1] -0.02836816 0.62807824 -0.63910220
> apply(s,2,var)
[1] 0.05269393 0.99976908 0.99629095


But we cannot compare them that way; to do so, we prefer using the Mean Square Error
(MSE): it is the mean of the squares of the differences of the real value of the looked-for
parameter (while the variance is defined in a similar way, with the mean instead of the real
value).
TODO: give a formula, it might be clearer.


> v <- matrix(c(0,1,-1), nr=n, nc=3, byrow=T)
> apply( (r-v)^2, 2, mean )
[1] 0.06044774 2.99282451 2.97137250
> apply( (s-v)^2, 2, mean )
[1] 0.05339329 1.13609534 1.12454560


We can plot the evolution of this MSE with k:
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MSE evolution
n <- 500
v <- matrix(c(0,1,-1), nr=n, nc=3, byrow=T)
mse <- NULL
kl <- c(1e-4, 2e-4, 5e-4,


1e-3, 2e-3, 5e-3,
1e-2, 2e-2, 5e-2,
.1, .2, .3, .4, .5, .6, .7, .8, .9,
1, 1.2, 1.4, 1.6, 1.8, 2)


for (k in kl) {
r <- matrix(NA, nr=n, nc=3)
for (i in 1:n) {
m <- my.sample()
r[i,2:3] <- lm.ridge(m[,1]~m[,-1], lambda=k)$coef
r[i,1] <- mean(m[,1])


}
mse <- append(mse, apply( (r-v)^2, 2, mean )[2])


}
plot( mse ~ kl, type=’l’ )


title(main="MSE evolution")


With a logarithmic scale:
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plot( mse-min(mse)+.01 ~ kl, type=’l’, log=’y’ )
title(main="MSE Evolution")


With ranks:
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MSE Evolution
plot( rank(mse) ~ kl, type=’l’ )
title(main="MSE Evolution")


On this example, we see that k=0.5 is a good value (but according to the literature, it is
VERY high: they say you should not go beyond 0.1...)
The problem is that usually you cannot compute the MSE: you would have to know the
exact values of the parameters – the very quantities we strive to estimate.
You can also choose k from a plot: say, the parameters (or something that depends on the
parameters, such as Rˆ2) with respect to k.
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Bias towards 0 in ridge regression
m <- my.sample()
b <- matrix(NA, nr=length(kl), nc=2)
for (i in 1:length(kl)) {
b[i,] <- lm.ridge(m[,1]~m[,-1], lambda=kl[i])$coef


}
matplot(kl, b, type="l")
abline(h=c(0,-1,1), lty=3)
# Heuristic estimation for k...
k <- min( lm.ridge(m[,1]~m[,-1], lambda=kl)$GCV )
abline(v=k, lty=3)
title(main="Bias towards 0 in ridge regression")


It might be clearer with a logarithmic scale:
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Bias towards 0 in ridge regression
m <- my.sample()
b <- matrix(NA, nr=length(kl), nc=2)
for (i in 1:length(kl)) {
b[i,] <- lm.ridge(m[,1]~m[,-1], lambda=kl[i])$coef


}
matplot(kl, b, type="l", log=’x’)
abline(h=c(0,-1,1), lty=3)
k <- min( lm.ridge(m[,1]~m[,-1], lambda=kl)$GCV )
abline(v=k, lty=3)
title(main="Bias towards 0 in ridge regression")


The estimators are more and more biased (towards 0) when k becomes large: in this example,
a value between 0.01 and 0.1 would be fine – perhaps.
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my.lm.ridge.diag <- function (y, x, k=.1) {
my <- mean(y)
y <- y - my
mx <- apply(x,2,mean)
x <- x - matrix(mx, nr=dim(x)[1], nc=dim(x)[2], byrow=T)
sx <- apply(x,2,sd)
x <- x/matrix(sx, nr=dim(x)[1], nc=dim(x)[2], byrow=T)
b <- solve( t(x) %*% x + diag(k, dim(x)[2]), t(x) %*% y)
v <- solve( t(x) %*% x + diag(k, dim(x)[2]),


t(x) %*% x %*% solve( t(x) %*% x + diag(k, dim(x)[2]),
diag( var(y), dim(x)[2] ) ))


ss <- t(b) %*% t(x) %*% y
list( b = b, varb = v, ss = ss )


}


m <- my.sample()
b <- matrix(NA, nr=length(kl), nc=2)
v <- matrix(NA, nr=length(kl), nc=1)


ss <- matrix(NA, nr=length(kl), nc=1)
for (i in 1:length(kl)) {
r <- my.lm.ridge.diag(m[,1], m[,-1], k=kl[i])
b[i,] <- r$b
v[i,] <- sum(diag(r$v))
ss[i,] <- r$ss


}
matplot(kl, b,


type="l", lty=1, col=par(’fg’), axes=F, ylab=’’)
axis(1)
abline(h=c(0,-1,1), lty=3)
par(new=T)
matplot(kl, v, type="l", col=’red’, axes=F, ylab=’’)
par(new=T)
matplot(kl, ss, type="l", col=’blue’, axes=F, ylab=’’)
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,


c("parameters", "variance", "sum of squares"),
lwd=1, lty=1, col=c(par(’fg’), "red", "blue") )
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matplot(log(kl), b,
type="l", lty=1, col=par(’fg’), axes=F, ylab=’’)


axis(1)
abline(h=c(0,-1,1), lty=3)
par(new=T)
matplot(log(kl), v, type="l", col=’red’, axes=F, ylab=’’)
par(new=T)
matplot(log(kl), ss, type="l", col=’blue’, axes=F, ylab=’’)
# I cannot put the legend if the scale is logarithmic...
legend( par("usr")[1],


.9*par("usr")[3] + .1*par("usr")[4],
yjust=0, xjust=0,
c("parameters", "variance", "sum of squares"),
lwd=1, lty=1, col=c(par(’fg’), "red", "blue") )
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TODO: add Rˆ2 to the preceding plot
Actually, if you look at several such simulations, you will see that those plots are not helpful
at all: the curves all have the same shape, but the exact values of the parameters can be
anywhere...
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op <- par(mfrow=c(3,3))
for (j in 1:9) {
m <- my.sample()
b <- matrix(NA, nr=length(kl), nc=2)
for (i in 1:length(kl)) {
b[i,] <- lm.ridge(m[,1]~m[,-1], lambda=kl[i])$coef


}
matplot(kl, b, type="l", log=’x’)
abline(h=c(0,-1,1), lty=3)
k <- min( lm.ridge(m[,1]~m[,-1], lambda=kl)$GCV )
abline(v=k, lty=3)


}
par(op)


To choose the value of k, you can also use cross-valudation.
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m <- my.sample()
N <- 20
err <- matrix(nr=length(kl), nc=N)
for (j in 1:N) {
s <- sample(dim(m)[1], floor(3*dim(m)[1]/4))
mm <- m[s,]
mv <- m[-s,]
for (i in 1:length(kl)) {
r <- lm.ridge(mm[,1]~mm[,-1], lambda=kl[i])
# BUG...
b <- r$coef / r$scales
a <- r$ym - t(b) %*% r$xm
p <- rep(a, dim(mv)[1]) + mv[,-1] %*% b
e <- p-mv[,1]
err[i,j] <- sum(e*e)


}
}
err <- apply(err, 1, mean)


plot(err ~ kl, type=’l’, log=’x’)


TODO: there is a problem with this code.
(we try to minimize the error, that should grow with k...)


Finally, you can use the various heuristics provided by the “lm.ridge” command.
m <- my.sample()
x <- m[,1]
y <- m[,-1]


r <- lm.ridge(y~x, lambda=kl);
r$kHKB; r$kLW; min(r$GCV)


Fir this example:
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[1] 0
[1] 0
[1] 0.04624034


The computer advises us to use classical regression – but we have seen above that, on this
example, k=0.5 was a good value...
Other example:
data(longley)
y <- longley[,1]
x <- as.matrix(longley[,-1])
r <- lm.ridge(y~x, lambda=kl);
r$kHKB; r$kLW; min(r$GCV)


This yields:
[1] 0.006836982
[1] 0.05267247
[1] 0.1196090


See also:
library(help=lpridge) # Local polynomial (ridge) regression.


You might want to read:
J.O. Rawlings, Applied Regression Analysis: A Research Tool (1988), chapter


12.


10.5.5 Lasso


This is a variant of ridge regression, with an L1 constraint instead of the L2 one: we try to
find b that minimizes
Sum( y i - b0 - Sum( xij bj ) )^2 + k Sum abs(bj).
i j j>0


We could implement it by hand:
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my.lasso <- function (y,x,k=0) {
xm <- apply(x,2,mean)
ym <- mean(y)
y <- y - ym
x <- t( t(x) - xm )
ss <- function (b) {
t( y - x %*% b ) %*% ( y - x %*% b ) + k * sum(abs(b))


}
b <- nlm(ss, rep(0,dim(x)[2]))$estimate
c(ym-t(b)%*%xm, b)


}


my.lasso.test <- function (n=20) {
s <- .1
x <- rnorm(n)
x1 <- x + s*rnorm(n)
x2 <- x + s*rnorm(n)
x <- cbind(x1,x2)


y <- x1 + x2 + 1 + rnorm(n)
lambda <- c(0, .001, .01, .1, .2, .5, 1, 2, 5, 10)
b <- matrix(nr=length(lambda), nc=1+dim(x)[2])
for (i in 1:length(lambda)) {
b[i,] <- my.lasso(y,x,lambda[i])


}
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plot(b[,2], b[,3],
type = "b",
xlim = range(c(b[,2],1)),
ylim = range(c(b[,3],1)))


text(b[,2], b[,3], lambda, adj=c(-.2,-.2), col="blue")
points(1,1,pch="+", cex=3, lwd=3)
points(b[8,2],b[8,3],pch=15)


}
my.lasso.test()
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
my.lasso.test()


}
par(op)
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
my.lasso.test(1000)


}
par(op)


but there is already a function
library(help=lasso2)
library(lasso2)
?l1ce
?gl1ce


The same example.
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%%G BUG in lasso2
# There is not plot because of a bug in the "l1ce"
# function: first, it only accepts a data.frame;
# second. this data.frame has to be a global variable...


library(lasso2)
set.seed(73823)
#other.lasso.test <- function (n=20) {
s <- .1
x <- rnorm(n)
x1 <- x + s*rnorm(n)
x2 <- x + s*rnorm(n)
y <- x1 + x2 + 1 + rnorm(n)
d <- data.frame(y,x1,x2)
lambda <- c(0, .001, .01, .1, .2, .5, 1, 2, 5, 10)
b <- matrix(nr=length(lambda), nc=dim(d)[2])
for (i in 1:length(lambda)) {
try( b[i,] <- l1ce(y~x1+x2, data=d, bound=lambda[i], absolute.t=T)$coefficients


)
# I got the very informative error message:
# Oops, something went wrong in .C("lasso",..): -1


}
plot(b[,2], b[,3],


type="b",
xlim=range(c(b[,2],1)), ylim=range(c(b[,3],1)))


text(b[,2], b[,3], lambda, adj=c(-.2,-.2), col="blue")
points(1,1,pch="+", cex=3, lwd=3)
points(b[8,2],b[8,3],pch=15)


#}
#other.lasso.test()
%--


op <- par(mfrow=c(3,3))
for (i in 1:9) {
other.lasso.test()


}
par(op)


10.5.6 Comparing some of these regressions


TODO:
y ~ x1 + x2
LS, ridge, lasso, PLS, PCR, best subset (leap): plot(b2~b1)
(some of these methods are discrete, others are continuous)
In particular, remark that ridge regression is very
similar to PLS ou PCR.


Let us start with ridge regression (red) and the lasso (black): the former seems better.
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get.sample <- function (n=20,s=.1) {
x <- rnorm(n)
x1 <- x + s*rnorm(n)
x2 <- x + s*rnorm(n)
y <- x1 + x2 + 1 + rnorm(n)
data.frame(y,x1,x2)


}
lambda <- c(0, .001, .01, .1, .2, .5, 1, 2, 5, 10)


do.it <- function (n=20,s=.1) {
d <- get.sample(n,s)
y <- d$y
x <- cbind(d$x1,d$x2)
ridge <- matrix(nr=length(lambda), nc=1+dim(x)[2])
for (i in 1:length(lambda)) {
ridge[i,] <- my.ridge(y,x,lambda[i])


}
lasso <- matrix(nr=length(lambda), nc=1+dim(x)[2])


for (i in 1:length(lambda)) {
lasso[i,] <- my.lasso(y,x,lambda[i])


}
xlim <- range(c( 1, ridge[,2], lasso[,2] ))
ylim <- range(c( 1, ridge[,3], lasso[,3] ))
plot(ridge[,2], ridge[,3],


type = "b", col = ’red’,
xlim = xlim, ylim = ylim)


points(ridge[8,2],ridge[8,3],pch=15,col=’red’)
lines(lasso[,2], lasso[,3], type="b")
points(lasso[8,2],lasso[8,3],pch=15)
points(1,1,pch="+", cex=3, lwd=3)


}


op <- par(mfrow=c(3,3))
for (i in 1:9) {
do.it()


}
par(op)


With larger samples, the lasso goes in the wrong direction...
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
do.it(100)


}
par(op)


On the contrary, when there is little multicolinearity, both methods give similar results –
similarly bad results.
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
do.it(20,10)


}
par(op)


Actually, Principal Component Regression (PCR) and Partial Least Squares (PLS) are dis-
crete analogues of ridge regression. WE shall ofter prefer ridge regression, because the
parameter can vary continuously.
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my.pcr <- function (y,x,k) {
n <- dim(x)[1]
p <- dim(x)[2]
ym <- mean(y)
xm <- apply(x,2,mean)
# Ideally, we should also normalize x and y...
# (exercise left to the reader)
y <- y - ym
x <- t( t(x) - xm )
pc <- princomp(x)
b <- lm(y~pc$scores[,1:k]-1)$coef
b <- c(b, rep(0,p-k))
b <- pc$loadings %*% b
names(b) <- colnames(x)
b <- c(ym-t(b)%*%xm, b)
b


}
get.sample <- function (n=20, s=.1) {


x <- rnorm(n)
x1 <- x + s*rnorm(n)
x2 <- x + s*rnorm(n)
x3 <- x + s*rnorm(n)
x4 <- x + s*rnorm(n)
x <- cbind(x1,x2,x3,x4)
y <- x1 + x2 - x3 - x4 + 1 + rnorm(n)
list(x=x,y=y)


}
pcr.test <- function (n=20, s=.1) {
s <- get.sample(n,s)
x <- s$x
y <- s$y
pcr <- matrix(nr=4,nc=5)
for (k in 1:4) {
pcr[k,] <- my.pcr(y,x,k)


}
plot(pcr[,2], pcr[,3],


type = "b",
xlim = range(c(pcr[,2],1)),
ylim = range(c(pcr[,3],1)))


points(pcr[4,2], pcr[4,3], lwd=2)
points(1,1, pch="+", cex=3, lwd=3)


}
pcr.test()


TODO: add PLS


TODO: Put a title to the following section
(PCR/ridge regression comparison)
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pcr.test <- function (n=20, s=.1) {
s <- get.sample(n,s)
x <- s$x
y <- s$y


lambda <- c(0, .001, .01, .1, .2, .5, 1, 2, 5, 10)
ridge <- matrix(nr=length(lambda), nc=1+dim(x)[2])
for (i in 1:length(lambda)) {
ridge[i,] <- my.ridge(y,x,lambda[i])


}


pcr <- matrix(nr=4,nc=5)
for (k in 1:4) {
pcr[k,] <- my.pcr(y,x,k)


}


xlim <- range(c( 1, ridge[,2], pcr[,2] ))
ylim <- range(c( 1, ridge[,3], pcr[,3] ))


plot(ridge[,2], ridge[,3],
type = "b", col = ’red’,
xlim = xlim, ylim = ylim)


points(ridge[4,2], ridge[4,3],
pch = 15, col = ’red’)


lines(pcr[,2], pcr[,3], type="b")
points(pcr[4,2], pcr[4,3], lwd=2)
points(1,1, pch="+", cex=3, lwd=3)


}
op <- par(mfrow=c(3,3))
for (i in 1:9) {
pcr.test()


}
par(op)


10.5.7 Penalized MLE


We have seen that ridge regression, lasso or splines couls be defined as optimization problems
in which one tries to minimize a penalized sum of squares (a sum of squares, interpreted as
a distance between the model forecasts and the actual values, as in Least Squares methods,
to which we add a “penality” term, that grows with the complexity, the “naughtiness” of
the model).
You can do the same thing with Maximum Likelihood Methods: the likelihood is a prob-
ability (usually, you do not consider the likelihood, which tends to be a product, but the
log-likelihood, which tends to be a sum – less unwieldy), to which you can add a penality
for the model complexity.
TODO: Find examples (I have none...)







Chapter 11


Regression Problems – and
their Solutions


In this chapter, we list some of the problems that may occur in a regression and explain
how to spot them – graphically. Often, you can solve the problem by transforming the
variables (so that the outliers and influential observations disappear, so that the residuals
look normal, so that the residuals have the same variance – quite often, you can do all this
at the same time), by altering the model (for a simpler or more complex one) or by using
another regression (GLS to account for heteroskedasticity and correlated residuals, robust
regression to account for remaining influencial observations).
Overfit: choose a simpler model
Underfit: curvilinear regression, non-linear regression, local regression
Influential points: transform the data, robust regression, weighted


least squares, remove the points
Influential clusters: transform the data, mixtures
Non-gaussian residuals: transform the data, robust regression, normalp
Heteroskedasticity: gls
correlated residuals: gls
Unidentifiability: shrinkage methods
Missing values: discard the observations???
The curse of dimension (GAM,...)
Combining regressions (BMA,...)


11.1 Tests and confidence intervals


After this bird’s eye view of several regression techniques, let us come back to linear regres-
sion.


11.1.1 Tests


The “summary” function gave us the results of a Student T test on the regression coefficients
– that answered the question “is this coefficient significantly different from zero?”.
> x <- rnorm(100)
> y <- 1 + 2*x + .3*rnorm(100)
> summary(lm(y~x))
...
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.08440 0.03224 33.64 <2e-16 ***
x 2.04051 0.03027 67.42 <2e-16 ***


In the same example, if we have a prior idea on the value of the coefficient, we can test this
value: here, let us test if the intercept is 1.
(When you write a formula to describe a model, some operators are interpreted in a different
way (especially * and ˆ): to be sure that they will be understood as arithmetic operations


743
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on the variables, surround them with I(...). Here, it is not needed.)
> x <- rnorm(100)
> y <- 1 + 2*x + .3*rnorm(100)
> summary(lm(I(y-1)~x))


Call:
lm(formula = I(y - 1) ~ x)


Residuals:
Min 1Q Median 3Q Max


-0.84692 -0.24891 0.02781 0.20486 0.60522


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) -0.01294 0.02856 -0.453 0.651
x 1.96405 0.02851 68.898 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.2855 on 98 degrees of freedom
Multiple R-Squared: 0.9798, Adjusted R-squared: 0.9796
F-statistic: 4747 on 1 and 98 DF, p-value: < 2.2e-16


Under the hypothesis that this coefficient is 1, let us check if the other is zero.
> summary(lm(I(y-1)~0+x))


Call:
lm(formula = I(y - 1) ~ 0 + x)


Residuals:
Min 1Q Median 3Q Max


-0.85962 -0.26189 0.01480 0.19184 0.59227


Coefficients:
Estimate Std. Error t value Pr(>|t|)


x 1.96378 0.02839 69.18 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.2844 on 99 degrees of freedom
Multiple R-Squared: 0.9797, Adjusted R-squared: 0.9795
F-statistic: 4786 on 1 and 99 DF, p-value: < 2.2e-16


Other method:
> x <- rnorm(100)
> y <- 1 + 2*x + .3*rnorm(100)
> a <- rep(1,length(x))
> summary(lm(y~offset(a)-1+x))


Call:
lm(formula = y ~ offset(a) - 1 + x)


Residuals:
Min 1Q Median 3Q Max


-0.92812 -0.09901 0.09515 0.28893 0.99363


Coefficients:
Estimate Std. Error t value Pr(>|t|)


x 2.04219 0.03114 65.58 <2e-16 ***
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.3317 on 99 degrees of freedom
Multiple R-Squared: 0.9816, Adjusted R-squared: 0.9815
F-statistic: 5293 on 1 and 99 DF, p-value: < 2.2e-16


Let us check if it is equal to 2:
> summary(lm(I(y-1-2*x)~0+x))


Call:
lm(formula = I(y - 1 - 2 * x) ~ 0 + x)


Residuals:
Min 1Q Median 3Q Max


-0.85962 -0.26189 0.01480 0.19184 0.59227


Coefficients:
Estimate Std. Error t value Pr(>|t|)


x -0.03622 0.02839 -1.276 0.205


Residual standard error: 0.2844 on 99 degrees of freedom
Multiple R-Squared: 0.01618, Adjusted R-squared: 0.006244
F-statistic: 1.628 on 1 and 99 DF, p-value: 0.2049


Other method:
> summary(lm(y~offset(1+2*x)+0+x))
Call:
lm(formula = y ~ offset(1 + 2 * x) + 0 + x)


Residuals:
Min 1Q Median 3Q Max


-0.92812 -0.09901 0.09515 0.28893 0.99363


Coefficients:
Estimate Std. Error t value Pr(>|t|)


x 0.04219 0.03114 1.355 0.179


Residual standard error: 0.3317 on 99 degrees of freedom
Multiple R-Squared: 0.9816, Adjusted R-squared: 0.9815
F-statistic: 5293 on 1 and 99 DF, p-value: < 2.2e-16


More generally, you can use the “offset” function in a linear regression when you know
exactly one of the coefficients.
Other method:
x <- rnorm(100)
y <- 1 + 2*x + .3*rnorm(100)
library(car)
linear.hypothesis( lm(y~x), matrix(c(1,0,0,1), 2, 2), c(1,2) )


This checks if
[ 1 0 ] [ first coefficient ] [ 1 ]
[ ] * [ ] = [ ]
[ 0 1 ] [ second coefficient ] [ 2 ].


This yields:
F-Test
SS = 0.04165324 SSE = 9.724817 F = 0.2098763 Df = 2 and 98 p =


0.8110479
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11.1.2 Confidence intervals and prediction intervals


You can compute confidence intervals on the parameters.
> library(MASS)
> n <- 100
> x <- rnorm(n)
> y <- 1 - 2*x + rnorm(n)
> r <- lm(y~x)
> r$coefficients
(Intercept) x
0.9569173 -2.1296830


> confint(r)
2.5 % 97.5 %


(Intercept) 0.7622321 1.151603
x -2.3023449 -1.957021


You can also look for confidence intervals on the predicted values. It can be a confidence
interval of aX+b (confidence band) or – this is different – of E[Y—X=x] (prediction band).
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x <- runif(20)
y <- 1-2*x+.1*rnorm(20)
res <- lm(y~x)
plot(y~x)
new <- data.frame( x=seq(0,1,length=21) )
p <- predict(res, new)
points( p ~ new$x, type=’l’ )
p <- predict(res, new, interval=’confidence’)
points( p[,2] ~ new$x, type=’l’, col="green" )
points( p[,3] ~ new$x, type=’l’, col="green" )
p <- predict(res, new, interval=’prediction’)
points( p[,2] ~ new$x, type=’l’, col="red" )
points( p[,3] ~ new$x, type=’l’, col="red" )
title(main="Confidence and prediction bands")
legend( par("usr")[1], par("usr")[3], yjust=0,


c("Confidence band", "Prediction band"),
lwd=1, lty=1, col=c("green", "red") )


TODO: stress the difference between the two...
Away from the values of the sample, the intervals grow.







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 747


●


●


●


●


●


●
●


●


●
●


●


●


●●


●


●


●


●


●


●


−1.0 −0.5 0.0 0.5 1.0 1.5 2.0


−
3


−
2


−
1


0
1


2
3


x


y


Confidence and prediction bands


Confidence band
Prediction band


plot(y~x, xlim=c(-1,2), ylim=c(-3,3))
new <- data.frame( x=seq(-2,3,length=200) )
p <- predict(res, new)
points( p ~ new$x, type=’l’ )
p <- predict(res, new, interval=’confidence’)
points( p[,2] ~ new$x, type=’l’, col="green" )
points( p[,3] ~ new$x, type=’l’, col="green" )
p <- predict(res, new, interval=’prediction’)
points( p[,2] ~ new$x, type=’l’, col="red" )
points( p[,3] ~ new$x, type=’l’, col="red" )
title(main="Confidence and prediction bands")
legend( par("usr")[1], par("usr")[3], yjust=0,


c("Confidence band", "Prediction band"),
lwd=1, lty=1, col=c("green", "red") )
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plot(y~x, xlim=c(-5,6), ylim=c(-11,11))
new <- data.frame( x=seq(-5,6,length=200) )
p <- predict(res, new)
points( p ~ new$x, type=’l’ )
p <- predict(res, new, interval=’confidence’)
points( p[,2] ~ new$x, type=’l’, col="green" )
points( p[,3] ~ new$x, type=’l’, col="green" )
p <- predict(res, new, interval=’prediction’)
points( p[,2] ~ new$x, type=’l’, col="red" )
points( p[,3] ~ new$x, type=’l’, col="red" )
title(main="Confidence and prediction bands")
legend( par("usr")[1], par("usr")[3], yjust=0,


c("Confidence band", "Prediction band"),
lwd=1, lty=1, col=c("green", "red") )


Here are other ways of representing the confidence and prediction intervals.
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N <- 100
n <- 20
x <- runif(N, min=-1, max=1)
y <- 1 - 2*x + rnorm(N, sd=abs(x))
res <- lm(y~x)
plot(y~x)
x0 <- seq(-1,1,length=n)
new <- data.frame( x=x0 )
p <- predict(res, new)
points( p ~ x0, type=’l’ )
p <- predict(res, new, interval=’prediction’)
segments( x0, p[,2], x0, p[,3], col=’red’)
p <- predict(res, new, interval=’confidence’)
segments( x0, p[,2], x0, p[,3], col=’green’, lwd=3 )
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mySegments <- function(a,b,c,d,...) {
u <- par(’usr’)
e <- (u[2]-u[1])/100
segments(a,b,c,d,...)
segments(a+e,b,a-e,b,...)
segments(c+e,d,c-e,d,...)


}
plot(y~x)
p <- predict(res, new)
points( p ~ x0, type=’l’ )
p <- predict(res, new, interval=’prediction’)
mySegments( x0, p[,2], x0, p[,3], col=’red’)
p <- predict(res, new, interval=’confidence’)
mySegments( x0, p[,2], x0, p[,3], col=’green’, lwd=3 )


11.1.3 Test on a pair of variables (ellipses)


You can want a confidence interval for a single, isolated, parameter – you get an interval –
or for several parameters at a time – you get an ellipsoid, called the confidence region. It
brings more information than the 1-variable confidence intervals (you cannot combine those
intervals). Thus you might want to plot these ellipses.
The ellipse you get is skewed, because it comes from the correlation matrix of the two
coefficients: simply diagonalize it in an orthonormal basis and the eigen vectors will give
you the axes.
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library(ellipse)
my.confidence.region <- function (g, a=2, b=3) {
e <- ellipse(g,c(a,b))
plot(e,


type="l",
xlim=c( min(c(0,e[,1])), max(c(0,e[,1])) ),
ylim=c( min(c(0,e[,2])), max(c(0,e[,2])) ),
)


x <- g$coef[a]
y <- g$coef[b]
points(x,y,pch=18)
cf <- summary(g)$coefficients
ia <- cf[a,2]*qt(.975,g$df.residual)
ib <- cf[b,2]*qt(.975,g$df.residual)
abline(v=c(x+ia,x-ia),lty=2)
abline(h=c(y+ib,y-ib),lty=2)
points(0,0)
abline(v=0,lty="F848")


abline(h=0,lty="F848")
}


n <- 20
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- x1+x2+x3+rnorm(n)
g <- lm(y~x1+x2+x3)
my.confidence.region(g)
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n <- 20
x <- rnorm(n)
x1 <- x+.2*rnorm(n)
x2 <- x+.2*rnorm(n)
y <- x1+x2+rnorm(n)
g <- lm(y~x1+x2)
my.confidence.region(g)


In the three following plots, the probability that the actual values of the parameters be in
the pink area is the same.
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my.confidence.region <- function (g, a=2, b=3, which=0, col=’pink’) {
e <- ellipse(g,c(a,b))
x <- g$coef[a]
y <- g$coef[b]
cf <- summary(g)$coefficients
ia <- cf[a,2]*qt(.975,g$df.residual)
ib <- cf[b,2]*qt(.975,g$df.residual)
xmin <- min(c(0,e[,1]))
xmax <- max(c(0,e[,1]))
ymin <- min(c(0,e[,2]))
ymax <- max(c(0,e[,2]))
plot(e,


type="l",
xlim=c(xmin,xmax),
ylim=c(ymin,ymax),
)


if(which==1){ polygon(e,col=col) }
else if(which==2){ rect(x-ia,par(’usr’)[3],x+ia,par(’usr’)[4],col=col,border=col) }


else if(which==3){ rect(par(’usr’)[1],y-ib,par(’usr’)[2],y+ib,col=col,border=col) }
lines(e)
points(x,y,pch=18)
abline(v=c(x+ia,x-ia),lty=2)
abline(h=c(y+ib,y-ib),lty=2)
points(0,0)
abline(v=0,lty="F848")
abline(h=0,lty="F848")


}
my.confidence.region(g, which=1)
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my.confidence.region(g, which=2)







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 751


−3 −2 −1 0 1 2 3


−
1


0
1


2
3


4
5


x1


x2


●


my.confidence.region(g, which=3)


11.1.4 The dangers of multiple tests


When you perform a multiple regression, you try to retain as few predictive variables as
possible, while retaining all those that are relevant. To choose or discard variables, you
might be tempted to perform a lot of statistical tests.
This is a bad idea.
Indeed, for each testm you have a certain risk of making a mistake – and those risks pile up.
However, this is usually what we do – we rarely have the choice. You can either start with
a model with no variable at all, then add the “best” predictive variable (say, the one with
the higher correlation) and progressively add other variables (say, the ones that provide the
biggest increase in Rˆ2) and stop when you reach a certain criterion (say, when Fˆ2 reaches
a certain value); or start with a saturated model, containing all the variables an successively
remove the variables that provide the smallest decrease in Rˆ2 and stop when Fˆ2 reaches
a value fixed in advance.
TODO: Tukey, etc. (in the Anova chapter?)


11.1.5 Regression and sums of squares


When you read regression or anova (analysis of variance) results, you often face a table “full
of sums of squares”.
RSS (Residual Sum of Squares): this is the quantity you try to minimize in a regression.
More precisely, let X be the predictive variable, Y the variable to predict and hat(Yi) the
predicted velue, we set
hat Yi = b0 + b1 Xi


and we try to find the values of b0 and b1 that minimize
RSS = Sum( (Yi - hat Yi)^2 ).


TSS (Total sum of squares): The is the sun of squares minimized when you look for the
mean of Y
TSS = Sum( (Yi - bar Y)^2 )


ESS (Explained Sum of Squares): This is the difference between the preceding two sums of
squares. It can also be written as a sum of squares.
ESS = Sum( ( hat Yi - bar Y )^2 )


R-square: “determination coefficient” or “percentage of variance of Y explained by X”. The
closer to one, the better the regression explains the variations of Y.
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R^2 = ESS/TSS.


You can give a graphical interpretation of the determination coefficient. The data are
clustered in a band of height RSS around the regression line, while the height of the plot is
TSS. We then have Rˆ2=1-RSS/TSS.
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n <- 20000
x <- runif(n)
y <- 4 - 8*x + rnorm(n)
plot(y~x, pch=’.’)
abline(lm(y~x), col=’red’)
arrows( .1, -6, .1, 6, code=3, lwd=3, col=’blue’ )
arrows( .9, -3.2-2, .9, -3.2+2, code=3, lwd=3, col=’blue’ )
text( .1, 6, "TSS", adj=c(0,0), cex=2, col=’blue’ )
text( .9, -3.2+2, "RSS", adj=c(1,0), cex=2, col=’blue’ )


11.1.6 Reading the results of a regression


We have seen three way of printing the results of a regression: with the “print”, “summary”
and “anova” functions. The last line of the “anova” function compares our model with the
null model (i.e., with the model with no explanatory variables at all, y ˜ 1).
> x <- rnorm(100)
> y <- 1 + 2*x + .3*rnorm(100)
> summary(lm(y~x))


Call:
lm(formula = y ~ x)


Residuals:
Min 1Q Median 3Q Max


-0.84692 -0.24891 0.02781 0.20486 0.60522


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 0.98706 0.02856 34.56 <2e-16 ***
x 1.96405 0.02851 68.90 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.2855 on 98 degrees of freedom
Multiple R-Squared: 0.9798, Adjusted R-squared: 0.9796
F-statistic: 4747 on 1 and 98 DF, p-value: < 2.2e-16


The result of the “anova” function explains where these fugures come from: you have the
sum of squares, their “mean” (just divide by the “number of degrees of freedom”), their
quotient (F-value) and the probability that this quotient be as high if the slope of the line
is zero (i.e., the p-value of the test of H0: “the slope is zero” against H1: “the slope is not
zero”).
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> anova(lm(y~x))
Analysis of Variance Table


Response: y
Df Sum Sq Mean Sq F value Pr(>F)


x 1 386.97 386.97 4747 < 2.2e-16 ***
Residuals 98 7.99 0.08
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


More generally, the “anova” function performs a test that compares embedded models (here,
a model with an intercept and a slope, and a model with an intercept and no slope).


11.1.7 Comparing two models


In a multiple regression, you strive to retain as few variables as possible. In this process,
you want to compare models: e.g., compare a model with a lot of variable and a model with
fewer variables.
The “anova” function performs that kind of comparison (it does not answer the question
“is this model better?” but “are these models significantly different?” – if they are not
significantly different, you will reject the more complicated one).
data(trees)
r1 <- lm(Volume ~ Girth, data=trees)
r2 <- lm(Volume ~ Girth + Height, data=trees)
anova(r1,r2)


The result
Analysis of Variance Table


Model 1: Volume ~ Girth
Model 2: Volume ~ Girth + Height
Res.Df RSS Df Sum of Sq F Pr(>F)


1 29 524.30
2 28 421.92 1 102.38 6.7943 0.01449 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


tells us that the two models are significantly different with a risk of error under 2%.
Here are a few other examples.
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
b <- .1* rnorm(100)


y <- 1 + x1 + x2 + x3 + b
r1 <- lm( y ~ x1 )
r2 <- lm( y ~ x1 + x2 + x3 )
anova(r1,r2) # p-value = 2e-16


y <- 1 + x1
r1 <- lm( y ~ x1 )
r2 <- lm( y ~ x1 + x2 + x3 )
anova(r1,r2) # p-value = 0.25


y <- 1 + x1 + .02*x2 - .02*x3 + b
r1 <- lm( y ~ x1 )
r2 <- lm( y ~ x1 + x2 + x3 )
anova(r1,r2) # p-value = 0.10


You can compare more that two model (but always nested models: each model is included
in the next).
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y <- 1 + x1 + x2 + x3 + b
r1 <- lm( y ~ x1 )
r2 <- lm( y ~ x1 + x2 )
r3 <- lm( y ~ x1 + x2 + x3 )
anova(r1,r2,r3) # p-values = 2e-16 (both)


If, in the comparison of two models, you get a very high p-value, i.e., if the two models are
not significantly different, you will reject the more complex and retain the simplest.


11.1.8 Anova and regression


You can present the computations performed in a regression as an anova table. Furthermore,
the idea behind the computations is the same: express the variance of Y as the sum of a
variance of a variable affine in X and a residual variance, and minimize this residual variance.
x <- runif(10)
y <- 1 + x + .2*rnorm(10)
anova(lm(y~x))


Here, the anova tells us that, indeed, Y depend on X, with a risk of error under 1%.
Analysis of Variance Table


Response: y
Df Sum Sq Mean Sq F value Pr(>F)


x 1 0.85633 0.85633 20.258 0.002000 **
Residuals 8 0.33817 0.04227


It still works with several predictive variables.
x <- runif(10)
y <- runif(10)
z <- 1 + x - y + .2*rnorm(10)
anova(lm(z~x+y))


The analysis of variance table tells us that z depends on x and y, with a risk of error under
1%.
Analysis of Variance Table


Response: z
Df Sum Sq Mean Sq F value Pr(>F)


x 1 2.33719 2.33719 45.294 0.0002699 ***
y 1 0.73721 0.73721 14.287 0.0068940 **
Residuals 7 0.36120 0.05160


Counterintuitive and frightening as it may be, you might notice that the result depends on
the order of the parameters...
> anova(lm(z~y+x))
Analysis of Variance Table


Response: z
Df Sum Sq Mean Sq F value Pr(>F)


y 1 2.42444 2.42444 46.985 0.000241 ***
x 1 0.64996 0.64996 12.596 0.009355 **
Residuals 7 0.36120 0.05160


In some cases, you can even get contradictory results: depending on the order of the pre-
dictive variables, you can find that z sometimes depends on x, sometimes not.
> x <- runif(10)
> y <- runif(10)
> z <- 1 + x + 5*y + .2*rnorm(10)


> anova(lm(z~x+y))
Analysis of Variance Table
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Response: z
Df Sum Sq Mean Sq F value Pr(>F)


x 1 0.0104 0.0104 0.1402 0.7192
y 1 7.5763 7.5763 102.1495 1.994e-05 ***
Residuals 7 0.5192 0.0742


> anova(lm(z~y+x))
Analysis of Variance Table
Response: z


Df Sum Sq Mean Sq F value Pr(>F)
y 1 7.1666 7.1666 96.626 2.395e-05 ***
x 1 0.4201 0.4201 5.664 0.04889 *
Residuals 7 0.5192 0.0742


11.2 Partial residual plots, added variable plots


11.3 Some plots to explore a regression


11.3.1 Residuals


The residuals are the differences between the observed values and the predicted values.


11.3.2 Residuals and noise


The noise is the difference between the observed values and the actual values: it appears in
the model, e.g.
Y = a + b X + noise


Residues and noise are two different things. Even from a statistical point of view, they
look different. For instance, their variance is not the same (neither is the shape of their
distribution, by the way). The following simulation estimates the variance of the residuals:
we get 0.008893307 while the noise variance was 0.01.
a <- 1
b <- -2
s <- .1
n <- 10
N <- 1e6
v <- NULL
for (i in 1:N) {
x <- rnorm(n)
y <- 1-2*x+s*rnorm(n)
v <- append(v, var(lm(y~x)$res))


}
mean(v)


You can show that the variance of the residual of the observation i is
sigma^2 * ( 1 - h i )


where sigmaˆ2 is the noise variance and h i is the “leverage” of observation i (the i-th
diagonal term of t(X)%*%X).


11.3.3 Studentized (or standardized) residuals


These are the normalized residuals. Their variance is estimated from all the sample.
?rstandard
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11.3.4 Jackknife (or studentized) residuals


These are still the “normalized” residuals, but this time, we estimate the variance with the
sample without the current observation.
?rstudent


11.3.5 Plotting the residuals


Let us consider the following example.
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n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- x1^2+rnorm(n)
x4 <- 1/(1+x2^2)+.2*rnorm(n)
y <- 1+x1-x2+x3-x4+.1*rnorm(n)
pairs(cbind(x1,x2,x3,x4,y))


The residuals are full-fledged statistical variables: you can look at them through box-and-
whisker plots, histograms, qqplots, etc. You can also plot them as a function of the predicted
values, as a function of the various predictive variables or as a function of the observation
number.
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r <- lm(y~x1+x2+x3+x4)
boxplot(r$res, horizontal=T)
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plot(rstandard(r), main=’Standardized residuals’)
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plot(rstudent(r), main="Studentized residuals")
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plot(r$res ~ r$fitted.values,
main="Residuals and predicted values")


abline(h=0, lty=3)
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op <- par(mfrow=c(2,2))
plot(r$res ~ x1)
abline(h=0, lty=3)
plot(r$res ~ x2)
abline(h=0, lty=3)
plot(r$res ~ x3)
abline(h=0, lty=3)
plot(r$res ~ x4)
abline(h=0, lty=3)
par(op)
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n <- 100
x1 <- rnorm(n)
x2 <- 1:n
y <- rnorm(1)
for (i in 2:n) {
y <- c(y, y[i-1] + rnorm(1))


}
y <- x1 + y
r <- lm(y~x1+x2) # Or simply: lm(y~x1)
op <- par(mfrow=c(2,1))
plot( r$res ~ x1 )
plot( r$res ~ x2 )
par(op)


It is usually a bad idea to plot the residuals as a function of the observed values, because
the “noise term” in the model appears on both axes, and you (almost) end up plotting this
noise as a function of itself...
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Not a good idea...
n <- 100
x <- rnorm(n)
y <- 1-x+rnorm(n)
r <- lm(y~x)
plot(r$res ~ y)
abline(h=0, lty=3)
abline(lm(r$res~y),col=’red’)
title(main=’Not a good idea...’)


11.3.6 Partial regression plot (or added variable plot)


Let us consider a regression situation with two predictive variables X1 and X2 and one
variable to predict Y.
You can study the effect of X1 on Y after removing the (linear) effect of X2 on Y: simply
regress Y against X2, X1 against X2 and plot the residuals of the former against those of
the latter.
Those plots may help you spot influent observations.
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partial.regression.plot <- function (y, x, n, ...) {
m <- as.matrix(x[,-n])
y1 <- lm(y ~ m)$res
x1 <- lm(x[,n] ~ m)$res
plot( y1 ~ x1, ... )
abline(lm(y1~x1), col=’red’)


}


n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- x1+x2+rnorm(n)
x <- cbind(x1,x2,x3)
y <- x1+x2+x3+rnorm(n)
op <- par(mfrow=c(2,2))
partial.regression.plot(y, x, 1)
partial.regression.plot(y, x, 2)
partial.regression.plot(y, x, 3)


par(op)


There is already an “av.plot” function in the “car” package for this.


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
● ●


●
●●


●


●


●


●


●


●


●●


● ●


●


● ●


●
●


●


●


●


●


●
●


● ●


●


●


●


●


●
●●


●


●


●


●


●


●●


● ●


●
●


●


●


●


●


●


●


●●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


0.7 0.9 1.1 1.3


−
2


−
1


0
1


2


Added−Variable Plot


(Intercept) | others


y 
 | 


ot
he


rs


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●●


●


●


●


●
●


●


●


●


●
●


●


●


●
●


●


●●


●


●


●
●


●


●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


● ●


●


●


●


●


●


●


●


●●


●
●


●●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●


●


●


●


−1.0 0.0 0.5 1.0 1.5


−
3


−
1


0
1


2


Added−Variable Plot


x1 | others


y 
 | 


ot
he


rs


●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


● ●


●


●


●


●
●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●


●


●


●


●● ●


●


●


●


●


●


●


●●


● ●


●


●
●


●


●


●


●
●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●●


●
●


●


●


−1 0 1 2


−
3


−
1


0
1


2


Added−Variable Plot


x2 | others


y 
 | 


ot
he


rs


●


●


●
●


● ●


●


●


●
●


●


●


●
●


●


●
●


●


●


●


●


●


●


●
●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●


●


●●


●


●


●


●


−3 −2 −1 0 1 2


−
3


−
1


0
1


2


Added−Variable Plot


x3 | others


y 
 | 


ot
he


rs


library(car)
av.plots(lm(y~x1+x2+x3),ask=F)


The “leverage.plots”, still in the “car” package, generalizes this idea.
?leverage.plots


11.3.7 Partial residual plots


It is very similar to partial regression plots: this time, you plot Y, from which you have
removed the effects of X2, as a function of X1. It is more efficient than oartial regression to
spot non-linearities – but partial regression is superior when it comes to spotting influent or
outlying observations.
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my.partial.residual.plot <- function (y, x, i, ...) {
r <- lm(y~x)
xi <- x[,i]
# Y, minus the linear effects of X j
yi <- r$residuals + r$coefficients[i] * x[,i]
plot( yi ~ xi, ... )


}
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- x1+x2+rnorm(n)
x <- cbind(x1,x2,x3)
y <- x1+x2+x3+rnorm(n)
op <- par(mfrow=c(2,2))
my.partial.residual.plot(y, x, 1)
my.partial.residual.plot(y, x, 2)
my.partial.residual.plot(y, x, 3)
par(op)


The “car” or “Design” packages provide functions to plot the partial residuals.
library(car)
?cr.plots
?ceres.plots


library(Design)
?plot.lrm.partial
?lrm


11.4 Overfit


11.4.1 Overfit


The regression might be “too close” to the data, to the point that it becomes irrealistic,
that it performs poorly with “out-of-sample” data. The situation is not always as striking
and obvious as here. However, if you want to choose, say, a non-linear model (or anyting
complex), you must be able to justify it. In particular, compare the number of parameters
to estimate with the number of observations...
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Overfit
n <- 10
x <- seq(0,1,length=n)
y <- 1-2*x+.3*rnorm(n)
plot(spline(x, y, n = 10*n), col = ’red’, type=’l’, lwd=3)
points(y~x, pch=16, lwd=3, cex=2)
abline(lm(y~x))
title(main=’Overfit’)


This is mainly common-sense.
In the case of a linear regression, you can compare the determination coefficient (in case
of overfit, it is close to 1) and the adjusted determination coefficient (that accounts for
overfitting problems).
> summary(lm(y~poly(x,n-1)))
Call:
lm(formula = y ~ poly(x, n - 1))


Residuals:
ALL 10 residuals are 0: no residual degrees of freedom!


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 0.01196
poly(x, n - 1)1 -1.94091
poly(x, n - 1)2 -0.02303
poly(x, n - 1)3 -0.08663
poly(x, n - 1)4 -0.06938
poly(x, n - 1)5 -0.34501
poly(x, n - 1)6 -0.51048
poly(x, n - 1)7 -0.28479
poly(x, n - 1)8 -0.22273
poly(x, n - 1)9 0.39983


Residual standard error: NaN on 0 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 9 and 0 DF, p-value: NA


> summary(lm(y~poly(x,n-2)))
Call:
lm(formula = y ~ poly(x, n - 2))


Residuals:
1 2 3 4 5 6 7 8


9 10
-0.001813 0.016320 -0.065278 0.152316 -0.228473 0.228473 -0.152316 0.065278


-0.016320 0.001813


Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01196 0.12644 0.095 0.940
poly(x, n - 2)1 -1.94091 0.39983 -4.854 0.129
poly(x, n - 2)2 -0.02303 0.39983 -0.058 0.963
poly(x, n - 2)3 -0.08663 0.39983 -0.217 0.864
poly(x, n - 2)4 -0.06938 0.39983 -0.174 0.891
poly(x, n - 2)5 -0.34501 0.39983 -0.863 0.547
poly(x, n - 2)6 -0.51048 0.39983 -1.277 0.423
poly(x, n - 2)7 -0.28479 0.39983 -0.712 0.606
poly(x, n - 2)8 -0.22273 0.39983 -0.557 0.676


Residual standard error: 0.3998 on 1 degrees of freedom
Multiple R-Squared: 0.9641, Adjusted R-squared: 0.6767
F-statistic: 3.355 on 8 and 1 DF, p-value: 0.4


If you are reasonable, the determination coefficient and its adjusted version are very close.
> x <- seq(0,1,length=n)
> y <- 1-2*x+.3*rnorm(n)
> summary(lm(y~poly(x,10)))


Call:
lm(formula = y ~ poly(x, 10))


Residuals:
Min 1Q Median 3Q Max


-0.727537 -0.206951 -0.002332 0.177562 0.902353


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) -0.01312 0.02994 -0.438 0.662
poly(x, 10)1 -6.11784 0.29943 -20.431 <2e-16 ***
poly(x, 10)2 -0.11099 0.29943 -0.371 0.712
poly(x, 10)3 -0.04936 0.29943 -0.165 0.869
poly(x, 10)4 -0.28863 0.29943 -0.964 0.338
poly(x, 10)5 -0.15348 0.29943 -0.513 0.610
poly(x, 10)6 0.12146 0.29943 0.406 0.686
poly(x, 10)7 0.05066 0.29943 0.169 0.866
poly(x, 10)8 0.09707 0.29943 0.324 0.747
poly(x, 10)9 0.07554 0.29943 0.252 0.801
poly(x, 10)10 0.42494 0.29943 1.419 0.159
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.2994 on 89 degrees of freedom
Multiple R-Squared: 0.8256, Adjusted R-squared: 0.8059
F-statistic: 42.12 on 10 and 89 DF, p-value: < 2.2e-16


> summary(lm(y~poly(x,1)))
...
Multiple R-Squared: 0.8182, Adjusted R-squared: 0.8164
...


11.4.2 Sample too small


If the sample is too small, you will not be able to estimate much, In such situationm you
have to restrict yourself to simple (simplistic) models, such as linear models, becaus the
overfitting risk is too high.
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11.4.3 Too many variables


TODO


Explain what you can do if there are more variables than
observations.
The naive approach will not work:
n <- 100
k <- 500
x <- matrix(rnorm(n*k), nr=n, nc=k)
y <- apply(x, 1, sum)
lm(y~x)


svm


11.5 Underfit


11.5.1 Underfit (curvilinearity)


Sometimes, the model is too simplistic.
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x <- runif(100, -1, 1)
y <- 1-x+x^2+.3*rnorm(100)
plot(y~x)
abline(lm(y~x), col=’red’)


On the preceding plot, it is not obvious, but you can spot the problem if you try to see if a
polynomial model would not be better,
> summary(lm(y~poly(x,10)))
...
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.29896 0.02841 45.725 < 2e-16 ***
poly(x, 10)1 -4.98079 0.28408 -17.533 < 2e-16 ***
poly(x, 10)2 2.53642 0.28408 8.928 5.28e-14 ***
poly(x, 10)3 -0.06738 0.28408 -0.237 0.813
poly(x, 10)4 -0.15583 0.28408 -0.549 0.585
poly(x, 10)5 0.15112 0.28408 0.532 0.596
poly(x, 10)6 0.04512 0.28408 0.159 0.874
poly(x, 10)7 -0.29056 0.28408 -1.023 0.309
poly(x, 10)8 -0.39384 0.28408 -1.386 0.169
poly(x, 10)9 -0.25763 0.28408 -0.907 0.367
poly(x, 10)10 -0.09940 0.28408 -0.350 0.727
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or by using splines (or any other regularization method) an by looking at the result,
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Splines can help you spot non−linear relations
plot(y~x)
lines(smooth.spline(x,y), col=’red’, lwd=2)
title(main="Splines can help you spot non-linear relations")
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Non−linear relations and "lowess"
plot(y~x)
lines(lowess(x,y), col=’red’, lwd=2)
title(main=’Non-linear relations and "lowess"’)
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Non−linear relation and "loess"
plot(y~x)
xx <- seq(min(x),max(x),length=100)
yy <- predict( loess(y~x), data.frame(x=xx) )
lines(xx,yy, col=’red’, lwd=3)
title(main=’Non-linear relation and "loess"’)


or by looking at the residuals with any regularization method (plot the residuals as a function
of the predicted values or as a function of the predictive variables).
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predicted values


re
si


du
al


s


r <- lm(y~x)
plot(r$residuals ~ r$fitted.values,


xlab=’predicted values’, ylab=’residuals’,
main=’Residuals and predicted values’)


lines(lowess(r$fitted.values, r$residuals), col=’red’, lwd=2)
abline(h=0, lty=3)
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plot(r$residuals ~ x,
xlab=’x’, ylab=’residuals’,
main=’Residuals and the predictive variable’)


lines(lowess(x, r$residuals), col=’red’, lwd=2)
abline(h=0, lty=3)


In some (rare) cases, you have several observations for the same value of the predictive
variables: you can then perform the following test.
x <- rep(runif(10, -1, 1), 10)
y <- 1-x+x^2+.3*rnorm(100)
r1 <- lm(y ~ x)
r2 <- lm(y ~ factor(x))
anova(r1,r2)


Both models should give the same predictions: here, it is not the case.
Analysis of Variance Table


Model 1: y ~ x
Model 2: y ~ factor(x)
Res.Df RSS Df Sum of Sq F Pr(>F)


1 98 19.5259
2 90 6.9845 8 12.5414 20.201 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Let us try with a linear relation.
x <- rep(runif(10, -1, 1), 10)
y <- 1-x+.3*rnorm(100)
r1 <- lm(y ~ x)
r2 <- lm(y ~ factor(x))
anova(r1,r2)


The models are not significantly different.
Analysis of Variance Table


Model 1: y ~ x
Model 2: y ~ factor(x)
Res.Df RSS Df Sum of Sq F Pr(>F)


1 98 9.6533
2 90 8.9801 8 0.6733 0.8435 0.5671


11.5.2 Structural changes: TODO


# Non-linearity
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library(lmtest)
?harvtest
?raintest
?reset


The “strucchange” package detects structural changes (very often with time series, e.g., in
econometry). There is a structural change when (for instance) the linear model is correct,
but its coefficients change for time to time. If you know where the change occurs, you just
split your sample into several chuks and perform a regression on each (to make sure that a
change occured, you can test the equality of the coefficients in the chunks).
But usually, you do not know where the changes occur. You can try with moving window
to find the most probable date for the structural change (you can take a window with a
constant width, or one with a constrant number of observations).
TODO: an example


# Structural change
library(strucchange)
efp(..., type="Rec-CUSUM")
efp(..., type="OLS-MOSUM")
plot(efp(...))
sctest(efp(...))


TODO: an example


Fstat(...)
plot(Fstat(...))
sctest(Fstat(...))


11.6 Influential points


11.6.1 Influential observations


Some points might bear an abnormally high influence on the regression results. SOmetimes,
they come from mistakes (they should be identified and corrected), sometimes, they are
perfectly normal but extreme. The leverage effect can yield incorrect results.
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n <- 20
done.outer <- F
while (!done.outer) {
done <- F
while(!done) {
x <- rnorm(n)
done <- max(x)>4.5


}
y <- 1 - 2*x + x*rnorm(n)
r <- lm(y~x)
done.outer <- max(cooks.distance(r))>5


}
plot(y~x)
abline(1,-2,lty=2)
abline(lm(y~x),col=’red’,lwd=3)
lm(y~x)$coef


The first thing to do, even before starting the regression, is to look at the variables one at
a time.
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boxplot(x, horizontal=T)


−1 0 1 2 3 4


stripchart(x, method=’jitter’)


Histogram of x
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hist(x, col=’light blue’, probability=T)
lines(density(x), col=’red’, lwd=3)


Same for y.
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boxplot(y, horizontal=T)







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 771


−15 −10 −5 0 5


stripchart(y, method=’jitter’)
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hist(y, col=’light blue’, probability=T)
lines(density(y), col=’red’, lwd=3)


Here, there is an extreme point. AS there is a single one, we might be tempted to remove
it – if there were several, we would rather try to transform the data.
There is a measure of the “extremeness” of a point – its leverage –: the diagonal elements
of the hat matrix
H = X (X’ X)^-1 X’


It is called “hat matrix” because
\hat Y = H Y.


Those values tells us how an error on a predictive variable prapagates to the predictions.
The leverages are between 1/n and 1. Under 0.2, it is fine. You will not that this uses the
predictive variable X but not the variable to predict Y.
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plot(hat(x), type=’h’, lwd=5)


You can also measure the effect of each observation on the regression: remove the point,
compute the regression, the predicted values and compare them with the values predicted
from the whole sample:
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r)


plot(dffits(r),type=’h’,lwd=3)


You can also compare the coefficients:
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plot(dfbetas(r)[,1],type=’h’,lwd=3)
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plot(dfbetas(r)[,2],type=’h’,lwd=3)


In higher dimensions, you can plot the variation of a coefficient as a function of the variation
of other coefficients.
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n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
yy <- x1 - x2 + rnorm(n)
yy[1] <- 10
r <- lm(yy~x1+x2)
pairs(dfbetas(r))


Cook’s distance measures the effect of an observation on the regression as a whole. You
should start to be cautious when D > 4/n.
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cd <- cooks.distance(r)
plot(cd,type=’h’,lwd=3)


You can also have a look at the box-and-whiskers plot, the scatterplot, the histogram, the
density of Cook’s distances (for a moment, we put aside our pathological example).
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n <- 100
xx <- rnorm(n)
yy <- 1 - 2 * x + rnorm(n)
rr <- lm(yy~xx)
cd <- cooks.distance(rr)
plot(cd,type=’h’,lwd=3)
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boxplot(cd, horizontal=T)
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stripchart(cd, method=’jitter’)
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plot(density(cd), type=’l’, col=’red’, lwd=3)







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 777


●


●


●


●


●


●


●●


●●


●


●


● ●
●


●


●


●●
●


●
●


●


●


●


●


●●


●


●●
● ●●


●


●
●


●●●


●


●


●


●


●


●


●


●


●


● ● ●
●


●


●


●


●


●


●
●●●


●


●


●


●


● ●


●


●


● ●
●


●●●


●


●
●●


●


●


●●


●


●


●


●


●
●●


●● ●


●


●


●
●● ●


−2 −1 0 1 2


0.
00


0.
02


0.
04


0.
06


0.
08


Normal Q−Q Plot


Theoretical Quantiles


S
am


pl
e 


Q
ua


nt
ile


s


qqnorm(cd)
qqline(cd, col=’red’)


Some suggest to compare the distribution of Cook’s distance with a half-gaussian distribu-
tion. People often do that for variables whose values are all positive – but it does not look
like a half-gaussian!
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qnorm((1 + ppoints(n))/2)


x


half.qqnorm <- function (x) {
n <- length(x)
qqplot(qnorm((1+ppoints(n))/2), x)


}
half.qqnorm(cd)


You can use those values to spot the most important points on the scatterplot pr on a
residual plot.
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cd <- cooks.distance(r)
# rescaled Cook’s distance
rcd <- (99/4) * cd*(cd+1)^2
rcd[rcd>100] <- 100
plot(r$res~r$fitted.values, cex=1+.05*rcd)
abline(h=0,lty=3)


You can also use colors.
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m <- max(cd)
plot(r$res,


cex=1+5*cd/m,
col=heat.colors(100)[ceiling(70*cd/m)],
pch=16,
)


points(r$res, cex=1+5*cd/m)
abline(h=0,lty=3)
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plot(r$res,
cex=1+.05*rcd,
col=heat.colors(100)[ceiling(rcd)],
pch=16,
)


points(r$res, cex=1+.05*rcd)
abline(h=0,lty=3)


The following example should be more colorful.
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n <- 100
x <- rnorm(n)
y <- 1 - 2*x + rnorm(n)
r <- lm(y~x)
cd <- cooks.distance(r)
m <- max(cd)
plot(r$res ~ r$fitted.values,


cex=1+5*cd/m,
col=heat.colors(100)[ceiling(70*cd/m)],
pch=16,
)


points(r$res ~ r$fitted.values, cex=1+5*cd/m)
abline(h=0,lty=3)


It might be prettier on a black background.
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op <- par(fg=’white’, bg=’black’,
col=’white’, col.axis=’white’,
col.lab=’white’, col.main=’white’,
col.sub=’white’)


plot(r$res ~ r$fitted.values,
cex=1+5*cd/m,
col=heat.colors(100)[ceiling(100*cd/m)],
pch=16,
)


abline(h=0,lty=3)
par(op)


You can also have a look at the “lm.influence”, “influence.measures”, “ls.diag” functions.
TODO: delete the following plot?
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# With Cook’s distance
x <- rnorm(20)
y <- 1 + x + rnorm(20)
x <- c(x,10)
y <- c(y,1)
r <- lm(y~x)
d <- cooks.distance(r)
d <- (99/4)*d*(d+1)^2 + 1
d[d>100] <- 100
d[d<20] <- 20
d <- d/20
plot( y~x, cex=d )
abline(r)
abline(coef(line(x,y)), col=’red’)
abline(lm(y[1:20]~x[1:20]),col=’blue’)


11.7 Influential clusters


11.7.1 Clusters of outliers


When there is not a single extreme value but several, it is trickier to spot. You can try with
a resistant regression, such as a trimmed regression (lts).
Usually, those multiple extreme values do not appear at random (as would an isolated
outlier), but have a real meaning – as such, they should be dealt with. You can try to spot
them with unsupervised learning algorithms.
?hclust
?kmeans


TODO: give an example


A cluster of extreme values can also be a sign that the model is not appropriate.
TODO: write up (and model) the following example (mixture)
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n <- 200
s <- .2
x <- runif(n)
y1 <- 1 - 2 * x + s*rnorm(n)
y2 <- 2 * x - 1 + s*rnorm(n)
y <- ifelse( sample(c(T,F),n,replace=T,prob=c(.25,.75)), y1, y2 )
plot(y~x)
abline(1,-2,lty=3)
abline(-1,2,lty=3)
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11.8 Non gaussian residuals


11.8.1 Non-gaussian residuals


If the residuals are not gaussian, the least squares estimators are not optimal (some ro-
bust estimators are better, even if they are biased) and, even worse, all the tests, variance
computations, confidence interval computations are wrong.
However, if the residuals are less dispersed that with a gaussian distribution or, to a lesser
extent, if the sample is very large, you can forget those problems.
You can spot non-gaussian residuals with histograms, box-and-whiskers plots (boxplots) or
quantile-quantile plots.


●●● ●●


−0.2 0.0 0.2 0.4 0.6 0.8


x <- runif(100)
y <- 1 - 2*x + .3*exp(rnorm(100)-1)
r <- lm(y~x)
boxplot(r$residuals, horizontal=T)


Histogram of r$residuals


r$residuals
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3


hist(r$residuals, breaks=20, probability=T, col=’light blue’)
lines(density(r$residuals), col=’red’, lwd=3)
f <- function(x) {
dnorm(x,


mean=mean(r$residuals),
sd=sd(r$residuals),


)
}
curve(f, add=T, col="red", lwd=3, lty=2)


Do not forget the quantile-quantile plots.
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qqnorm(r$residuals)
qqline(r$residuals, col=’red’)


Let us look at what happens with non-gaussian residuals. We shall consider a rather extreme
situation: a Cauchy variable with a hole in the middle and a rather small sample.
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rcauchy.with.hole <- function (n) {
x <- rcauchy(n)
x[x>0] <- 10+x[x>0]
x[x<0] <- -10+x[x<0]
x


}
n <- 20
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
plot(y~x)
abline(1,-2)
r <- lm(y~x)
abline(r, col=’red’)
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Histogram of r$residuals
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op <- par(mfrow=c(2,2))
hist(r$residuals, breaks=20, probability=T, col=’light blue’)
lines(density(r$residuals), col=’red’, lwd=3)
f <- function(x) {
dnorm(x,


mean=mean(r$residuals),
sd=sd(r$residuals),


)
}
curve(f, add=T, col="red", lwd=3, lty=2)
qqnorm(r$residuals)
qqline(r$residuals, col=’red’)
plot(r$residuals ~ r$fitted.values)
plot(r$residuals ~ x)
par(op)


Let us compute some forecasts.
n <- 10000
xp <- runif(n,-50,50)
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
sum( yr < yp[,3] & yr > yp[,2] )/n


We get 0.9546, i.e., we are in the prediction interval in (more than) 5% of the cases – but
the prediction interval is huge: it tells us that we cannot predict much.
Let us try with a smaller sample.
n <- 5
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
r <- lm(y~x)
n <- 10000
xp <- sort(runif(n,-50,50))
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
sum( yr < yp[,3] & yr > yp[,2] )/n


Even worse: 0.9975.
To see what happens, let us plot some of these points.
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done <- F
while(!done) {
# A situation where the prediction interval is not too
# large, so that it appears on the plot.
n <- 5
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
r <- lm(y~x)
n <- 100000
xp <- sort(runif(n,-50,50))
yp <- predict(r, data.frame(x=xp), interval="prediction")
done <- ( yp[round(n/2),2] > -75 & yp[round(n/2),3] < 75 )


}
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
plot(yp[,1]~xp, type=’l’,


xlim=c(-50,50), ylim=c(-100,100))
points(yr~xp, pch=’.’)
lines(xp, yp[,2], col=’blue’)


lines(xp, yp[,3], col=’blue’)
abline(r, col=’red’)
points(y~x, col=’orange’, pch=16, cex=1.5)
points(y~x, cex=1.5)
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done <- F
while(!done) {
# Even worse: the sign of the slope is incorrect
n <- 5
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
r <- lm(y~x)
n <- 100000
xp <- sort(runif(n,-50,50))
yp <- predict(r, data.frame(x=xp), interval="prediction")
print(r$coef[2])
done <- ( yp[round(n/2),2] > -75 &


yp[round(n/2),3] < 75 &
r$coef[2]>0 )


}
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
plot(yp[,1]~xp, type=’l’,


xlim=c(-50,50), ylim=c(-100,100))


points(yr~xp, pch=’.’)
lines(xp, yp[,2], col=’blue’)
lines(xp, yp[,3], col=’blue’)
abline(r, col=’red’)
points(y~x, col=’orange’, pch=16, cex=1.5)
points(y~x, cex=1.5)


We see that the prediction interval is huge if there are several outliers. Let us try with
smaller values.
n <- 10000
xp <- sort(runif(n,-.1,.1))
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
sum( yr < yp[,3] & yr > yp[,2] )/n


We get 0.9932...
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done <- F
while (!done) {
n <- 5
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
r <- lm(y~x)
done <- T


}
n <- 10000
xp <- sort(runif(n,-2,2))
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
plot(c(xp,x), c(yp[,1],y), pch=’.’,


xlim=c(-2,2), ylim=c(-50,50) )
lines(yp[,1]~xp)
abline(r, col=’red’)
lines(xp, yp[,2], col=’blue’)
lines(xp, yp[,3], col=’blue’)


points(yr~xp, pch=’.’)
points(y~x, col=’orange’, pch=16)
points(y~x)


−2 −1 0 1 2


−
40


−
20


0
20


40


c(xp, x)


c(
yp


[, 
1]


, y
)


●
●


● ● ●


●
●


● ● ●


done <- F
essais <- 0
while (!done) {
n <- 5
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
r <- lm(y~x)
yp <- predict(r, data.frame(x=2), interval=’prediction’)
done <- yp[3]<0
essais <- essais+1


}
print(essais) # Around 20 or 30
n <- 10000
xp <- sort(runif(n,-2,2))
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .5*rcauchy.with.hole(n)
plot(c(xp,x), c(yp[,1],y), pch=’.’,


xlim=c(-2,2), ylim=c(-50,50) )


lines(yp[,1]~xp)
points(yr~xp, pch=’.’)
abline(r, col=’red’)
lines(xp, yp[,2], col=’blue’)
lines(xp, yp[,3], col=’blue’)
points(y~x, col=’orange’, pch=16)
points(y~x)
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done <- F
e <- NULL
for (i in 1:100) {
essais <- 0
done <- F
while (!done) {
n <- 5
x <- rcauchy(n)
y <- 1 - 2*x + .5*rcauchy.with.hole(n)
r <- lm(y~x)
yp <- predict(r, data.frame(x=2), interval=’prediction’)
done <- yp[3]<0
essais <- essais+1


}
e <- append(e,essais)


}
hist(e, probability=T, col=’light blue’)
lines(density(e), col=’red’, lwd=3)


abline(v=median(e), lty=2, col=’red’, lwd=3)


> mean(e)
[1] 25.8
> median(e)
[1] 19


In short, to have the most incorrect prediction intervals, take large values of x, bit not too
large (close to 0, the predictions are correct, away from 0, the prediction intervals are huge).
I wanted to prove, here, on an example, that non gaussian residuals produces confidence
intervals too small and thus incorrect results. I was wrong: the confidence intervals are
correct but very large, to the point that the forecasts are useless.
Exercice: do the same with other distributions (Cauchy, uniform, etc.), either for the noise
or for the variables.


11.9 Heteroskedasticity


11.9.1 Heteroscedasticity


For the least squares estimators to be optimal and for the test results to be correct, we had
to assume (among other hypotheses) that the variance of the noise was constant. If it is
not, it is said toe be heteroscedastic.
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Heteroscedasticity
x <- runif(100)
y <- 1 - 2*x + .3*x*rnorm(100)
plot(y~x)
r <- lm(y~x)
abline(r, col=’red’)
title(main="Heteroscedasticity")


You can spot the problem on the residuals.
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plot(r$residuals ~ r$fitted.values)


Or, more precisely, on their absolute value, on which you can perform a non-linear regression.
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plot(abs(r$residuals) ~ r$fitted.values)
lines(lowess(r$fitted.values, abs(r$residuals)), col=’red’)
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plot(abs(r$residuals) ~ x)
lines(lowess(x, abs(r$residuals)), col=’red’)


Here is a concrete example.
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r <- lm(FL~RW, data=crabs)
plot(r, which=1)
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lm(FL ~ RW)


Scale−Location


150


146
141


plot(r, which=3, panel = panel.smooth)


The “spread.level.plot” from the “car” package has the same aim: it plots the absolute value
of the residuals as a function of the predicted values, on logarithmic scales and suggests a
transformation to get rid of heteroscedasticity.
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library(car)
spread.level.plot(r)


You can also see the problem in a more computational way, by splitting the sample into two
parts and performing a test to see if the two parts have the same variance.
n <- length(crabs$RW)
m <- ceiling(n/2)
o <- order(crabs$RW)
r <- lm(FL~RW, data=crabs)
x <- r$residuals[o[1:m]]
y <- r$residuals[o[(m+1):n]]
var.test(y,x) # p-value = 1e-4


Let us see, on an example, what the effects of heteroscedasticity are.
x <- runif(100)
y <- 1 - 2*x + .3*x*rnorm(100)
r <- lm(y~x)
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xp <- runif(10000,0,.1)
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .3*xp*rnorm(100)
sum( yr < yp[,3] & yr > yp[,2] )/n


We get 1: where the variance is small, the confidence intervals are too small.
x <- runif(100)
y <- 1 - 2*x + .3*x*rnorm(100)
r <- lm(y~x)
xp <- runif(10000,.9,1)
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .3*xp*rnorm(100)
sum( yr < yp[,3] & yr > yp[,2] )/n


We get 0.67: where the variance is higher, the confidence intervals are too small.
We can see this graphically.
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Consequences of heteroscedasticity on prediction intervals
x <- runif(100)
y <- 1 - 2*x + .3*x*rnorm(100)
r <- lm(y~x)
n <- 10000
xp <- sort(runif(n,))
yp <- predict(r, data.frame(x=xp), interval="prediction")
yr <- 1 - 2*xp + .3*xp*rnorm(n)


plot(c(xp,x), c(yp[,1],y), pch=’.’)
lines(yp[,1]~xp)
abline(r, col=’red’)
lines(xp, yp[,2], col=’blue’)
lines(xp, yp[,3], col=’blue’)
points(yr~xp, pch=’.’)
points(y~x, col=’orange’, pch=16)
points(y~x)
title(main="Consequences of heteroscedasticity on prediction intervals")


The simplest way to get rid of heteroscedasticity is (when it works) to transform the data.
If it is possible, find a transformation of the data that will both have it look gaussian and
get rid of heteroscedasticity.
Generalized least squaes allow you to perform a regression with heteroscedastic data, but
you have to know how the variance varies.
TODO: put this example later?
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Classical linear regression
n <- 100
x <- runif(n)
y <- 1 - 2*x + x*rnorm(n)
plot(y~x)
r <- lm(y~x)
abline(r, col=’red’)
title(main="Classical linear regression")
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Heteroscedasticity of the residuals
plot(abs(r$res) ~ x)
r2 <- lm( abs(r$res) ~ x )
abline(r2, col="red")
title(main="Heteroscedasticity of the residuals")


The idea of weighted least squares is to give a lesser weight (i.e., a lesser importance) to
observations whose variance is high.
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Weighted least squares and heteroscedasticity
# We assume the the standard deviation of the residuals
# is of the form a*x
a <- lm( I(r$res^2) ~ I(x^2) - 1 )$coefficients
w <- (a*x)^-2
r3 <- lm( y ~ x, weights=w )
plot(y~x)
abline(1,-2, lty=3)
abline(lm(y~x), lty=3, lwd=3)
abline(lm(y~x, weights=w), col=’red’)
legend( par("usr")[1], par("usr")[3], yjust=0,


c("acutal model", "least squares",
"weighted least squares"),


lwd=c(1,3,1),
lty=c(3,3,1),
col=c(par("fg"), par("fg"), ’red’) )


title("Weighted least squares and heteroscedasticity")


On the contrary, the prediction intervals are not very convincing...
TODO: check what follows
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Prediction band
# Prediction intervals
N <- 10000
xx <- runif(N,min=0,max=2)
yy <- 1 - 2*xx + xx*rnorm(N)
plot(y~x, xlim=c(0,2), ylim=c(-3,2))
points(yy~xx, pch=’.’)
abline(1,-2, col=’red’)
xp <- seq(0,3,length=100)
yp1 <- predict(r, new=data.frame(x=xp), interval=’prediction’)
lines( xp, yp1[,2], col=’red’, lwd=3 )
lines( xp, yp1[,3], col=’red’, lwd=3 )
yp3 <- predict(r3, new=data.frame(x=xp), interval=’prediction’)
lines( xp, yp3[,2], col=’blue’, lwd=3 )
lines( xp, yp3[,3], col=’blue’, lwd=3 )
legend( par("usr")[1], par("usr")[3], yjust=0,


c("least squares", "weighted least squares"),
lwd=3, lty=1,
col=c(’red’, ’blue’) )


title(main="Prediction band")


You can also do that with the “gls” function
?gls
?varConstPower
?varPower


r4 <- gls(y~x, weights=varPower(1, form= ~x))
???


11.9.2 lmtest


library(help=lmtest)
library(help=strucchange)
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# Heteroscedasticity
library(lmtest)
?dwtest
?bgtest
?bptest
?gqtest
?hmctest


11.10 Correlated errors


11.10.1 Correlated errors


In the case of time series, of geographical data (or more generally, data for which you ave a
notion of “proximity” between the observations), the errors of two consecutive observations
may be correlated.
In the case of time series, you can see the problem in an autocorrelogram.
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my.acf.plot <- function (x, n=10, ...) {
y <- rep(NA,n)
l <- length(x)
for (i in 1:n) {
y[i] <- cor( x[1:(l-i)], x[(i+1):l] )


}
plot(y, type=’h’, ylim=c(-1,1),...)


}
n <- 100
x <- runif(n)
b <- .1*rnorm(n+1)
y <- 1-2*x+b[1:n]
my.acf.plot(lm(y~x)$res, lwd=10)
abline(h=0, lty=2)
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z <- 1-2*x+.5*(b[1:n]+b[1+1:n])
my.acf.plot(lm(z~x)$res, lwd=10)
abline(h=0, lty=2)
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Here is a very autocorrelated example.
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Very autocorrelated example
n <- 500
x <- runif(n)
b <- rep(NA,n)
b[1] <- 0
for (i in 2:n) {
b[i] <- b[i-1] + .1*rnorm(1)


}
y <- 1-2*x+b[1:n]
my.acf.plot(lm(y~x)$res, n=100)
abline(h=0, lty=2)
title(main=’Very autocorrelated example’)


We do not see anything on the plot of the residuals as a function of the predicted values.


●●


●


●


●
●


●●
●


●
●●


●●●● ●
●


●●
●


●


● ●
●


● ●


● ●●
●


●
●


●


● ●● ●


●● ● ●


● ●


●
● ●


●
●


●
●


●
●


●● ● ●●
●


●●
●


●
●


●


●


●
●●


●●
●
●


●
●


●
●


●


●
●


●●● ●
●


●


●
●


●
●


●


●●●●
●● ●


● ●
●


●
●●


● ●●
●


● ●


● ●● ●
●● ● ●


●


●
● ●


●●
● ●●


● ●
●


●


●
●


●
●


●●
● ●●


●●
●


●● ●
●


●
●


●
●


●


● ●●


●
●


●
●● ●●


●
● ●


●
●


●
●


●
●


●●
●


●
●


● ●
●


●
● ●


●
●●●


●


●
● ●● ●


●●


● ●●
●


●
●


●


●
●


●●
●●


●●
● ●


●
●


● ●
● ●


●
●


●
● ●


●


●●


●
●●


● ●


● ●


●
●● ● ●


●
●● ●


●
● ●●


●
●●● ●


●●


●


● ●
●●


● ●
●


●
●


●
●


●
●


●


●●


●●●


●


●


●
●


●
● ●●


●
●


●
●


●
●


●● ●
●● ●


●●


● ●
●


●●●


●●
●●●


●●
● ●


●●
●


● ●
●


●●
●


●
●● ●


●●●
●


●● ●●
● ●●●● ● ●


● ●
●●


● ●


●


●
●


●
● ● ●●


●●


●
● ●●●


●
●


● ●
● ●


●


●
●


●
●


●
●


●
●


●
● ●


●●●
●


●


●
● ●


●


● ●
●


●●


●


● ●●
●●


●


●
●


● ●


●●


●● ●●
●●


●


●


● ● ● ●
● ●


● ●
● ● ●


●●
●●● ●


● ●


●


●●


●
●


●


●
●


● ●●
●


●


●
●


●


●
●●


●


●
●


●
●


●
● ●


●
●


●
●


●


●


●


● ●
●


●


● ●
● ●


● ●
●


●


●


●
●●


● ●●


●
● ● ●●●


●


●● ●●
●


●


●
●● ●


−1.5 −1.0 −0.5 0.0 0.5


−
2


−
1


0
1


2


r$fitted.values


r$
re


s


Residuals of the very correlated example
r <- lm(y~x)
plot(r$res ~ r$fitted.values)
title(main="Residuals of the very correlated example")


On the contrary, if you plot the residuals as a function of time, it is clearer.
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Residuals of the very correlated example
r <- lm(y~x)
plot(r$res)
title(main="Residuals of the very correlated example")


Another means of spotting the problem is to check if the correlation between x[i] and x[i-1]
is significantly non zero.
n <- 100
x <- runif(n)
b <- rep(NA,n)
b[1] <- 0
for (i in 2:n) {
b[i] <- b[i-1] + .1*rnorm(1)


}
y <- 1-2*x+b[1:n]
r <- lm(y~x)$res
cor.test(r[1:(n-1)], r[2:n]) # p-value under 1e-15


n <- 100
x <- runif(n)
b <- .1*rnorm(n+1)
y <- 1-2*x+b[1:n]
r <- lm(y~x)$res
cor.test(r[1:(n-1)], r[2:n]) # p-value = 0.3


y <- 1-2*x+.5*(b[1:n]+b[1+1:n])
cor.test(r[1:(n-1)], r[2:n]) # p-value = 0.3 (again)


See also the Durbin–Watson test:
library(car)
?durbin.watson


library(lmtest)
?dwtest


and the chapter on time series.
Yet another means of spotting the problem is to plot the consecutive residuals in 2 or 3
dimensions.
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n <- 500
x <- runif(n)
b <- rep(NA,n)
b[1] <- 0
for (i in 2:n) {
b[i] <- b[i-1] + .1*rnorm(1)


}
y <- 1-2*x+b[1:n]
r <- lm(y~x)$res
plot( r[1:(n-1)], r[2:n],


xlab=’i-th residual’,
ylab=’(i+1)-th residual’ )


In the following example, we do not see anything with two consecutive terms (well, it looks
like a Rorschach test, it is suspicious): we need three.
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−3 −2 −1 0 1


−
3


−
2


−
1


0
1


z


n <- 500
x <- runif(n)
b <- rep(NA,n)
b[1] <- 0
b[2] <- 0
for (i in 3:n) {
b[i] <- b[i-2] + .1*rnorm(1)


}
y <- 1-2*x+b[1:n]
r <- lm(y~x)$res
plot(data.frame(x=r[3:n-2], y=r[3:n-1], z=r[3:n]))
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r


plot(r)


It is exaclty like that we can see the problems of some old random number generators. In
three dimensions, front view, there is nothing visible,
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but if we rotate the figure...
library(xgobi)
xgobi(randu)
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You can also turn the picture directly in R, by taking a “random” rotation matrix (exercice:
write a function to produce such a matrix – hint: there is one somewhere inthis document).
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m
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][,


2]


m <- matrix( c(0.0491788982891203, -0.998585856299176, 0.0201921658647648,
0.983046639705112, 0.0448184901961194, -0.177793720645666,
-0.176637312387723, -0.028593540105802, -0.983860594462783),


nr=3, nc=3)
plot( t( m %*% t(randu) )[,1:2] )


Here is a real example.
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r <- as.vector(r)
x <- r[1:(length(r)-1)]
y <- r[2:length(r)]
plot(x,y, xlab=’x[i]’, ylab=’x[i+1]’)


In such a situation, you can use generalized least squares. The AR1 model assumes that
two successive errors are correlated:
e {i+1} = r * e i + f i


Where r is the “AR1 coefficient” and the f i are independant.
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n <- 100
x <- rnorm(n)
e <- vector()
e <- append(e, rnorm(1))
for (i in 2:n) {
e <- append(e, .6 * e[i-1] + rnorm(1) )


}
y <- 1 - 2*x + e
i <- 1:n
plot(y~x)
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r <- lm(y~x)$residuals
plot(r)


The “gls” function (generalized least squares) is in the “nlme” package.
library(nlme)
g <- gls(y~x, correlation = corAR1(form= ~i))


Here is the result.
> summary(g)
Generalized least squares fit by REML
Model: y ~ x
Data: NULL


AIC BIC logLik
298.4369 308.7767 -145.2184


Correlation Structure: AR(1)
Formula: ~i
Parameter estimate(s):


Phi
0.3459834
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Coefficients:
Value Std.Error t-value p-value


(Intercept) 1.234593 0.15510022 7.959971 <.0001
x -1.892171 0.09440561 -20.042992 <.0001


Correlation:
(Intr)


x 0.04


Standardized residuals:
Min Q1 Med Q3 Max


-2.14818684 -0.75053384 0.02200128 0.57222518 2.45362824


Residual standard error: 1.085987
Degrees of freedom: 100 total; 98 residual


We can look at the confidence interval on the autocorrelation coefficient.
> intervals(g)
Approximate 95% confidence intervals


Coefficients:
lower est. upper


(Intercept) 0.926802 1.234593 1.542385
x -2.079516 -1.892171 -1.704826


Correlation structure:
lower est. upper


Phi 0.1477999 0.3459834 0.5174543


Residual standard error:
lower est. upper


0.926446 1.085987 1.273003


Let us compare with a naive regression.
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library(nlme)
plot(y~x)
abline(lm(y~x))
abline(gls(y~x, correlation = corAR1(form= ~i)), col=’red’)


In this example, there is no remarkable effect. In the following, the situation is more drastic.
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n <- 1000
x <- rnorm(n)
e <- vector()
e <- append(e, rnorm(1))
for (i in 2:n) {
e <- append(e, 1 * e[i-1] + rnorm(1) )


}
y <- 1 - 2*x + e
i <- 1:n
plot(lm(y~x)$residuals)
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plot(y~x)
abline(lm(y~x))
abline(gls(y~x, correlation = corAR1(form= ~i)), col=’red’)
abline(1,-2, lty=2)


We shall come back on this when we tackle time series.
For spatial data, it is more complicated.
TODO: a reference???


11.11 Unidentifiability


11.11.1 Multicolinearity (unidentifiability)


The correlation coefficient between two variables tells you if they are correlated. But you
can also have relations between more than two variables, such as X3 = X1 + X2. To detect
those, you can perform a regression of Xk agains the other Xi’s and check the Rˆ2: if it is
high (>1e-1), Xk can be expressed from the other Xi.
n <- 100
x <- rnorm(n)
x1 <- x+rnorm(n)
x2 <- x+rnorm(n)
x3 <- rnorm(n)







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 809


y <- x+x3
summary(lm(x1~x2+x3))$r.squared # 1e-1
summary(lm(x2~x1+x3))$r.squared # 1e-1
summary(lm(x3~x1+x2))$r.squared # 1e-3


Other example, with three dependant variables.
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- x1+x2+rnorm(n)
x4 <- rnorm(n)
y <- x1+x2+x3+x4+rnorm(n)
summary(lm(x1~x2+x3+x4))$r.squared # 0.5
summary(lm(x2~x1+x3+x4))$r.squared # 0.4
summary(lm(x3~x1+x2+x4))$r.squared # 0.7
summary(lm(x4~x1+x2+x3))$r.squared # 3e-3


Real example (with the adjusted determination coefficient):
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check.multicolinearity <- function (M) {
a <- NULL
n <- dim(M)[2]
for (i in 1:n) {
m <- as.matrix(M[, 1:n!=i])
y <- M[,i]
a <- append(a, summary(lm(y~m))$adj.r.squared)


}
names(a) <- names(M)
print(round(a,digits=2))
invisible(a)


}
data(freeny)
names(freeny) <- paste(
names(freeny),
" (",
round(check.multicolinearity(freeny), digits=2),
")",


sep=’’)
pairs(freeny,
upper.panel=panel.smooth,
lower.panel=panel.smooth)


In such a situation, the fact that a certain coefficient be statistically different from zero
depends on the presence of other variables. With all the variables, the first variables does
not play a significant role, but the second does.
> summary(lm(freeny.y ~ freeny.x))
...
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.4726 6.0217 -1.739 0.0911 .
freeny.xlag quarterly revenue 0.1239 0.1424 0.870 0.3904
freeny.xprice index -0.7542 0.1607 -4.693 4.28e-05 ***
freeny.xincome level 0.7675 0.1339 5.730 1.93e-06 ***
freeny.xmarket potential 1.3306 0.5093 2.613 0.0133 *
...
Multiple R-Squared: 0.9981, Adjusted R-squared: 0.9978


On the contrary, if you only retain the first two variables, it is the opposite.
> summary(lm(freeny.y ~ freeny.x[,1:2]))
...
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.18577 1.47236 1.485 0.146
freeny.x[, 1:2]lag quarterly revenue 0.89122 0.07412 12.024 3.63e-14 ***
freeny.x[, 1:2]price index -0.25592 0.17534 -1.460 0.153
...
Multiple R-Squared: 0.9958, Adjusted R-squared: 0.9956


Furthermore, the estimation of the coefficients anf their standard deviation is worrying: in
a multilinearity situation, you cannot be sure of the sign of the coefficients.
n <- 100
v <- .1
x <- rnorm(n)
x1 <- x + v*rnorm(n)
x2 <- x + v*rnorm(n)
x3 <- x + v*rnorm(n)
y <- x1+x2-x3 + rnorm(n)


Let us check that the variables are linearly dependant.
> summary(lm(x1~x2+x3))$r.squared
[1] 0.986512
> summary(lm(x2~x1+x3))$r.squared
[1] 0.98811
> summary(lm(x3~x1+x2))$r.squared
[1] 0.9862133


Let us look at the most relevant ones.
> summary(lm(y~x1+x2+x3))


Call:
lm(formula = y ~ x1 + x2 + x3)


Residuals:
Min 1Q Median 3Q Max


-3.0902 -0.7658 0.0793 0.6995 2.6456


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 0.06361 0.11368 0.560 0.5771
x1 1.47317 0.94653 1.556 0.1229
x2 1.18874 0.98481 1.207 0.2304
x3 -1.70372 0.94366 -1.805 0.0741 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 1.135 on 96 degrees of freedom
Multiple R-Squared: 0.4757, Adjusted R-squared: 0.4593
F-statistic: 29.03 on 3 and 96 DF, p-value: 1.912e-13


It is the third.
> lm(y~x3)$coef
(Intercept) x3
0.06970513 0.98313878


Its coefficient was negative, but if we remove the other variables, it becomes positive.
Instead of looking at the determination coefficient (percentage of explained variance) Rˆ2,
you can look at the “Variance Inflation Factors” (VIF),


1
V j = -----------


1 - R j^2
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> vif(lm(y~x1+x2+x3))
x1 x2 x3


48.31913 41.13990 52.10746


Instead of looking at the Rˆ2, you can look at the correlation matrix between the estimated
coefficients.
n <- 100
v <- .1
x <- rnorm(n)
x1 <- x + v*rnorm(n)
x2 <- rnorm(n)
x3 <- x + v*rnorm(n)
y <- x1+x2-x3 + rnorm(n)
summary(lm(y~x1+x2+x3), correlation=T)$correlation


We get
(Intercept) x1 x2 x3


(Intercept) 1.0000000000 -0.02036269 0.0001812560 0.02264558
x1 -0.0203626936 1.00000000 -0.1582002900 -0.98992751
x2 0.0001812560 -0.15820029 1.0000000000 0.14729488
x3 0.0226455841 -0.98992751 0.1472948846 1.00000000


We can see that X1 and X3 are dependant. We can also see it graphically.
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Correlation matrix of the coefficients of a regression


col(m)
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(m
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n <- 100
v <- .1
x <- rnorm(n)
x1 <- x + v*rnorm(n)
x2 <- rnorm(n)
x3 <- x + v*rnorm(n)
y <- x1+x2-x3 + rnorm(n)
m <- summary(lm(y~x1+x2+x3), correlation=T)$correlation
plot(col(m), row(m), cex=10*abs(m),


xlim=c(0, dim(m)[2]+1),
ylim=c(0, dim(m)[1]+1),
main="Correlation matrix of the coefficients of a regression")


TODO: A graphical representation of this correlation matrix (transform it into a distance
matrix, perform an MDS, plot the points, add their MST – or simply plot the MST, without
the MDS).
Here is yet another way of spotting the problem: compute the ratio of the largest eigen
value and the smallest. Under 100, it is fine, over 1000, it is worrying. This is called the
“contitionning index”.
m <- model.matrix(y~x1+x2+x3)
d <- eigen( t(m) %*% m, symmetric=T )$values
d[1]/d[4] # 230


To solve the problem, you can remove the “superfluous” variables – but you might run into
interpretation problems. You can also ask for more data (multicolinearity are more frequent
when you have many variables and few observations). You can also use regression techniques
adapted to multicolinearity, such as “ridge regression” or SVM (see somewhere below).
We have already run into this problem with polynomial regression: to get rid of multicolin-
earity, we had orthonormalized the predictive variables.
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> y <- cars$dist
> x <- cars$speed
> m <- cbind(x, x^2, x^3, x^4, x^5)
> cor(m)


x
x 1.0000000 0.9794765 0.9389237 0.8943823 0.8515996
0.9794765 1.0000000 0.9884061 0.9635754 0.9341101
0.9389237 0.9884061 1.0000000 0.9927622 0.9764132
0.8943823 0.9635754 0.9927622 1.0000000 0.9951765
0.8515996 0.9341101 0.9764132 0.9951765 1.0000000


> m <- poly(x,5)
> cor(m)


1 2 3 4 5
1 1.000000e+00 6.409668e-17 -1.242089e-17 -3.333244e-17 7.935005e-18
2 6.409668e-17 1.000000e+00 -4.468268e-17 -2.024748e-17 2.172470e-17
3 -1.242089e-17 -4.468268e-17 1.000000e+00 -6.583818e-17 -1.897354e-18
4 -3.333244e-17 -2.024748e-17 -6.583818e-17 1.000000e+00 -4.903304e-17
5 7.935005e-18 2.172470e-17 -1.897354e-18 -4.903304e-17 1.000000e+00


TODO: Give the example of mixed models
Adding a subject-dependant intercept is equivalent to imposing a
certain correlation structure.


11.12 Missing values


Important variables may be missing, that can change the results of the regression and their
interpretation.
In the following example, we have three variables.
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n <- 100
x <- runif(n)
z <- ifelse(x>.5,1,0)
y <- 2*z -x + .1*rnorm(n)
plot( y~x, col=c(’red’,’blue’)[1+z] )


If we take into account the three variables, there is a negative correlation between x and y.
> summary(lm( y~x+z ))


Call:
lm(formula = y ~ x + z)


Residuals:
Min 1Q Median 3Q Max
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-0.271243 -0.065745 0.002929 0.068085 0.215251


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 0.01876 0.02404 0.78 0.437
x -1.05823 0.07126 -14.85 <2e-16 ***
z 2.05321 0.03853 53.28 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.1008 on 97 degrees of freedom
Multiple R-Squared: 0.9847, Adjusted R-squared: 0.9844
F-statistic: 3125 on 2 and 97 DF, p-value: < 2.2e-16


On the contrary, if we do not have z, the correlation becomes positive.
> summary(lm( y~x ))


Call:
lm(formula = y ~ x)


Residuals:
Min 1Q Median 3Q Max


-1.05952 -0.38289 -0.01774 0.50598 1.05198


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) -0.5689 0.1169 -4.865 4.37e-06 ***
x 2.1774 0.2041 10.669 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.5517 on 98 degrees of freedom
Multiple R-Squared: 0.5374, Adjusted R-squared: 0.5327
F-statistic: 113.8 on 1 and 98 DF, p-value: < 2.2e-16


To avoid this problem, you should include all the variables that are likely to be important
(you select them from a prior knowledge of the domain studied, i.e., with non-statistical
methods).
To confirm a given effect, you can also try other models (if they all confirm the effect, and
its direction, it is a good omen) or gather more data, either from the same experiment, or
from a comparable but slightly different one.


11.13 Extrapolation


You often want to extrapolate from your data, i.e., infer what happens at larger scale (say,
you have data with X in [0,1] and you would like conclusions for X in [0,10]). Several
problems occur. The first is that the prediction intervals increase when you get away from
the sample values.
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Widening of the prediction band
n <- 20
x <- rnorm(n)
y <- 1 - 2*x - .1*x^2 + rnorm(n)
#summary(lm(y~poly(x,10)))
plot(y~x, xlim=c(-20,20), ylim=c(-30,30))
r <- lm(y~x)
abline(r, col=’red’)
xx <- seq(-20,20,length=100)
p <- predict(r, data.frame(x=xx), interval=’prediction’)
lines(xx,p[,2],col=’blue’)
lines(xx,p[,3],col=’blue’)
title(main="Widening of the prediction band")


Furthermore, if the relation looks linear on a small scale, it might be completely different
on a larger scale.


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


−20 −10 0 10 20


−
30


−
20


−
10


0
10


20
30


x


y


●●


●
●●●●


●●
●
●●


●
●●


●
●
●
●●●


●
●●●


●●●●
●


●
●●


●
●
●


●●●●●
●●●


●


●●●
●●


●
●●●


●
●


●●●
●●


●●●


●


●
●●


●●


●


●
●●


●●


●
●
●


●
●


●●
●


●


●


Extrapolation problem: it is not linear...
plot(y~x, xlim=c(-20,20), ylim=c(-30,30))
r <- lm(y~x)
abline(r, col=’red’)
xx <- seq(-20,20,length=100)
yy <- 1 - 2*xx - .1*xx^2 + rnorm(n)
p <- predict(r, data.frame(x=xx), interval=’prediction’)
points(yy~xx)
lines(xx,p[,2],col=’blue’)
lines(xx,p[,3],col=’blue’)
title(main="Extrapolation problem: it is not linear...")
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data(cars)
y <- cars$dist
x <- cars$speed
o <- x<quantile(x,.25)
x1 <- x[o]
y1 <- y[o]
r <- lm(y1~x1)
xx <- seq(min(x),max(x),length=100)
p <- predict(r, data.frame(x1=xx), interval=’prediction’)
plot(y~x)
abline(r, col=’red’)
lines(xx,p[,2],col=’blue’)
lines(xx,p[,3],col=’blue’)


11.14 Miscellaneous


11.14.1 Models


If you give the same data to different persons (for instance, students, in an exam), each
will have a different model with different forecasts. The forecasts and the corresponding
confidence intervals are usually incompatible: the prediction intervals are always too small...


11.14.2 Measurement errors


There can be measurement errors on the predictive variable: this yields to biased estimations
of the parameters (towards 0).
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n <- 100
e <- .5
x0 <- rnorm(n)
x <- x0 + e*rnorm(n)
y <- 1 - 2*x0 + e*rnorm(n)
plot(y~x)
points(y~x0, col=’red’)
abline(lm(y~x))
abline(lm(y~x0),col=’red’)


On the other hand, there is no problem about the predictions, because the measurement
errors will always be present and are accounted for.
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11.15 The curse of dimension


TODO: proofread this. In particular, mention the dangers
of variable selection.
There are actually two different subjects here:
- the curse of dimension
- combining models


The curse of dimension
TODO: put this part after the other regressions (logistic, Poisson, ordinal, multilogistic).
TODO: write this part.
TODO: I mainly mention non-linear models in high dimensions. But what can one do when
there are more variables than observations? See: svm (support vector machines).


11.15.1 Introduction


We have already mentionned the “curse of dimension”: what can we do when we have
more variables than observations? What can we do when we want a non-linear regression
with a very large number of variables: In both cases, if we try to play the game as in two
dimensions, we end up with too many parameters to estimate with respect to the number of
available observations. Either we cannot gat any estimation, or the estimations are almost
random (somewhere else in this document, we call this “overfit”).
We can turn around the problem by choosing simpler models, models with fewer variables –
simpler, but not too simple: the model has to be sufficiently complex to describe the data.
The following regression methods lie between linear regression (relevant when there are too
few observations to allow anything else, or when the data is too noisy) and multiimensional
non-linear regression (unuseable, because there are too many parameters to estimate). The
allow us to thwart the curse of dimension. More precisely, we shall mention variable selection,
principal component regression, ridge regression, lasso, partial least squares, Generalized
Additive Models (GAMs) and tree-based algorith,s (CART, MARS).
TODO: give the structure of this chapter
Putative structure of this chapter:
Variables selection
GAM, ACE?, AVAS?
Trees: CART, MARS
Bootstrap: bagging, boosting
(But there is already a chapter about the bootstrap -- the
previous chapter...)


Remark: Not all the methods we shall mention seem to be implemented in R.


11.15.2 Variable selection and non-supervised classification


When facing real data with a very large number of variables, we shall first reduce the
dimension, for instance, by selecting the “most relevant” variables and discarding the others.
But how do we do that?
TODO
(This is a good question...)


Here are a few ideas (beware: not all thes ideas are good).
Compute a PCA and "round" the components to the "nearest"
variables.


Reverse the problem and look at the variables: are some of
them "close", in some sense (e.g., define a notion of
distance between the variables and perform a distance
analysis). Then, retain a single variables from each
cluster.
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11.15.3 TODO


TO SORT


Variables selection to predict a qualitative variables
1. Perform ANOVAs and only retain important variables (say, p-value>0.05)
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n <- 100
k <- 5
x <- matrix(rnorm(n*k),nc=k)
y <- x[,1] + x[,2] - sqrt(abs(x[,3]*x[,4]))
y <- y-median(y)
y <- factor(y>0)
pairs(x, col=as.numeric(y)+1)


for (i in 1:k) {
f <- summary(lm(x[,i]~y))$fstatistic
f <- pf(f[1],f[2],f[3], lower.tail=F)
print(paste(i, "; p =", round(f, digits=3)))


}


2. With the retained variables, compute the correlations and their
p-values (the p-value of a correlation if the p-value of the test
of H0: "correlation=0".


TODO: gove an example with colinear variables.
cor(x)
round(cor(x),digits=3)
m <- cor(x)
for (i in 1:k) {
for (j in 1:k) {
m[i,j] <- cor.test(x[,i],x[,j])$p.value


}
}
m
round(m,digits=3)
m<.05


Exercise: write a "print" method for correlation matrices
that adds stars besides the correlations significantly different
from zero.


11.15.4 Variables selection and regression


When there are too many perdictive variables in a regression (with respect to the number
of observations), the first thing that comes to the mind, is to remode the “spurious” or
“redundant” variables. Here are several ways of doing so.
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11.15.5 General idea


We can start with a model containing all the variables, discard the variable that brings
the least to the regression (the one whose p-value is the largest) and go on, until we have
removed all the variables whose p-value is over a pre-specified threshold. We remove the
variables one at a time, because each time we remove one, the p-value of the others change.
(We have already mentionned this phenomenon when we presented polynomial regression:
the predictive variables need not be orthogonal.)
We can also do the opposite: start with an empty model and add the variables one after the
other, starting with the one with the smallest p-value.
Finally, we can combine both methods: First add the variables, then try to remove them, try
do add some more, etc.. (this may happen: we might decide to add variable A, then variable
B, then variable C, then remove variable B, then add variable D, etc. – as the predictive
variables are not orthogonal, the fact that a variable is present or not in the model depends
on the other variables). We stop when the criteria tell us to stop, or when we get tired.
In the preceding discussion, we have used the p-value to decide if we were to keep or discard
a variable: use can choose another criterion, say, the Rˆ2 or a penalized log-likelihood, such
as the AIC (Akaike Information Criterion),
AIC = -2log(vraissemblance) + 2 p,


or the BIC (Bayesian Information Criterion),
BIC = -2log(vraissemblance) + p ln n.


Let us consider an example.
library(nlme) # For the "BIC" function (there may be another one elsewhere)
n <- 20
m <- 15
d <- as.data.frame(matrix(rnorm(n*m),nr=n,nc=m))
i <- sample(1:m, 3)
d <- data.frame(y=apply(d[,i],1,sum)+rnorm(n), d)


r <- lm(y~., data=d)
AIC(r)
BIC(r)
summary(r)


It yields:
Call:
lm(formula = y ~ ., data = d)


Residuals:
1 2 3 4 5 6 7 8


-0.715513 0.063803 0.233524 1.063999 -0.001007 -0.421912 0.712749 -1.188755
9 10 11 12 13 14 15 16


-1.686568 -0.907378 0.293071 -0.506539 0.644674 2.046780 0.236374 -0.110205
17 18 19 20


0.256414 0.397595 0.052581 -0.463687


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) -0.03322 0.86408 -0.038 0.971
V1 0.76079 1.23426 0.616 0.571
V2 0.60744 0.52034 1.167 0.308
V3 -0.18183 1.09441 -0.166 0.876
V4 0.49537 0.68360 0.725 0.509
V5 0.54538 1.72066 0.317 0.767
V6 -0.16841 0.89624 -0.188 0.860
V7 0.51331 1.25093 0.410 0.703
V8 0.25457 2.05536 0.124 0.907
V9 0.34990 0.82277 0.425 0.693
V10 0.72410 1.26269 0.573 0.597
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V11 0.69057 1.84400 0.374 0.727
V12 0.64329 1.15298 0.558 0.607
V13 0.07364 0.79430 0.093 0.931
V14 -0.06518 0.53887 -0.121 0.910
V15 0.92515 1.18697 0.779 0.479


Residual standard error: 1.798 on 4 degrees of freedom
Multiple R-Squared: 0.7795, Adjusted R-squared: -0.04715
F-statistic: 0.943 on 15 and 4 DF, p-value: 0.5902


The “gls” function gives you directly the AIC and the BIC.
> r <- gls(y~., data=d)
> summary(r)
Generalized least squares fit by REML
Model: y ~ .
Data: d


AIC BIC logLik
86.43615 76.00316 -26.21808


...


These quantities are important when you compare models with a different number of pa-
rameters: the log-likelihood will always increase if you add more variables, falling in the
“overfit” trap. On the contrary, the AIC and the BIC have a corrective term to avoid this
trap.
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Number of variables


re
s


log−vraissemblance
AIC
BIC
R^2
adjusted R^2


library(nlme)
n <- 20
m <- 15
d <- as.data.frame(matrix(rnorm(n*m),nr=n,nc=m))
# i <- sample(1:m, 3)
i <- 1:3
d <- data.frame(y=apply(d[,i],1,sum)+rnorm(n), d)
k <- m
res <- matrix(nr=k, nc=5)
for (j in 1:k) {
r <- lm(d$y ~ as.matrix(d[,2:(j+1)]))
res[j,] <- c( logLik(r), AIC(r), BIC(r),


summary(r)$r.squared,
summary(r)$adj.r.squared )


}
colnames(res) <- c(’logLik’, ’AIC’, ’BIC’,


"R squared", "adjusted R squared")
res <- t( t(res) - apply(res,2,mean) )


res <- t( t(res) / apply(res,2,sd) )
matplot(0:(k-1), res,


type = ’l’,
col = c(par(’fg’),’blue’,’green’, ’orange’, ’red’),
lty = 1,
xlab = "Number of variables")


legend(par(’usr’)[2], par(’usr’)[3],
xjust = 1, yjust = 0,
c(’log-vraissemblance’, ’AIC’, ’BIC’,
"R^2", "adjusted R^2" ),


lwd = 1, lty = 1,
col = c(par(’fg’), ’blue’, ’green’, "orange", "red") )


abline(v=3, lty=3)


(In some cases, in the previous simulation, the AIC and the BIC have a local minimum for
three variables and a global minimim for a dozen variables.)
There are other criteria, such as the adjusted R-squared or Mallow’s Cp.
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> library(wle)
> r <- mle.cp(y~., data=d)
> summary(r)
Call:
mle.cp(formula = y ~ ., data = d)
Mallows Cp:


(Intercept) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 cp
[1,] 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 -5.237
[2,] 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 -4.911
[3,] 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 -4.514
[4,] 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 -4.481
[5,] 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 -4.078
[6,] 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 -3.854
[7,] 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 -3.829
[8,] 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 -3.826
[9,] 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 -3.361
[10,] 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 -3.335
[11,] 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 -3.287
[12,] 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 -3.272
[13,] 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 -3.261
[14,] 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 -3.241
[15,] 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 -3.240
[16,] 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 -3.240
[17,] 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 -3.240
[18,] 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 -3.240
[19,] 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 -3.237
[20,] 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 -3.216
Printed the first 20 best models


> i
[1] 7 10 14


11.15.6 Example, by hand


get.sample <- function () {
# Number of observations
n <- 20
# Number of variables
m <- 10
# Number of the variables that actually play a role
k <- sample(1:m, 5)
print(k)
# Coefficients
b <- rnorm(m); b <- round(sign(b)+b); b[-k] <- 0
x <- matrix(nr=n, nc=m, rnorm(n*m))
y <- x %*% b + rnorm(n)
data.frame(y=y, x)


}


Let us select the variables, starting with an empty model, and progressively adding the
variable whose p-value is the smallest.
my.variable.selection <- function (y,x, p=.05) {
nvar <- dim(x)[2]
nobs <- dim(x)[1]
v <- rep(FALSE, nvar)
done <- FALSE
while (!done) {
print(paste("Iteration", sum(v)))
done <- TRUE
# Ceck if one of the p-values is less than p
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pmax <- 1
imax <- NA
for (i in 1:nvar) {
if(!v[i]){
# Compute the p-value
m <- cbind(x[,v], x[,i])
m <- as.matrix(m)
pv <- 1
try( pv <- summary(lm(y~m))$coefficients[ dim(m)[2]+1, 4 ] )
if( is.nan(pv) ) pv <- 1
if (pv<pmax) {
pmax <- pv
imax <- i


}
}


}
if (pmax<p) {
v[imax] <- TRUE
done <- FALSE
print(paste("Adding variable", imax, "with p-value", pmax))


}
}
v


}


d <- get.sample()
y <- d$y
x <- d[,-1]
k.exp <- my.variable.selection(y,x)


Quite often, we find the right model, but not always.
> d <- get.sample()
[1] 9 4 7 8 2
> y <- d$y
> x <- d[,-1]
> k.exp <- my.variable.selection(y,x)
[1] "Iteration 0"
[1] "Adding variable 8 with p-value 0.00326788125893668"
[1] "Iteration 1"
[1] "Adding variable 3 with p-value 0.0131774876254023"
[1] "Iteration 2"
[1] "Adding variable 9 with p-value 0.0309234855260663"
[1] "Iteration 3"
[1] "Adding variable 4 with p-value 0.00370166323917281"
[1] "Iteration 4"


Let us comparer the theoretical model with the empirical one.
> x <- as.matrix(x)
> summary(lm(y~x[,c(9,4,7,8,2)]))
...


Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1471 0.3260 0.451 0.65870
x[, c(9, 4, 7, 8, 2)]X9 1.2269 0.3441 3.565 0.00311 **
x[, c(9, 4, 7, 8, 2)]X4 1.9826 0.3179 6.238 2.17e-05 ***
x[, c(9, 4, 7, 8, 2)]X7 1.2958 0.4149 3.123 0.00748 **
x[, c(9, 4, 7, 8, 2)]X8 2.6270 0.4089 6.425 1.59e-05 ***
x[, c(9, 4, 7, 8, 2)]X2 -0.9715 0.3086 -3.148 0.00712 **
Residual standard error: 1.287 on 14 degrees of freedom
Multiple R-Squared: 0.8859, Adjusted R-squared: 0.8451
F-statistic: 21.73 on 5 and 14 DF, p-value: 3.837e-06
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> summary(lm(y~x[,k.exp]))
...


Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.005379 0.360940 -0.015 0.98831
x[, k.exp]X3 -1.070913 0.443122 -2.417 0.02886 *
x[, k.exp]X4 1.292099 0.376419 3.433 0.00370 **
x[, k.exp]X8 2.863028 0.469379 6.100 2.03e-05 ***
x[, k.exp]X9 1.541648 0.388408 3.969 0.00123 **
Residual standard error: 1.537 on 15 degrees of freedom
Multiple R-Squared: 0.8254, Adjusted R-squared: 0.7788
F-statistic: 17.73 on 4 and 15 DF, p-value: 1.486e-05


The theoretical model looks better...
To assess the relevance of a model, as always, we plot the data – here, the residuals as a
function of each variable included (in black, before adding it, in red, after).
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get.sample <- function () {
# Number of observations
n <- 20
# Number of variables
m <- 10
# Number of the variables that actually appear in the model
k <- sample(1:m, 5)
print(k)
# Coefficients
b <- rnorm(m); b <- round(sign(b)+b); b[-k] <- 0
x <- matrix(nr=n, nc=m, rnorm(n*m))
y <- x %*% b + rnorm(n)
data.frame(y=y, x)


}


my.variable.selection <- function (y,x, p=.05) {
nvar <- dim(x)[2]
nobs <- dim(x)[1]


v <- rep(FALSE, nvar)
p.values <- matrix(NA, nr=nvar, nc=nvar)
res1 <- list()
res2 <- list()
done <- FALSE
while (!done) {
print(paste("Iteration", sum(v)))
done <- TRUE
# Is there a p-value lower that
pmax <- 1
imax <- NA
for (i in 1:nvar) {
if(!v[i]){
# Compute the p-value
m <- cbind(x[,v], x[,i])
m <- as.matrix(m)
pv <- 1
try( pv <- summary(lm(y~m))$coefficients[ dim(m)[2]+1, 4 ] )
if( is.nan(pv) ) pv <- 1
if (pv<pmax) {
pmax <- pv
imax <- i


}
p.values[i,sum(v)+1] <- pv


}
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}
if (pmax<p) {
print(paste("Adding variable", imax, "with p-value", pmax))
m1 <- as.matrix(x[,v])
res1[[ length(res1)+1 ]] <- NULL
try( res1[[ length(res1)+1 ]] <- data.frame(res=lm(y~m1)$res,xi=x[,imax]) )
v[imax] <- TRUE
done <- FALSE
m2 <- as.matrix(cbind(x[,v], x[,imax]))
res2[[ length(res2)+1 ]] <- data.frame(res=lm(y~m2)$res,xi=x[,imax])


}
}
list(variables=v, p.values=p.values[,1:sum(v)], res1=res1, res2=res2)


}


d <- get.sample()
y <- d$y
x <- d[,-1]
res <- my.variable.selection(y,x)


k <- ceiling(length(res$res1)/3)
op <- par(mfrow=c(k,3))
for (i in 1:length(res$res1)) {
r1 <- res$res1[[i]]
r2 <- res$res2[[i]]
plot(r1[,1] ~ r1[,2], ylab="res", xlab=names(r1)[2])
points(r2[,1] ~ r2[,2], col=’red’)


}
par(op)


We can also plot the evolution of the p-values (in bold, the variables that were retained).
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matplot(t(res$p.values), type=’l’, lty=1, lwd=1+2*res$variables)
abline(h=.05, lty=3)


Exercise: improve the preceding function. Start with an empty set of variables; add them,
one at a time, if their p-value is under 0.05, starting with the variables with the lowest
p-value; when you run out aof variables to add, remove, one at a time, those whose p-value
is larger that 0.05, startin with the variables with the highest p-value; when you run out of
variables to remove, start adding them again; etc. What happens with the example above?
What happens if we change the threshold?
Exercise: find, in the data provided with R or its packages, a data set with many variables
(compared to the number of observations) and apply the methods presented above. What
happens?
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grep variable str data |
perl -p -e ’s/^(.*\s)([0-9]+)(\s+variables:)/$2 $1$2$3/’ |
sort -n


library(ade4)
data(microsatt)
x <- microsatt$tab # 18 observations, 112 variables, a lot of zeroes...
y <- x[,3]
x <- x[,-3]


For this example, we have 16 parameters for 18
observations: it does not work...


We can interpret this as follows.
The vector we wanted to predict is "almost" orthogonal to the
others.
No. It could be, but here it is not the case.
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library(ade4)
data(microsatt)
x <- microsatt$tab # 18 observations, 112 variables, a lot of zeroes...
y <- x[,3]
x <- x[,-3]
yn <- y/sqrt(sum(y*y))
xn <- t(t(x)/sqrt(apply(x*x, 2, sum)))
plot( sort(as.vector(t(yn) %*% xn)), type=’h’)


11.15.7 Examples


Actually, there are already a few functions to do this.
regsubsets (in the "leaps" package)
leaps (in the "leaps" package -- prefer "regsubsets")
subset (in the "car" package)
stepAIC (in the "MASS" package)


Let us try them on our example.
d <- get.sample()
y <- d[,1]
x <- as.matrix(d[,-1])


library(leaps)
a <- regsubsets(y~x)
summary(a)


It yields (the “true” variables are 1, 3, 6, 7, 10):
Selection Algorithm: exhaustive


X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
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1 ( 1 ) " " " " " " " " " " " " "*" " " " " " "
2 ( 1 ) " " " " "*" " " " " " " " " " " " " "*"
3 ( 1 ) " " " " "*" " " " " " " "*" " " " " "*"
4 ( 1 ) "*" " " "*" " " " " " " "*" " " " " "*"
5 ( 1 ) "*" " " "*" " " " " " " "*" "*" " " "*"
6 ( 1 ) "*" " " "*" " " " " " " "*" "*" "*" "*"
7 ( 1 ) "*" " " "*" " " " " "*" "*" "*" "*" "*"
8 ( 1 ) "*" " " "*" "*" " " "*" "*" "*" "*" "*"


The “subsets” function in the “car” packages can plot this.
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2, 5, 6, 9, 10
library(leaps)
library(car)
get.sample <- function () {
# Number of observations
n <- 20
# Number of variables
m <- 10
# Number of the variables that actually appear in the model
k <- sample(1:m, 5)
print(k)
# Coefficients
b <- rnorm(m); b <- round(sign(b)+b); b[-k] <- 0
x <- matrix(nr=n, nc=m, rnorm(n*m))
y <- x %*% b + rnorm(n)
list(y=y, x=x, k=k, b=b)


}
d <- get.sample()
x <- d$x


y <- d$y
k <- d$k
b <- d$b
subsets(regsubsets(x,y), statistic=’bic’, legend=F)
title(main=paste(sort(k),collapse=’, ’))


Let us also mention the “stepAIC” function, in the “MASS” package.
d <- data.frame(y=y,x)
r <- stepAIC(lm(y~., data=d), trace = TRUE)
r$anova


> r$anova
Stepwise Model Path
Analysis of Deviance Table


Initial Model:
y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10


Final Model:
y ~ X1 + X3 + X4 + X5 + X7 + X10


Step Df Deviance Resid. Df Resid. Dev AIC
1 NA NA 9 18.62116 20.57133
2 - X9 1 0.007112768 10 18.62828 18.57897
3 - X6 1 0.037505223 11 18.66578 16.61919
4 - X2 1 0.017183580 12 18.68296 14.63760
5 - X8 1 0.098808619 13 18.78177 12.74309


> k
[1] 5 10 3 7 4
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Let us compare with the theoretical model.
> summary(lm(y~x[,k]))
...


Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2473 0.3023 0.818 0.426930
x[, k]1 1.7478 0.3330 5.249 0.000123 ***
x[, k]2 1.4787 0.2647 5.587 6.7e-05 ***
x[, k]3 -1.5362 0.4903 -3.133 0.007334 **
x[, k]4 -1.1025 0.2795 -3.944 0.001470 **
x[, k]5 1.6863 0.4050 4.164 0.000956 ***
Residual standard error: 1.27 on 14 degrees of freedom
Multiple R-Squared: 0.8317, Adjusted R-squared: 0.7716
F-statistic: 13.84 on 5 and 14 DF, p-value: 5.356e-05
> AIC(lm(y~x[,k]))
[1] 73.1798


> b
[1] 0 0 -2 2 2 0 -1 0 0 2


> summary(lm(y~x[,c(1,3,4,5,7,10)]))
...


Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1862 0.2886 0.645 0.52992
x[, c(1, 3, 4, 5, 7, 10)]1 -0.4408 0.2720 -1.620 0.12915
x[, c(1, 3, 4, 5, 7, 10)]2 -1.6742 0.4719 -3.548 0.00357 **
x[, c(1, 3, 4, 5, 7, 10)]3 1.5300 0.3953 3.870 0.00193 **
x[, c(1, 3, 4, 5, 7, 10)]4 1.7813 0.3159 5.639 8.07e-05 ***
x[, c(1, 3, 4, 5, 7, 10)]5 -1.0521 0.2664 -3.949 0.00167 **
x[, c(1, 3, 4, 5, 7, 10)]6 1.4903 0.2506 5.946 4.85e-05 ***
Residual standard error: 1.202 on 13 degrees of freedom
Multiple R-Squared: 0.86, Adjusted R-squared: 0.7954
F-statistic: 13.31 on 6 and 13 DF, p-value: 6.933e-05
> AIC(lm(y~x[,c(1,3,4,5,7,10)]))
[1] 71.50063


If we look at the p-values, we would like to remove X1, but if we look at the AIC, we would
like to keep it...


11.15.8 Stepwise regression is BAD


TODO


11.15.9 Stepwise regression and Bayesian Model Averaging (BMA)


The main problem of stepwise regression is that we are very likely to choose a bad model.
An alternative is to this is select not one but several models. Then, we can compute the
forecasts for each of those models and combine them, giving them a weight proportionnal
to the likelihood of the model.
# We select a "good" regression model, using the BIC as a
# criterion, by starting from a model and adding or
# removing variables at random, if this improves the BIC.


# The second version also accepts models that are slightly
# worse, with a certain probability (high if the model is
# only slightly worse, low if it is really worse). We end
# up with a Markov chain that wanders in the space of all
# models, staying longer at models that are more
# probable. You can use this to average predictions over
# those models. This is called MCMC (Markov Chain Monte
# Carlo) or MCMCMC (Markov Chain Monte Carlo Model
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# Combination).


# You can also change the "temperature", i.e., the
# probability that a worse model will be accepted, when
# the algorithm proceeds. If you end with a temperature
# equal to zero, you get a single solution, as with the
# steepest descent, but you are less likely to be stuck in
# a local minimum (this is called simulated annealing); if
# you decrease the temperature until 1, you get another
# MCMC, with a different burn-up period.


# For more details:
http://www.stat.washington.edu/raftery/Research/PDF/volinsky1997.pdf
http://www.research.att.com/~volinsky/bma.html


library(stats4) # for BIC
bma.fit.model <- function (y, x, df) {
# df: data.frame containing the data
# y: name of the variable to predict
# x: name of the predictive variables (vector of strings)
if (length(x)==0) { x <- "1" }
s <- paste("lm(", y, "~", paste(x, collapse="+"), ", data=df)")
#cat(">", s, "\n")
r <- eval(parse(text=s))
BIC(logLik(r))


}
bma.neighbour <- function (model, variables) {
# model: vector containing the variables in the current model
# variable: vector containing the names of all the variables among
# which we choose.
model <- variables %in% model
n <- length(model)
i <- sample(1:n, 1)
model[i] <- ! model[i]
variables[ model ]


}
bma.steepest.descent <- function (y, x, df, N=1000) {
# df: data.frame containing the data
# y: name of the variable to predict
# x: name of the predictive variables among which we
# shall choose
# N: Number of iterations
current.model <- character(0)
current.bic <- bma.fit.model(y,current.model,df)
for (i in 1:N) {
new.model <- bma.neighbour(current.model, x)
new.bic <- bma.fit.model(y, new.model, df)
if (new.bic < current.bic) {
current.bic <- new.bic
current.model <- new.model
cat("(", i, ") BIC=", current.bic, " ",


paste(current.model,collapse=" "), "\n", sep="")
} else {
cat("(",i,") BIC=", new.bic, "\r", sep="")


}
}
current.model


}
bma.mcmc.descent <- function (y, x, df, N=1000, temperature=1) {
if (length(temperature)==1) {
temperature <- rep(temperature,N)


}



http://www.stat.washington.edu/raftery/Research/PDF/volinsky1997.pdf

http://www.research.att.com/~volinsky/bma.html





CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 828


res <- matrix(NA, nr=N, nc=length(x))
colnames(res) <- x
current.model <- character(0)
current.bic <- bma.fit.model(y,current.model,df)
for (i in 1:N) {
new.model <- bma.neighbour(current.model, x)
new.bic <- bma.fit.model(y, new.model, df)
res[i,] <- x %in% new.model
if ( current.bic - new.bic > temperature[i] * log(runif(1)) ) {
current.bic <- new.bic
current.model <- new.model
cat("(", i, ") BIC=", current.bic, " ",


paste(current.model,collapse=" "), "\n", sep="")
} else {
cat("(",i,") BIC=", new.bic, "\r", sep="")


}
}
res


}


N <- 100
df <- data.frame(
y = rnorm(N),
x1 = rnorm(N),
x2 = rnorm(N),
x3 = rnorm(N),
x4 = rnorm(N),
x5 = rnorm(N)


)
df$y <- df$y + .1 * df$x1 + .5 * df$x3
bma.steepest.descent("y", setdiff(names(df),"y"), df)
r <- bma.mcmc.descent("y", setdiff(names(df),"y"), df)
apply(r[-(1:500),], 2, sum)
bma.mcmc.descent("y", setdiff(names(df),"y"), df, N=1000,


temperature=c(seq(20,1,length=500), # Simulated annealing
seq(1,0,length=250),
rep(0,250)))


TODO: Explain what I am doing...
TODO: A prior (for the number of variables...)
TODO: Explain the danger of MCMC: we have to check that it


actually converges. Typically: run several chains
with different starting points, they should give the
same results.


TODO: A few plots???
barplot( apply(r[-(1:500),], 2, sum) )
predictions with the "best" (wrong) model and
predictions with the average model (but what do we plot?
the error histograms? error2~error1?)


TODO: An example where it works...
True model: y ~ x1 + x2 + x3 but x1, x2 and x3 are not observed,
we only have x11 = x1 + noise1, x12 = x1 + noise2, etc.
The MCMC should alternate between x11 and x12, x21 and x22, etc.


You might also want to have a look at the BMA and ensembleBMA packages.
Other approaches try to combine models, not predictions – for this, the models have to be
expressed or transformed into a common framework.
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11.15.10 Model selection and the Vapnik-Chervonenkis dimension


Imagine you want to predict a quantitative variable y from other variables x1, ..., xn; you
have tried several algorithms (say, logistic regression, stepwise logistic regression, decision
trees, decision forests, support vector machines (SVM), neural networks) and you would like
to compare them. You can easily measure how they fare on the learning sample, bit what
will happen with new data? Indeed, if the model performs well on the training data, it
might simply have overfitted the data and be completely useless – there is a subtle tradeoff
between the performance on the training sample and the ability to generalize.
TODO: a plot depicting this tradeoff.
performance in-sample ~ model complexity
performance out-of-sample ~ model complexity
(on the same plot)


In− and out−of−sample error


Model complexity
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set.seed(1)
n <- 20
x <- runif(n, -1, 1)
y <- 1 - x^2 + .2*rnorm(n)
X <- runif(10000, -1, 1)
Y <- 1 - X^2 + .2*rnorm(1000)
N <- n
res <- matrix(NA, nc=N, nr=2)
dimnames(res) <- list(
c("In-sample error", "Out-of-sample error"),
"Model complexity" = as.character(1:N)


)
r <- lm(y~x)
res[1,1] <- mean(abs(residuals(r)))
res[2,1] <- mean(abs(predict(r, data.frame(x=X)) - Y))
for (i in 2:N) {
r <- lm(y ~ poly(x,i-1))
res[1,i] <- mean(abs(residuals(r)))


res[2,i] <- mean(abs(predict(r, data.frame(x=X)) - Y))
}


op <- par(mar=c(5,4,4,4))
ylim <- c(0, 1.5*max(res[1,]))
plot(res[1,], col="blue", type="l", lwd=3,


ylim=ylim,
axes=F,
xlab="Model complexity",
ylab="",
main="In- and out-of-sample error")


axis(1)
axis(2, col="blue")
par(new=TRUE)
plot(res[2,], col="red", type="b", lwd=3,


ylim=ylim,
axes=F, xlab="", ylab="", main="")


axis(4, col="red")
mtext("In-sample error", 2, line=2, col="blue", cex=1.2)
mtext("Out-of-sample error", 4, line=2, col="red", cex=1.2)
par(op)


A simple way of estimating the ability of a model to generalize is to cut the sample into two
parts, use the first as a training set and the second as a test sample, to assess the model. To
get a better idea, you can repeat this several times, with different partitions of the initial
sample.
TODO: Example (take an example from "mlbench" and keep it
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until the end of this section. Also choose a couple of
algorithms, say: logistic regression, stepwise logictic
regression, SVM and stick to them.)


for (i in data(package="mlbench")$results[,"Item"]) {
do.call("data", list(i))
cat(i, "\n")
str(get(i))


}


# If we restrict ourselves to predicting a binary variable
str(Sonar)
str(PimaIndiansDiabetes)
str(Ionosphere)


library(mlbench)
data(Sonar)
glm( Class ~ ., data=Sonar, family="binomial")


Another way of estimating the quality of a model is the log-likelihood, i.e., the (conditionnal)
probability of observing the data we have actually observed given the model – however, if
the model is sufficiently complex, i.e., if it has sufficiently many parameters, it can perfectly
fit the learning sample. This prevents us from comparing models with a different number of
parameters – which is exactly what we want to do...
One way out of this problem is to compensate for an excessive number of parameters by
adding a “penalty” to the log-likelihood, depending on the number of parameters. The AIC
(Akaike Information Criterion) and the BIC (Bayesian Information Criterion) are examples
of such penalized log-likelihoods.
TODO: Example


You might have a few qualms about the “number of parameters” used in the definition of
the AIC or the BIC. Indeed, if you have two parameters, you can cheat and code them as a
single number (just choose a bijection between R and Rˆ2). But even without cheating, this
poses a problem: how do we count the “number of variable” in a regression on the subset of
variables? We have to somehow combine the number of initial variables (n) and the number
of selected variables (k): do we consider that there are n parameters (some of which are
zero)? do we use a boolean parameter for each variable telling us if it is retained or not
(n+k parameters)? do we only count the retained variables (k parameters)? do we use a
single discrete-valued variable to code the subset of retained variables (k+1 parameters)?
The notion of “number of variables” is fine for classical regression, but the problems we have
just mentionned call for an other, more general notion, better suited to “machine learning
algorithms”, i.e., to algorithmic and not only statistical methods.
Enters the VC (Vapnik-Chervonenkis) dimension.
The situation is as follows: we have a qualitative variable y, quantitative variables x1, ...,
xn neasured on a sample; we refer to (x1(i),...xn(i)) (without y) as an observation; we also
have a classification algorithm f : (x,a) ——> f(x,a) that tries to predict y from x; here, “a”
are the parameters of the classification algorithm, to be deternined (e.g., the coefficients of
a regression, the weights of a neural network).
The classification algorithm f is said to shatter the observations o1,...,om if, for any training
set (o1,y1),...,(om,ym) there exists a such that f(.,a) makes no mistakes on the training set.
If you prefer formulas:
y \in Y (Y is a finite set)
x \in R^n
a in |
f: X*A --> Y
f shatters (x1,...,xm) \in (R^n)^m iif
\forall y1,...,ym \in Y
\exists a \in A
\forall i \in [1,m]
f(xi, a) = yi
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The VC dimension of the classification algorithm f is the largest number of points shattered
by f. If you prefer formulas:
VC(f) = Max { m : \exists x1,...,xm \in R^n


such that x1,...,xn shatters f }
= Max { m : \exists x1,...,xm \in R^n


\forall y1,...,ym \in Y
\exists a \in A
\forall i \in [1,m]
f(xi, a) = yi }


Examples:
VC(linear classifier, in dimension n) = n + 1
VC(SVM) = ???


TODO


The raison d’etre of the VC dimension is the following theorem:
Out-of sample error rate <= In-sample error rate +


sqrt( (VC*(1 + log(2N/VC)) - log(p/4)) / N )


with probability p, where N is the test sample size.
One can use this formula for “Structural Risk Minimization” (SRM) and choose the model
with the lowest VC bound on the out-of-sample error rate – this bound plays the same role
as the AIC or the BIC.
TODO: plot
in-sample error ~ model
VC bound on the out-of-sample error ~ model


There is however a problem with this bound: it is extremely conservative – your classification
algorithm could well perform 100 times better...
As a conclusion, if you have to select a model among several, stick to the BIC (if you know
how to compute it for your algorithm and if your data are well-behaved) or cross-validation.
For more details, check A. Moore’s tutorials:
http://www.autonlab.org/tutorials/vcdim08.pdf
http://www.autonlab.org/tutorials/


11.15.11 Genetic algorithms and non-linear model selection


If you want to choose a model from a reasonable set (say, a few dozen models), you can
fit them all, compute some measure of model quality (AIC, BIC, cross-validation error, VC
bound, etc.) and select the best one.
If the number of models is not reasonable (for instance, if you have 100 variables and want
a model using a subset of them – there are 2ˆ100 of them), you can try various optimization
algorithms, that wander through the space of all models (e.g., try to add or remove a variable
to the current model and keep the new one if it is better, again and again, until you can no
longer improve it – this is a descent algorithm, but you could also use simulated annealing
to avoid local extrema.
But sometimes, the number of models is not reasonable and the models are rather unwieldy:
there can be no simple and obvious notion of a “nearby” model that would allow you to
easily sample the space of all models. This is the case, for instance, if you want a non-linear
model: your space of models could be “all the formulas one can obtain from the predictive
variables, the basic arithmetic operations (+ - * /) and a few selected functions (sin, exp,
log)”.
Such a formula can be represented by a tree. For instance,


sqrt( 1 - x1 * x3 )
1.17 * -----------------------


exp( sin( x1 / x2 ) )


can be represented as



http://www.autonlab.org/tutorials/vcdim08.pdf

http://www.autonlab.org/tutorials/
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*
/ \


/ \
/ \


1.17 /
/ \
/ \


/ \
sqrt exp
| |
| |
| |
- sin
| / \
| / \
| / \
1 * /


/ \ / \
/ \ / \


x1 x3 x1 x2


The Lisp programmers amoung you would represent this as
(* 1.17


(/ (sqrt (- 1 (* x1 x3)))
(exp (sin (/ x1 x3)))))


Contrary to waht it seems, this complex structure does not rule out classical local search
algorithms: all we need is a notion of a “nearby” formula or “nearby” tree. Indeed, one can
get a tree near a given one by applying one of the following “mutations”: replace a node (an
operator) by another, of the same arity; replace a leaf; select a subtree and replace it by a
random tree; insert a node (if its arity if not one, complete it with random trees); delete a
node; splice the root.
One can go one step further and use genetic algorithms: contrary to local search methods,
where we have a single current candidate model, we have a pool (or “population”) of models
(one or two hundreds) and we go from one generation to the next by mutating and pairing
the models. Besides the mutations, we also need a way to combine two parent models into
a child model; this is called cross-over and can be done as follows: select a subtree in both
parents and interchange them.
TODO: Implementation?
(I am not sure R is the language of choice if you want to
play with trees).


See also:
http://www.olsen.ch/research/workingpapers/gpForVolatility.pdf
http://www.olsen.ch/research/307_ga_pase95.pdf


Generalizations:
- Respect the type of the operators (in programming language parlance, the signature of
the functions), i.e., take into account wether the functions take as arguments and return
arbitrary reals, reals in the interval [0,1], positive numbers, boolean values, etc.
- Do not use genetic algorithms for the constants, but use classical optimization algorithms;
- Take into account the possibility of non-relevant peaks in the BIC landscape, e.g., by
penalizing the BIC according to the number of individuals around or by clustering the
individuals, thereby creating subpopulations;
- Be creative and use other kinds of operators, for instance, exponential moving averages
(in finance, people feed very long irregular time series to genetic algorithms) or boolean
operators (< & — ifelse, e.g., to create trading rules).


11.15.12 Dimension reduction


The “dr” package provides several dimension reduction algorithms.



http://www.olsen.ch/research/workingpapers/gpForVolatility.pdf

http://www.olsen.ch/research/307_ga_pase95.pdf
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library(help=dr)
xpdf /usr/lib/R/library/dr/doc/drdoc.pdf


TODO: (understand and) explain those algorithms: sir, save, phd. (the PDF file above is
not clear).
sir Sliced Inverse Regression
save Sliced Average Variance Estimation
phd Principal Hessian Direction


TODO: an example, with a few plots... (take another example, not that from the manual...)
# From the manual
library(dr)
data(ais)


# The data
op <- par(mfrow=c(3,3))
for (i in names(ais)) {
hist(ais[,i], col=’light blue’, probability=T, main=i)
lines(density(ais[,i]),col=’red’,lwd=3)


}
par(op)


# Their logarithm
op <- par(mfrow=c(3,3))
for (i in names(ais)) {
x <- NA
try( x <- log(ais[,i]) )
if( is.na(x) | any(abs(x)==Inf) ){
plot.new()


} else {
hist(x, col=’light blue’, probability=T, main=i)
lines(density(x),col=’red’,lwd=3)


}
}
par(op)


# Dimension reduction
r <- dr(LBM ~ Ht + Wt + log(RCC) + WCC, data=ais, method="sir")
plot(r)
r
summary(r) # TODO: mention the tests for the dimension


11.15.13 SVM (Support Vector Machines)


SVM appear, for instance, in the following situation.
Genetics can be used to assess a risk in a patient. If we know the mecanisms behind a given
pathology, if we know what genes are involved (i.e., what genes are over- or under-expressed
in that pathology, or what mutations trigger the disease), we can perform the tests. But
often, we do not know the mecanisms of the pathology – yet. However, we can still hope to
come to a conclusion by performing tests “at random”. We take a few dozen patients (or
a few hundred: those tests are very expensive), whose condition is known (for instance, by
invasive tests, such as post-mortem examinations) and we look for the presence/absence, or
for the expression of tens of tousands of genes (this can be done on a small piece od glass
called a “micro-chip” or a “micro-array”). And we want to predict the patient’s condition
(wether he has the disease) from the genes.
You have noticed the problem: there are too many variables. (As a rule of thum, you should
have (at least) ten times more parameters to estimate than observations – here, it could be
100 times less...)
First idea: restrict yourself to 20 variables, chosen on the basis of prior knowledge.
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Second idea: restrict yourself to 20 variables, the 20 best. The is the variable selection, that
we have already presented.
Third idea: In the case the variable to predict is qualititive (as in our example), the problem
is to find a hyperplane separating two clouds of points. Instead of looking for a hyperplane,
i.e., an affine function f so that f>0 iif the patient is affected (if there are really many
variables, there is a wealth of such hyperplanes), we can look for a thick hyperplance, i.e.,
an affine function f so that f > a iif the patient is affected and f < -a iif the patient is not
affected, with a as large as possible.
Actually, the SVM method is more general: we first increase the dimension, to allow for non-
linear effects (for instance, we could map a 2-dimensional vector space to a 5-dimensional
vector space by (x,y) –> (x,y,xˆ2,yˆ2,x*y)) and only then look for a thick separating hyper-
plane.
The algorithm is as follows.
1. Find a separating thick hyperplane, as thick as possible. This is a simple Lagrange
multipliers problem – it can also be seen as a quadratic programming problem. We have a
Lagrange multiplier for each point: if the multiplier is zero, the points does not play any
role (it is in the midst of the cloud of points, it is far away from the separating hyperplane);
if the multiplier is non-zero, we say it is a “support vector”. Those points will “touch” the
thick hyperplane, they will limit its thickness – actually, you can even forget the other points
2. If it does not work, increase the dimension. You could try various embeddings, such as
(x,y) ——> (x,xˆ2,x*y,yˆ2), but actually, we can simply change the “hyperplane” equation
(well, it will no longer be a hyperplane) by replacing the scalar product used to define it
by a kernel, such as K(x,y) = ( <x,y> + a )ˆb or K(x,y) = exp( -a Norm(x-y)ˆ2 ). If
you use algorithms that do not use coordinates but just scalar products, this trick (the
“kernel trick”) allows you to increase the dimension without having to compute the actual
coordinates.
3. You can also accept that certain points end on the “wrong” side of the hyperplane, with
a penality.
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n <- 200
x <- rnorm(n)
y <- rnorm(n)
u <- sqrt(x^2+y^2)
u <- ifelse( u<.5*mean(u), 1, 2)
plot(y~x, col=u, pch=15)


help.search("svm")
help.search("support vector machine")
library(e1071)
library(help=e1071)
?svm







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 835


1
2


−2 −1 0 1 2 3


−3


−2


−1


0


1


2


3


o


o


o


o


o


o


o


oo


o


o


o


o


o


o


o


o
o


o


o


o


o
o


o


o


o


o


o


o


o


o


o


o


o


o
o


o


o


o


o


o
o


o
o


o


o


o


o


o


o


o


o


o


o


o


o o


o


o


o


o


o


o


o


o


o


o


o


o
o


o


o


oo


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o
o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o


o
o


o


o


o


o


oo


o


o


o


o


o


o


o


oo


o


o


o


o


o


o
o


o


o


o


o


x
x


x


x
x


x


x


x x


x


x


x


x


xx


x
x


x


x
x


x


x


x


x
x


xx
x


x


x


x
xx


x


xx


x


x


xxx


x


x


x


x


x


x
x


x


x


x
x


x x
x


x


x
x


SVM classification plot


x


y


library(e1071)
u <- factor(u)
r <- svm(u~x+y)
{
# The "plot.svm" calls "browser()": Why???
# (I use it when I debug my code, it is probably the
# same for them.)
# And then it crashes...
# (e1071 version 1.3-16, 1.3-16)
browser <- function () {}
try( plot(r, data.frame(x,y,u), y~x) )


}


−1.0 −0.5 0.0 0.5 1.0


−
1.


0
−


0.
5


0.
0


0.
5


1.
0


x


y


n <- 200
x <- runif(n, -1,1)
y <- runif(n, -1,1)
u <- abs(x-y)
u <- ifelse( u<.5*mean(u), 1, 2)
plot(y~x, col=u, pch=15)
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SVM classification plot


x


y


u <- factor(u)
r <- svm(u~x+y)
{
browser <- function () {}
try( plot(r, data.frame(x,y,u), y~x) )


}


If you want to seriously use SVMs, you will try various values for the “cost” and “gamma”
parameters, and you will select the best with, for instance, a cross-validation.
SVM can be generalized:
To distinguish between more than two classes, you can consider the classes two at a time
and then use a majority rule to forecast the class of a new observation.
Alternatively, you can also try to distinguish a class against the union of all the other classes;
do that for each class; then use a majority rule for prediction.
One can also use SVM to “distinguish between a single class”. It sounds odd, but it allows
you to spot outliers.
you can also use SVMs for regression. In linear regression, you are looking for a hyperplane
“near” most of the points; with SVMs, you will be looking for a thick hyperplane, as thin
as possible, that contains all the observations. It is the same Lagrange multiplier problem
as above, with all the inequalities reversed.
There is a dual way of interpreting these methods: take the median hyperplane of the
segment joining the two nearest points in the convex hull of both clouds of points. If the
convex hull intersect, replace them with “reduced convex hulls” (still defined as the set of
barycenters of the points, but with a restriction on the coefficients: for instance, we ask that
they be all under 0.5, so as not to give too much importance to an isolated point).
For more details, more examples and a comparison of SVMs and regression trees, see
/usr/lib/R/library/e1071/doc/svmdoc.pdf


For other details:
http://bioconductor.org/workshops/Heidelberg02/moldiag-svm.pdf
http://www.kernel-machines.org/
http://www.csie.ntu.edu.tw/~cjlin/papers/ijcnn.ps.gz
http://www.acm.org/sigs/sigkdd/explorations/issue2-2/bennett.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz


11.15.14 TODO


Exercise: use an SVM in the situation described in the introduction (microarrays).
TODO: explain (understand?) what follows. Is it finished???
library(help=sma)
library(help=pamr)


library(e1071)
library(sma)
data(MouseArray)



http://bioconductor.org/workshops/Heidelberg02/moldiag-svm.pdf

http://www.kernel-machines.org/

http://www.csie.ntu.edu.tw/~cjlin/papers/ijcnn.ps.gz

http://www.acm.org/sigs/sigkdd/explorations/issue2-2/bennett.pdf

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz
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# Mice number 1, 2 and 3: control
# Number 4, 5, 6: treatment
m <- t(mouse.lratio$M)
m <- data.frame( mouse=factor(c(1,1,1,2,2,2)), m)
# r <- svm(mouse~., data=m, na.action=na.omit, kernel="linear")
# Out of memory...
m <- m[,1:500]
r <- svm(mouse~., data=m, na.action=na.omit, kernel="linear")


TODO: finish this.
In particular: how do we read the result?


Forecast;


m <- t(mouse.lratio$M)
m <- m[,!is.na(apply(m,2,sum))]
m <- data.frame( mouse=factor(c(1,1,1,2,2,2)), m)
m <- m[,1:500]
m6 <- m[6,]
m <- m[1:5,]
r <- svm(mouse~., data=m,


na.action=na.omit, kernel="linear")
predict(r,m6) # 1 instead of 2...
r <- svm(mouse~., data=m,


na.action=na.omit)
predict(r,m6) # 1 instead of 2...
# One could expect that kind of error:
library(cluster)
m <- t(mouse.lratio$M)
m <- m[,!is.na(apply(m,2,sum))]
plot(hclust(dist(m)))


rm(m,m6,r)


11.15.15 GAM (Generatized Additive Model)


Generalized Additive Models (GAMs) appear when you try to describe a non-linear situation
with a large number of variables.
If the model were linear, the number of variables would be reasonable, but in a non-linear
situation, it explodes...
For a linear model, we would write
Y = b0 + b1 x1 + b2 x2 + ... + bn xn.


where the bi are numbers. There are n+1 parameters to estimate.
A non-linear model would be
Y = f(x1,x2,...,xn)


where f is any function. Even if you restrict the shape of the function f, say, a polynomial of
degree 2, the dimension of the space of such functions grows to fast (here, 1+n+n(n+1)/2).
Side note: at school, one studies polynomials of one variable, but not polynomial of several
variables. One of the reason is that dimension – actually, you can give a geometric interpre-
tation of the computations you do with polynomials: with one variable, you are in a straight
line, and the geometry of the straight line is, well, straightforward; with two variables, you
are in the plane, you can study curves, which can be more intricate; the more variables you
have, the more complicated the geometry. This is called algebraic geometry. End of the side
note.
A generalized additive model is
Y = a + f1(x1) + f2(x2) + ... + fn(xn)
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where the fi are arbitrary functions (you will estimate them as you want: splines, kernel,
local regression, etc.). The important point is that they are functions of one variable: they
are not too complex.
Of course, all the functions Rˆn –> R cannot be written like that: but we have a lot of
them and most of the time this will be sufficient. But a big problem lurks behind this
simplification: we completely forget potential interactions between variables. Non-linearity
or integration, you will have to choose. (Well, actually, if you think there is an interaction
between two of your variables, you will include this interaction – but just this one –; the
model then becomes y = a + f(x1,x2) + f3(x3) + ... + f(xn).)
The algorithm used to find those functions is iterative. If we forget the constant, it would
be:
1. Take a first estimation of the fi, say, as constants, from a linear regression.
2. For all k, define fk as the local regression of
Y - Sum(fj(xj)) ~ Xk


j!=k


3. Iterate ultil convergence.
If you do not forget the constant:
1. alpha <- mean(y)


f[k] <- 0
2. f[k] <- Smoother( Y - alpha - Sum(fj(xj)) )


j!=k
3. f[k] <- f[k] - 1/N * Sum fk(xik)


i
4. Goto 2 until the f[k] no longer change.


You can generalize this algorithm by adding interaction terms, when needed: fij(xi,xj), etc.
You can also ask that some of those functions have a predetermined form, e.g., that they be
linear.
One can show that this algorithm actually minimizes a penalized sum of squares.
Variant: You can generalize this method to logistic or Poisson regression (it is then inter-
preted with a penalized log-likelihood), but the algorithm is a bit different (a mixture of
backfitting and IRLS). For a multilogistic regression, it is even more complicated.
You can also interpret the Generalized Additive Model as the quest for the best transfor-
mation of the predictive variables so that the linear model be valid.
Remark: as always, we assume that the variable to predict is gaussian – it is significantly non
gaussian, we shall transform it. For the predictive variables, it may not be that important,
but (to avoid numeric instability) they should have the same order of magnitude (I think).
Let us now see how to do all this with R.
TODO
library(mgcv)
?gam
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n <- 200
x1 <- runif(n,-3,3)
x2 <- runif(n,-3,3)
x3 <- runif(n,-3,3)
f1 <- sin; f2 <- cos; f3 <- abs;
y <- f1(x1) + f2(x2) + f3(x3) + rnorm(n)
pairs(cbind(y,x1,x2,x3)) # Nothing really visible...
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library(mgcv)
r <- gam(y~s(x1)+s(x2)+s(x3))
x <- seq(-3,3,length=200)
z <- rep(0,200)
m.theoretical <- cbind(f1(x),f2(x),f3(x))
m.experimental <- cbind(
predict(r, data.frame(x1=x,x2=z,x3=z)),
predict(r, data.frame(x1=z,x2=x,x3=z)),
predict(r, data.frame(x1=z,x2=z,x3=x))


)
matplot(m.theoretical, type=’l’, lty=1)
matplot(m.experimental, type=’l’, lty=2, add=T)


It is difficult to compare, because the curves are shifted...
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GAM


theoretical curves
experimental curves


zero.mean <- function (m) {
t(t(m)-apply(m,2,mean))


}
matplot(zero.mean(m.theoretical),


type=’l’, lty=1)
matplot(zero.mean(m.experimental),


type=’l’, lty=2, add=T)
title(main="GAM")
legend(par(’usr’)[2], par(’usr’)[3],


xjust=1, yjust=0,
c(’theoretical curves’, ’experimental curves’),
lty=c(1,2))
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op <- par(mfrow=c(2,2))
for (i in 1:3) {
plot(r, select=i)
lines(zero.mean(m.theoretical)[,i] ~ x,


lwd=3, lty=3, col=’red’)
}
par(op)







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 841


●


●


●


●


●
●


●


●●


●


●


●
●
●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●●●


●


●


●


●


●


●


●
●●


●
●
●


●


●


●


●


●●
●


●


●●


●
●
●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●
●


●
●
●


●


●
●


●


●


●


●


●
●


●


●
●●


●


●


●


0 50 100 150 200


−
2


−
1


0
1


Index


re
s


●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●●●


●


●


●


●


●


●


●
●●


●
●


●


●


●


●


●


●●
●


●


● ●


●
●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●


●


●


●


●
●


●


●
●●


●


●


●


−2 0 1 2 3 4 5
−


2
−


1
0


1
predict(r)


re
s


Histogram of res


res


D
en


si
ty


−3 −2 −1 0 1 2


0.
0


0.
1


0.
2


0.
3


0.
4


●


●


●


●


●
●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●●


●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●
●


●


●●●


●


●


●


●


●


●


●
●●


●
●


●


●


●


●


●


●●
●


●


●●


●
●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●


●


●


●


●
●


●


●
●●


●


●


●


−3 −2 −1 0 1 2 3


−
2


−
1


0
1


Normal Q−Q Plot


Theoretical Quantiles


S
am


pl
e 


Q
ua


nt
ile


s


res <- residuals(r)
op <- par(mfrow=c(2,2))
plot(res)
plot(res ~ predict(r))
hist(res, col=’light blue’, probability=T)
lines(density(res), col=’red’, lwd=3)
rug(res)
qqnorm(res)
qqline(res)
par(op)
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op <- par(mfrow=c(2,2))
plot(res ~ x1)
plot(res ~ x2)
plot(res ~ x3)
par(op)


TODO: refer to other documents, URLs... TODO: “thin-plate regression spline” ???
TODO: Other functions to fit GAMs:
library(mda)
?bruto # Gaussian GAM


library(help=gss)


?glm # ???


TODO: What criterion is used?
GCV ???


11.15.16 Classification and Regression Trees (CART (TM))


It is a means of predicting a qualitative binary variable with many (quantitative or qualita-
tive) variables, with no linearity assumption whatsoever.
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The algorithm is the following. Choose one of the variables and a cutpoint so as to maximize
some statistical criterion; iterate until there are only a few (20 to 50) observations in each
class. The result can be seen as a tree. prune that tree (for instance, compare with other
(bootstrap) samples; or find the number of nodes so that the tree built from 90% of the data
give the best possible results on the remaining 10%).


|Start>=8.5


Start>=14.5
Age< 55


Age>=111absent 


absent 


absent present


present


library(rpart)
data(kyphosis)
r <- rpart(Kyphosis ~ ., data=kyphosis)
plot(r)
text(r)


The first application is obtaining a decision tree, that can predict a result with few variables,
i.e., with few tests (for instance, in emergency medicine).
Another application is the study of missing values.
library(Hmisc)
?transcan


It is VERY important to prune the tree, otherwise, you get a tree that describes the sample
and not the population.
TODO: plot


The method can be generalized to predict a “counting variable” (Poisson regression).
This method is not very stable: a similar sample can give a completely different tree. How-
ever, you can reduce the variance of the result with the bagging method. See also MART.


11.15.17 PRIM (Patient Rule Induction Method, aka Bump Hunt-
ing)


We want to predict a binary variable Y from quantitative variables, by looking for boxes in
the space of predictive variables in which we have often Y=1. The algorithm is the following.
1. Take a box (i.e., a part of the space delimited by hyperplanes


parallel to the axes), containing all the data points.
2. Reduce it in one dimension so as to increase the proportion of


points with Y=1.
3. Go back to 2, so that the box contains sufficiently few


misclassified points.
4. Try to enlarge the box.
5. Remove the points from this box.
6. Start again, until there are no more points.
7. As always, prune the result, so as to avoid overfit.


We end up with a bunch of boxes, each of which can be seen as a rule. This is actually a
variant of Regression Trees (CART): with regression trees, each node of the tree is a rule
with exactly one variable and one equality; with PRIM, we still have a tree, its nodes are
rules, but rule is made of several inequalities of the form X i < a or X i > a.
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Apparently, this algorithm is not implemented in R.
help.search(’PRIM’)
help.search(’bump’)


There are out-of-memory implementations (i.e., implementations that do not put all the
data in memory): TurboPRIM.


11.15.18 Bagging (bootstrap aggregation)


One idea, to increase the quality on an estimator (a non-linear and unstable one, e.g., a
regression tree) is simply to compute its “mean” on several bootstrap samples.
For instancem the result of forecast by a regression tree is usually a class (1, 2, ..., or k):
we replace it by a vector (0,0,...,0,1,0,...,0) (put “1” for the predicted class, 0 for the others)
and we take the average of those vectors – we do not get a single class, but a probability
distribution (bayesian readers will prefer the words “posterior distribution”).
Remark: the structure of the estimator is lost – if it was a tree, you get a bunch of trees (a
forest), whose predictions are more reliable, but which is harder to interpret.
Remark: This idea has no effect whatsoever with linear estimators: they commute with the
mean.
Remark: in some cases, the auelity of the estimator can worsen.
In the following example, the forecasts are correct 99% of the time.
library(ipred)
do.it <- function (formula, data, test) {
r <- bagging(formula, data=data, coob=T,


control=rpart.control(xval=10))
p2 <- test$Class
p1 <- predict(r,test)
p1 <- factor(p1, levels=levels(p2))
res1 <- sum(p1==p2) / length(p1)
# Only with the trees
r <- bagging(formula, data=data, nbagg=1,


control=rpart.control(xval=10))
p2 <- test$Class
p1 <- predict(r,test)
p1 <- factor(p1, levels=levels(p2))
res2 <- sum(p1==p2) / length(p1)
c(res1, res2, res1/res2)


}


# An example from "mlbench" (it is a collection of such
# examples)
library(mlbench)


data(Shuttle)
n <- dim(Shuttle)[1]
k <- sample(1:n,200)
do.it(
Class ~ .,
data = Shuttle[k,],
test = Shuttle[-k,]


) # Idem, 99.5%
rm(Shuttle)


data(Vowel)
n <- dim(Vowel)[1]
k <- sample(1:n,200)
do.it(
Class ~ .,
data = Vowel[k,],
test = Vowel[-k,]


) # Better: 47% instead of 36%
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rm(Vowel)


You can interpret the bagging method as an alternative to the maximum likelihood method:
to estimate a parameter, the Maximum Likelihood Method looks at the distribution of this
parameter and chooses its mode; Bagging, on the other hand, uses simulations to estimate
this distribution (it is a randomized algorithm) and selects its mean.
See also:
/usr/lib/R/library/ipred/doc/ipred-examples.pdf


11.15.19 Boosting


This is very similar to bagging (we compute an estimator on several bootstrap samples),
but the bootstrap samples are not taken at random: they are selected according to the
performance of the previous estimators. Usually, we simply assign a weight (a probability
of appearing in the next bootstrap sample) to each observations according to the preceding
results.
Usually, it works quite well, better that the bagging – but in some cases, the estimator can
worsen...
TODO: with R???


11.15.20 Ensemble methods


The methods presented above, bagging and boostring, replace an estimator by a set of
estimators. We then use these families of estimators. All the estimators of a given family
are of the same kind (say, all are trees, or all are neural networks).
But nothing prevents you from mixing completely different estimators.
TODO: examples (tree + linear regression?)
You can also use those methods for non-supervised classification (i.e., when you try to find
classes in your sample, without any “training set” to hint at the rules to form those classes).
TODO: examples


11.15.21 Random Forest


Again, this is very similar to the bagging: we build regression trees on bootstrap samples,
nut at each node of each tree, we do not use all the variables, but just a small (random)
subset of variables. It can be seen as a “noisy” variant of bagging.
Here is an example (three or four minutes of computation – there are 500 trees...).
library(randomForest)
do.it <- function (formula, data, test) {
r <- randomForest(formula, data=data)
p2 <- test$Class
p1 <- predict(r,test)
p1 <- factor(p1, levels=levels(p2))
res1 <- sum(p1==p2) / length(p1)
# Only with the trees
r <- bagging(formula, data=data, nbagg=1,


control=rpart.control(xval=10))
p2 <- test$Class
p1 <- predict(r,test)
p1 <- factor(p1, levels=levels(p2))
res2 <- sum(p1==p2) / length(p1)
c(res1, res2, res1/res2)


}


library(mlbench)
data(Vowel)
n <- dim(Vowel)[1]
k <- sample(1:n,200)
do.it(
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Class ~ .,
data = Vowel[k,],
test = Vowel[-k,]


) # From 42% to 67%
rm(Vowel)


It is better than bagging (with the same sample, we go from 42% to 45% of good answers).
Actually, the “randomForest” function is a little more verbose.
> r <- randomForest(Class~., data=Vowel)
> r
Call:
randomForest.formula(x = Class ~ ., data = Vowel[k, ])


Type of random forest: classification
Number of trees: 500


No. of variables tried at each split: 3
OOB estimate of error rate: 26%


Confusion matrix:
hid hId hEd hAd hYd had hOd hod hUd hud hed class.error


hid 11 3 0 0 0 0 0 0 0 3 0 0.3529412
hId 2 11 1 0 0 0 0 0 1 0 0 0.2666667
hEd 0 2 6 2 0 0 0 0 0 0 2 0.5000000
hAd 0 0 0 20 0 1 0 0 0 0 1 0.0909091
hYd 0 0 0 0 23 2 0 0 0 0 1 0.1153846
had 0 0 0 2 5 7 0 0 0 0 1 0.5333333
hOd 0 0 0 0 2 0 13 1 1 0 0 0.2352941
hod 0 0 0 0 0 0 2 11 1 0 0 0.2142857
hUd 0 0 0 0 0 0 2 2 16 2 0 0.2727273
hud 1 0 0 0 0 0 0 1 2 15 0 0.2105263
hed 0 0 0 0 2 2 0 0 2 0 15 0.2857143


First, we remark that the error rate is optimistic (26% instead of 33% – and the oob bootstrap
is supposed to be pessimistic...).
We also get the confusion matrix, that gives the “distances” between the classes: we can
use it to plot the classes in the plane, with a Distance Analysis algorithm (MDS (MultiDi-
mensional Scaling), etc. – we have already mentionned this).
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library(randomForest)
library(mlbench)
library(mva)
data(Vowel)
r <- randomForest(
Class ~ .,
data = Vowel,
importance = TRUE


) # Trois minutes...
m <- r$confusion
# We have a confusion matrix instead of a distance matrix.
# We try to tweak the matrix to get something that looks
# like a distance matrix -- this might not be the best way
# to proceed.
m <- m[,-dim(m)[2]]
m <- m+t(m)-diag(diag(m))
n <- dim(m)[1]
m <- m/( matrix(diag(m),nr=n,nc=n) +


matrix(diag(m),nr=n,nc=n, byrow=T) )
m <- 1-m
diag(m) <- 0
mds <- cmdscale(m,2)
plot(mds, type=’n’)
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text(mds, colnames(m))
rm(Vowel)


We also have the importance of each of the predictive variables.
> r$importance


Measure 1 Measure 2 Measure 3 Measure 4
V1 178.94737 16.674731 0.9383838 0.4960153
V2 563.15789 38.323021 0.9222222 1.0000000
V3 100.00000 13.625267 0.8343434 0.4212575
V4 200.00000 23.420278 0.8909091 0.5169644
V5 321.05263 26.491365 0.8959596 0.5819186
V6 189.47368 20.299312 0.8828283 0.5022913
V7 84.21053 10.596949 0.7777778 0.3544800
V8 110.52632 16.071039 0.8454545 0.4107499
V9 47.36842 10.219346 0.8424242 0.3301638
V10 63.15789 8.857154 0.8292929 0.3274473


TODO: explain/understand.
Graphically, this suggests that we only consider V2, or V2 and V5, or even V2, V5 and V1.
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op <- par(mfrow = c(2,2))
m <- r$importance
n <- dim(m)[1]
for (i in 1:4) {
plot(m[,i],


type = "h", lwd=3, col=’blue’, axes=F,
ylab=’’, xlab=’Variables’,
main = colnames(r$importance)[i] )


axis(2)
axis(1, at=1:n, labels=rownames(m))
# The two highest values in red
a <- order(m[,i], decreasing=T)
m2 <- m[,i]
m2[ -a[1:2] ] <- NA
lines(m2, type=’h’, lwd=5, col=’red’)


}
par(op)


In the examples, we have stressed classification trees, but it also works with regression trees.
You can also use random forests to detect outliers.
TODO: finish reading the article in Rnews 2002-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
(at the end: ROC)


See:
Rnews 2002-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf


TODO: I often speak of "regression trees", but I have only
defined "classification trees".
What is a "regression tree"?
MARS?


11.15.22 Outlier detection


TODO: move this section to a better location.
TODO: find real data with one (or two) group(s) of outliers.



http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf

http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
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11.15.23 Non supervised learning


Here, we simply ask the computer to try and find classes in the data. If he puts most of the
data in a class and the rest in a few isolated classes, you should worry.
(Of course, if you have several variables, you first look at them one at a time, and only then
all together.)
TODO: idem with hiearchical classification. should we get a balanced tree?


11.15.24 Supervised learning


Surprisingly, you cam also use supervised learning algorithms. The idea is to put all the data
in the same class and add random (uniformly distributed) data, in a second class. Then,
we ask the computer to try to predict the class from the data. Observations from the first
class but misclassified as elements of the second are potential outliers.
The “uniform distribution” is arbitrary and may not be a good choice. If you have already
considered 1-dimensional problems and focus on outliers that are only revealed when you
look at the data in higher dimensions, you can replace this uniform distribution by sampling
independantly in each variable.
TODO: an example...


11.15.25 Neural networks


TODO: recall what a neural net is...
You can use neural nets for regression (i.e., to forecats a quantitative variable) or for super-
vised classification (i.e., to forecats a qualitative variable).
If we again our vowel recognition example, we get around 6% of good results (between 55%
and 65%).
library(nnet)
do.it <- function (formula, data, test, size=20) {
r <- nnet(formula, data=data, size=size)
p2 <- test$Class
p1 <- predict(r,test)
nam <- colnames(p)
i <- apply(p1,1,function(x){order(x)[11]})
p1 <- nam[i]
p1 <- factor(p1, levels=levels(p2))
res1 <- sum(p1==p2) / length(p1)
res1


}
library(mlbench)
data(Vowel)
n <- dim(Vowel)[1]
k <- sample(1:n,200)
do.it(Class~., data=Vowel[k,], test=Vowel[-k,])


11.15.26 Bayesian Networks


TODO
library(deal)
demo(rats)


TODO: look in
/usr/lib/R/library/deal/demo/


hiscorelist <- heuristic(newrat, rats.df, rats.prior,
restart = 10, degree = 7, trace = TRUE)
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11.15.27 MARS (Multivariate Adaptative Regression Splines)


We are again in a regression setup: we want to predict a quantitative variable Y from
quantitative variables X. To this end, we try to write Y as a linear combination of functions
of the form (Xj-t) + or (t-Xj) +, where Xj is one of the variables and t=xij is one of the
observations. This is very similar to regression trees, but the forecasts are piecewise linear
instead of piecewise constant.
The algorithm is the following (it is a regression, where the predictive variables are of the
form (Xj-t) + and (t-Xj) + – we do not take all these variables (there would be too many),
but just a subset of them).
1. Start with a single, constant, function.
2. Compute the coefficients of the model.


For the first iteration, it is simply Y ~ 1.
3. Add the pair of functions (Xj-t) +, (t-Xj) + to the set


of predictive variables, choosing Xj and t=xij so as to
reduce the error as much as possible.


4. Go to 2.
5. Do not forget to prune the resulting tree! (as for


regression trees or classification trees)


You can generalize this idea to logistic regression, multiple logistic regression, etc. (in those
cases, you no longer use least squares to find the coefficients, but maximum likelihood).
In R, you can use the “mars” function from the “mda” package.
Let us consider the following example.


crim


0


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


1.0


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●● ●●●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●


●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●


●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


4 8


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●


●


●●●●●●●●●●●●●●●●●
●
●
●●●


●
●
●


●●●●


●


●●●
●


●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●●●●●●


●


●●●●●
●●●●●●●●●●●●
●


●
●●●
●


●
●


●●●●


●


●●
●
●
●●


●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●


2 12


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


200


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●


●●●●●●


●


●●●●●
●●●●●●●●●●●●
●
●
●●●
●
●
●


●●●●


●


●●
●
●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


0


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●●●●


●


●●●●●●●●●●●●●●●●●
●


●
●●●
●


●
●


●●●●


●


●●
●


●
●●


●


●


● ●●●●●●●
●


●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●


●


●●●●●●●●●●●●●●●●●
●
●
●●●


●
●


●


●● ●●


●


● ●●
●


●●
●


●


●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


10


0●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●


●


●●●●●
●●●●●●●●●●●●


●
●
●●●
●
●
●


● ●●●


●


●●
●


●
●●
●


●


●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


0 ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●
●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


zn
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●


●●●●


●●
●
●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●
●●●●●●●●


●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●● ●●●● ●
●● ●●●


●●● ●


●●
●
●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●


●●


●●


●●
●●
●●
●●●


●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●
●
●●●
●●●


●●●●●


●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●


●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●
●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●
●●●●●●●●
●


●


●●


●●


●●
●●
●●
●●●


●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●


●●


●●● ●●● ●●●
●●●●


●●●●


●●●●●●●


●●


●●●●●●●● ●●●●●
● ●●●
●●●●●●●●
●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●● ●●● ●●●●●●●


●●●


●●●●●●●●●●●●●●● ●●
●●●●●
● ●●●


●●
●
●
●●●
●●●


●●●●●


●● ●
●●●●●●●


●●●● ●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●
●


●●●
●●●


●●●●●


●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●
●


●●●
●●●


●●●●●


●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●


●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●


●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●


●●●●●●●●
●


●


●●


●●


●●
●●
●●


●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


●●●●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●● ●●●●●
●●●●●


●●●●


●●
●


●
●●●


●●●


●●●●●


●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●
●●


●●●●●●●●
●
●


●●


●●


●●
●●


●●
● ●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●


●●


●●●●●●●●●
●●●●


●●●
●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●


●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●


●●


●●●●●●● ●●
●●●●


●●●●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●
●●●●●
●●●●


●●
●
●


●●●
●●●


●●●●●


●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●
●●


●●●●●●●●
●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●


●●●●●●●●●
●●●●


● ●●●


●●●●●●●


●●


●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●


●●●●●●●●
●●●●●●● ●●●


●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●


●● ●


●●●●●●●●●● ●●●●●●●
●●●●●
●●●●


●●
●
●
●●●
●●●


●●●●●


●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●
●●●●●●●●


●
●


●●


●●


●●
●●
●●
●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●


●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●


●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●● indus
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●● ●● ●●


●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●


●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●
●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●● ●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●


●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●
●●


●●●
●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●


●●●●● ●●●●●
● ●●●●●●●●●●●


●● ●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●● ●●●●●


●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●
●●●●●


●● ●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●● ●●●●●●●●●●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●


●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●


●●
●●●


●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●● ●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●
●
●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●●●●●●●●●●●●


●●●


●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●


0
25


●
●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●


●●●


●● ●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●


●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●
●●●●●●●●●●●●●●●
●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●●●●●●


1.
0


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


● ●


●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


chas
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●● ●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


● ●●●


●


●


●●


●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


● ●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


● ●


●●●●


●●


●


●


●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


● ●●●●


●● ●


●


●


●●●●●


●●●●●●● ●●●●


●


●


●


●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●


●


●● ●


●●


●


●●


●● ●●


●●


●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●


●


●●●● ●●●●●


●


●


●●


● ●●●


●


●


●●


●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●●●


●


●


●●●●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●● ●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●


●


●●●● ●●●●●


●


●


●●


●●●●


●


●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


● ●●


●


●


●●● ●●


●●●●●●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●●●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●


●


●


●●


● ●●●


●


●


●●


●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●


●●●●●


●●●


●


●


●●●●●


● ●●●● ●●●●●●


●


●


●


●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●


●


●●●


●●


●


●●


●●●●


●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●●●


●●


●●● ●


●●


●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●


●●●● ●●●●
●●●
●
●


●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●● ●● ●●●


●●


●


●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●● ●●●●
●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


nox
●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●● ●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●● ●●●
●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●


●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●


●●●●●● ●●● ●●●●●●●●●●


●●●●●●●●●●●●
●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●●
●


●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●


●●●●● ●●●●●●●●●●


●●


●


●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●


●●●●●● ●●
●●●


●
●
●●●
●●●
●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●


●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●


●●●●● ●●●●●●●●●●


●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●


●●●●●●●●
●●●


●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●


0.
4●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●


●


● ●●●●● ●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●


●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●


●●●●●●●●
●●●


●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●


4
8


●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●
●●●●●
●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●
●●●●
●


●●
●
●
●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●
●
●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●
●●●●●●●●●●


●


●
●
●


●
●●●●
●●


●●●●● ●●
●●
●
●●●●●


●●●
●●●●● ●●●●●●●●
●


●●
●


●
●
●●●
●●
● ●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●● ●
●
●●●●●●●


●● ●●●●●●●●●●●●●●●
●●●●●●●●


●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●
●●●●●
●●
●
●
●●
●●
●


●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●


●●●●●●●●●●●
●●●●
●


●●
●


●
●●●●
●
●●
●
●
●●
●●●●
●


●●●●●●
●
●●


●●●●●●●●●●●●●●● ●●●●●●●●
●●●●


●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●


●● ●●●● ●●●●●●
●


●●●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●
●●●


●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●● ●●●●●
●●●●●●●●●●●●●●


●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●


●●●●●
●●
●
●
●●
●●
●
●●●●●●●●


●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●


●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●
●●●●
●


●●
●
●
●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●


●
●●
●●●●●●●●
●● ●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●
●
●● ●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●● ●●●


●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●
●●●●●
●● ●● ●●
●
●
●● ●
● ●●


●●
●
●●●●●●
●●●●●
●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●
●●●


●●● ●●●●●
●
●● ●● ●●


●●●●
●●●
●●●●
●
●●


●● ●●
●●●●●●●●●●●
●●●●
●


●●
●
●
●●●●
●
●●
●
●
●●


●●●●
●
●● ●●●●


●
● ●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●
●● ●●●●●●● ●


●


●
●
●
●


●●● ●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●


●●●●●
●●●●
●●
●


●
● ●●
●●
●


●●
●
●●●●●●


●●●●●
●●
●
●
●●
●●
●


●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●


●●●●●●●●●●●
●●●●
●


●●
●


●
●●●●
●
●●
●
●


●●
●●●●
●
●●●●●●
●
●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●
●
●● ●●●●●●●●


●


●
●


●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●


●
●
●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●


●
●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●● rm ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●


●●●●●●●●●●●●
●●●● ●●● ●●●●●●●●
●
●●●●●●●●●●●●●●●●●●● ●●●●●
● ●●●●●●●


●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●


●●
●


●●
●


●●●●●●
●●●●●●●●


●
●●
●●


●
●●●●●●●●


●●●●●●●
●●●


●●●● ●●●●●
● ●●●●●


●●●●
●●●
●●


● ●
●
●●
●●●●●●●●●● ●●● ●●●●●●


●


●●
●


●
●●●●
●
●●


●
●


●●
●●● ●


●
●●●●●●


●
●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●
●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●


●
●● ●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●
●
●●●●●●●●●●●●●
●
●●
●
●
●
●●●
●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●
●●●
●●●●●●●●●●●●● ●●●●●●●●
●●
●
●
●●●●●●●●●● ●●●
●●●●● ●●●●●


●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●


●●●●●●●●●●●●●●●●●
●●●●●●●●


●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●
●●●●●
●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●
●●●●
●


●●
●


●
●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●
●
●●
●●●●●●●●●●●●●●●●
●●●●●●●


●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●


●
●●●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●


●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●


●●●●●●●
●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●
●●●●●
●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●
●●●●
●


●●
●
●
●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●
●
●●


●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●


●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●
●
●● ●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●


●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●
●● ●
●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●


●●●●●
●●●●


●●
●●
●


●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●
●●●●
●


●●
●
●
●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●
●
●●
●●●●●●●●
●●●●●●●●


●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●


●
●● ●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●


●●
●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●


●●●●●●●●●●●●
●●●●●●●●●●●●


●● ●
●
●● ●●●●●


●●●●●●●●●●●●●●●●●
●●●●●●●●


●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●
●●●●
●●
●
●
●●●
●●
●


●●
●
●●●●●●


●●●●●
●●
●
●
●●
●●
●


●●●●●●●●
●●●● ●●●
●●●


●●●●●●●●
●
●●●●●●


●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●


●●●●
●


●●
●


●
●●●●
●
●●
●
●
●●


●●●●
●


●●●●●●
●
●●


●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●


●●●●●●●●
●●●●


●
●●●●●●●●●●


●


●
●
●
●
●●●●
●●


●●●●●●●●●
●
●●●●●
●●●
●●●●●●●●
●●
●●●
●
●●
●
●
●
●●●
●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●●●●
●
●●●●●●●●
●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●


●●●●●●●●●●●●
●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●● ●●●●●●●●●●


●● ●●●
●●●●●●


●
●
●●●
●●
●


●●
●


●●●●●●
●●●●●
●●
●
●
●●
●●
●
●●●●●●●●
●●●●●●●
●●●


●●●●●●●●
●
●●●
●●●
●●●●
●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●
●●●●
●


●●
●
●
●●●●
●
●●
●
●
●●
●●●●
●
●●●●●●
●
●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●


●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●
●●●●●●●●●●


●


●
●


●
●
●●●●
●●


●●●●●●●●●
●


●●●●●
●●●
●●●●●●●●●●●●●
●


●●
●


●
●
● ●●
●●


●●
● ●●●●●●●●●●●●●●●●●●● ●●●●


●●● ●●●●● ●●
●●●●● ● ●● ●●●●●● ●●●●●●
●
●●
●


●
●●●●
●
●●●●●●●●
●●●●●●●●●●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●● ●●●●●●●●●●●●●●●● ●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●


●●●●
●● ●●●●●●●


●●
●


●
●●●


●●
●


●●
●


●●●●●●
●●●●●
●●
●
●


●●
●●


●
●●●●●●●●


●●●●●●●
●●●


●●●●●●●●●
●●●●●●● ●●●


●●●
●●●●
●
●●
●●●
●
●●●●●●●●●●●●●●
●
●


●●
●
●
●●●●
●
●●
●
●


●●
●●●●


●
●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●● ●●●●●●
●●


●


●
●
●


●
●●●●


●●


●●●●●●●●●
●
●●●●●●●●


●●●●●●●●
●●
●●●
●


● ●
●


●
●


●● ●
●●
●●


●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●
●●●


●
●●●●


●
●●●●●●●●


●●●●●●●●●●
●●


●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●●●●●●●●●
●●●


●
●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●


●●●●●●●●●
●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●
●●●●


●●
●


●
●●●


●●
●


●●
●


●●●●●●
●●●●●●


●●●
●●


●●
●


●●●●●●●●
●●●●●●●


●●●


●●●●●●●●
●


●●●
●●●
●●●●


●●●
● ●
●●
●


●●
●●●
●


●●●●●●●●●●●
●●●●


●


●●
●
●


●●●●
●


●●
●
●


●●
●●●●


●
●●●●●●


●
●●●●●●●●●●
●●●●●●●●


●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●
●●●●


●●●●
●


●●●●●●●●●●


●


●
●
●


●
●●●●


●●


●●●●●●●●●
●
●●●●●
●●


●
●●●●●●●●


●●
●●●
●


●●
●


●
●
●●●


●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●


●
●●
●


●
●●●●●●●●●●●●●
●●●●●●●●●●


●●
●●●


●●●●●●
●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●
●●
●●
●
●
●
●
●
●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●
●
●
●●●
●●●●●●●●●●
●●●●
●●
●
●
●●●
●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●
●
●●●●●●●
●
●●●●●
●●
●●
●●
●●
●●
●
●●●
●●
●●
●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●●●
●●
●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●● ●
●
●●●●●●●●●● ●●●●●●●● ●


●
●●●●●
●
●


●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●


●●●●
●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●● ●●●●●
●●●


●●
●


●
●


●●
●
●●
●●


●
●
●
●
●
●


●●●●●●●●●●
●
●
●●●●


●
●●


●●●●
●
●●●●


●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●
●
●
●●●
●● ●●●●●●●●


●●●●
●●


●
●
●●●


●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●


●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●


●
●● ●●●●●●●●●●●


●●
●●


●●
●●


●●
●
●●●


●●
●●
●●●●●●●●●●●
●
●
●●
●
●●● ●●●●●●
●
●●
● ●● ●


●
●●


●●●●●
●


●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●


●●●●
●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●


●●
●●
●
●
●
●
●


●


●●●
●●
●●●●●
●
●
●●●●


●
●●
●●●●
●
●●● ●


●


●
●●
●
●
●


●●●
●●●●●●●
●
●●●●●●●●● ●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●


●●
●●●
●
●
●●●
●●●●●●●●●●
●●●●
●●
●
●
●●●


●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●


●
●●●●●●●
●
●●●● ●


●●
●●


●●
●●
●●


●
●●●


●●
●●
●●●●●●●●●●●
●
●
●●
●


●●●●●
●●●●
●
●●
●●●●
●
●●
●●●


●●
●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●●●●●


●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●
●●
●●
●
●
●
●
●
●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●
●●●●●●●
●●
●●●
●
●
●●●
●●●●●●●●●●
●●●●
●●
●
●
●●●
●
● ●


●●●
●


●
●
● ●
● ●●●●●●●●●●


●●


●●●● ●● ●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●
●● ●
●
●


● ●
●● ●
●●●


●
● ●


●●●●●
●
●●●●●
●●
●●
●●
●●
●●
●
●●●
●●
●●
●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●●●
●●
●
●●●


●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●


●●●●
●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●


●●●


●●
●
●
●


●●
●
●●
●●
●
●
●
●
●
●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●● ●●●●●●●●●
●●●●●●●


●●
●●●
●
●
●●●
●●●●●●●●●●


●●●●
●●
●
●
●●●
●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●


●●●
●
●


●●
●●
●
●●●
●
●●●●●●●
●
●●●●●
●●
●●
●●
●●
●●
●
●●●
●●
●●
●●●●●●●●●●●


●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●●●
●●
●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●


●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●


●●
●●●●
●●●●●●


●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●●●●●


●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●


●●●●
●
●
●
●
●
●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●


●


●
●●


●
●
●


●●●
●●●●●●●
●
●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●
●
●●●●●●●
●●
●●●


●
●


●●●
● ●●●●●●●●●


●●●●
●●


●
●
●●●


●
●●


●●●
●
●


●
●●
●●●●●●● ●●●●


●●


●●●●●●●●


●
●●


●●


●


●●
●


●
●
●●●●●


●●●


●●●
●●●●●


●
●


●●●
●
●


●●
●●
●
●●●


●
●●●●●●●


●
●●●●●


●●
●●
●●
●●
●●
●


●●●●●
●●


●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●


●●
●●●
●●


●
●●●


●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●
●●●●●


●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●


●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●●


age ●●●●●●
●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●
●●
●●


●
●
●
●
●
●


●●●
●●


●●●●●
●
●
●●●●
●
●●
●●●●


●
●●●●
●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●
●
●
●●●
●●●●●●●●●●


●●●●
●●


●
●


●●●
●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●
●
●●●●●●●●●●●●●
●●
●●
●●
●●


●●
●
●●●
●●
●●
●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●●●
●●
●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●●●●●


●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●
●●
●●
●
●
●
●
●


●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●
●
●
●●●
●●●●●●●●●●
●●●●
●●
●
●
●●●
●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●


●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●
●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●
●●●


●●
●●
●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●●●


●●
●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●●●●●


●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●


●●●●
●
●
●
●
●


●


●●●
●●
●●●●●
●
●
●●●●


●
●●
●●●●
●
●●●●
●


●
●●
●
●
●


●●●
●●●●●●●
●
●●●●●●●●●●●


●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●


●●
●●●


●
●
●●●
●● ●●●●●●●●
●●●●


●●
●
●


●●●
●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●
●
●●●●●●●
●
●●●●●
●●
●●
●●
●●
●●


●
●●●
●●
●●
●●●●●●●●●●●
●
●
●●
●


●●●●●●●●●
●
●●
●●●●


●
●●
●●●
●●
●


●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●


●●●●
●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●●●●●●


●●●●●●●
●●●


●●
●


●
●


●●
●


●●
● ●


●
●
●
●
●


●


●●●●●●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●●
●
●
●


●●●
●●●●●●●
●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●●●●●●●


●●
●●●
●
●
●●●
●●●●●●●●●●


●●●●
●●


●
●
●● ●


●
●●


●●●
●
●
●
●●


●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●


●●●


●●●●●●●●
●
●
●● ●


●
●


●●
●●
●
●●●


●
●●●●●●●●●●●●●
●●
●●


●●
●●
●●


●
●●●
●●
●●
●●●●●●●●●●●
●
●
●●
●


●●●●●
●●●●
●
●●
●●●●


●
●●


●●●●●
●


● ●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●●●●●


●
●●●●●


●
●
●
●
●


●


●
●
●●●●●●●●●●●●● ●●
●●
●●●●●●●
●●●


●●
●
●
●


●●
●
●●
●●
●
●
●
●
●
●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●●
●
●
●
●●● ●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●


●
●●●●●●●


●●
●●●
●
●
●●●
●●●●●●●●●●
●●●●
●●
●
●
●●●
●
●●


●●●
●
●
●
●●
●●●●●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●
●●●●
●


●●
●●
●
●●●
●
●●●●●●●
●
●●●●●
●●
●●
●●
●●
●●
●
●●●
●●


●●
●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●
●
●●
●●●
●●
●
●●●


●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●
●
●●●●●●●●●●●●● ●●●●●●


●
●●●●●


●
●
●●
●●●●●
●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●


●
●


● ●
●●
●●●●


●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●● ●●●●●●


●
●●●●●


●
●
●
●
●


●


●
●


●●●●●●●●●●●●
●●●


●●
●●●●●●●
●●●


● ●
●
●


●


●●
●


●●
●●
●
●
●


●
●
●


●●●●●●●●●●
●
●
●●●●
●
●●
●●●●


●
●●●●
●


●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●
●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●


●●
●●●
●
●


●●●
●●●●●●●●●●


●●●●
●●
●


●
●●●


●
●●


●●●
●


●
●


●●
●●●● ●●●●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●
●●●


●●●●●●●●
●
●


●●●
●


●


●●
●●
●
●●●
●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●
●●●


●●
●●
●●●●●●●●●●●
●


●
●●


●
●●●●●


●●●●
●
●●
●●●●


●
●●


●●●
●●
●
●●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●● ●●●● ●● ●●●●●


●
●●●●●


●
●
●●


●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●
●●●●●●


●●●
●●●
●


●


●●●●●
●●●


●●●●●●●
●●●


0


●●●●●●●
●●●●●


●
●
●
●
●


●


●
●


●●●●●●●●●●●●●●●●●
●●●●●●●
●●●


●●
●
●
●


●●
●


●●●●
●
●
●
●
●
●


●●●
●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●●●●
●


●
●● ●


●
●


●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●● ●●●● ●●●●● ●
●
●●●●●●●
●●


●●●
●
●
●●●


● ●●●●●●●
●●


●●●●
●●


●
●
●●●


●
●●


●●●
●
●


●
●●
●●●●●●● ●●●●


●●


●●●●●●●●


●
●●
●●


●


●●
●


●
●
●●●●●


●● ●


●●●
●●●●●


●
●


●●●
●
●


●●
●●
●
●●●


●
●●


●●●●●●●●●●●
●●
●●


●●
●●
●●


●
●●●


●●
●●
●●●●●●●●●●●
●
●
●●
●
●●●●●
●●●●
●
●●
●●●●


●
●●
●●●
●●


●
●●●


●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●● ●●●●●●●●●●●●●
●●●●●


●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●


●●●●●●
●●●
●●●
●
●


●●●●●
●●●


●●●●●●●
●●●


2
12


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●
●


●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●


●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●● ●●●
●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●


●●
●


●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●
●●●●
●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●
●● ●●


●● ●●●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●


●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●
●


●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●
●●●●
●●● ●●●●●


●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●


●●●●
●●●●●●


●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●●
●●●●●●●●
●●
●


●●●●●●●●●●●●
●●●● ●●● ●●●●●● ●●


●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●●●


●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●●●●●●
●●●●
●●●●●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●


●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●


●●●●●●
●●●●●


●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●


●●● ●●● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●● ●●● ●●●●●●●
●●
●


●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●
●●●●
●●●●●●●●
●● ●


●●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●


●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●
dis


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●


●●
●


●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●●●●●●
●●●●
●●●●●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●●●●
●●


●


●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●● ●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●


●●●●●●●●●●●●
●●●●●●●●●●●●●●


●●●
●●●●
●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●● ●●●●●●●●
●●●●


●●●●●●
●●● ●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●
●


●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●


●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●
●●●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●
●●●●●●


●●●●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


● ●●●●●●●●●
●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●
●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●


●●●●●●●●
●●●●●●●●●●


●


●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●


●●●●
●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●


●●●●●●●●●●
●●●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●


●●●●●●●●
●●


●●●● ●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●●●●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●


●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●
●●●


●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●
●●●●●●●●●●


●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●


●●●●●●●●●●
●●●


●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●
●●●●●●


●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●
●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●
●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●● ●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●


●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●


rad
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●
●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●
●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●
●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●●●●●● ●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●
●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●
●●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●
●●●●● 5●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●


●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●●●●●
●●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●


20
0 ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●
●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●


●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●


●●●●●●
●●●●●●


●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●●●●●●●●● ●
● ●●●● ●●●●●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●


●●●●●●
●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●


●●●●●●●●●
●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●
●●


●
●●


●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●


●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●


●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●
●●●●●●●


●●●●●●● ●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●
●●


●
●●


●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●


●


●
●●●●●●●●●


●●●●●●●●●
● ●●●●●


● ●●●●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●


●●●●●●●●
●●●●●●


●●●●●●
●●●●
●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●


●●●●●●●●●●●●●●●● ●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●


●●●●●●●●●
●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●


●●● ●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●


●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●
●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●


●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●


●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●
●●●●●●●●●
●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●


tax
●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●● ●●●●●●●


●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●


●●●●●●
●●●●●● ●●●●


●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●● ●●●●●●●●●


●●●●●●●●●●●


●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●
●●


●
●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●● ●


●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●


●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●


●●●●●●●●●
●●


●
●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●● ●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●
●●●●●●●


●●●●●●● ●
●●●●●●
●● ●●●●●●● ●


●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●
●●●●●●●●●●●
●●●●●●●●●
●●


●
●●


●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●
●
●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●


●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●●●


●●●●●●●●●●●●


●●●●●●●●●●
●●●● ●


●●
●


●●●
●●●


●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●


●●●●●●●●


●●
●●●● ●●


●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●●●●
●●●●●●●●● ●●●●●●●


●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●●●
●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●
●
●●●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●
●●●●


●●● ●●●●●●●●
●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●


●●●●●●●●●●
●●●
●●●●●●●●●●●●


●●●● ●●● ●●●
●●● ●●
●●
●
●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●●●


●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●
●
●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●


●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●● ●


●●●●●●●●●
●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●


●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●


●
●●●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●
●●●●●


●●●●●●●


●●●● ●● ●●●●●●●●●●●●●●●●
●●●●●●●●● ●●● ●●●●●●●


●
●●


●


●●●●●●●
●●
●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●
●●●


●●
●●●●


●●●● ●●●●●● ●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●


●●● ●●●●●●●
●●●


●●●●●●●●●●●●


●●● ●●●●●●●
● ●●●●


●●
●
●●●
●●●


●●●●●●● ●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●


●●●●●
●●●●●●●●


●●
●●●●●●


●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●


●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●●●


●●●●●●●●●●●●


●●●●●●●●●●
●●●●●


●●
●


●●●
●●●
●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●


●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●


●●●
●●●●●●●●●●●●


●●●●●●●●●●
●●●●●


●●
●


●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●


●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●
●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●


●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●
●
●●●
●●●
●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●
ptratio


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●


●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●


●●
●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●


●
●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●● ●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●● ●


●●●●●●●●●●●●●●●


●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●
●●●


●●
●●●●


●●●●●●●●● ●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●


●●●
●●●●●●●●●●●●


●●●●●●●●●●
●●●●●
●●
●


●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●


14


●
●●●●●
●●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●


●
●●
●


●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●


●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●
●●●●●●●●●●●●●● ●


●●●●●●●● ●
●●●


●●
● ●●●


●●●●●●●●●●●
●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●


●●●●●●●●●●
●● ●


●●●●●●●●●● ●●


●●●●●●●●●●
●●●●●
●●


●
●●●
●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●
●●●●●●●●


●●
●●●●●●
●●●●●


●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●


0


●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●● ●●●●
●
●●●●●●●●●●●●● ●●●●●●


●●●●●
●


●●●


●
●●●


●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●
●
●
●
●●●●
●
●
●
●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●


●


●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●● ●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●● ●●●


●●


●●●●● ●
● ●


●●


●●● ●● ●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●


●


● ●●● ●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●● ●●●


●●


●●●●●●
●●


●●


●● ●●●●●●
●
●
●
●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●
●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●
●
●
●
●●●●


●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●


●
●
●●●●


●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●


●


● ●●●●●● ●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●


●


●●●


●
● ●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●
●


●●●●●●
●
●
●
●●●●


●
●
●


●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●


●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●


●
●●


●●●


●●●●●
●●●●●●●●
●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●●●●●●●●
●●●●●●●●●●●● ●●●
●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●●●●
●
●
●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●


●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●


●
●●●●●●
●
●
●
●●●●
●
●
●


●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●
●
●
●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


b
●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●


●●●●
●


●
●


●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●●●●●●
●


●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●


●


●●●●● ●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●● ●


●


●● ●


●
●●●


●
●●


●●●


●●●●●
●●●●●●●●


●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●


●
●●●●●●


●
●
●
●●●●


●
●
●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●


●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●


●●


●●●●●●
●●


●●


●●●● ●●●●
●


●
●
●●●●
●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●


●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●● ●●


●


●●●


●
●●●
●
●●


●●●


●●●●●
●●●●●●●●●●●


●●●●●
●


●


●
●●
●


●


●●●


●●●●


●
●
●
●●●●●


●


●●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●●●●●
●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●
●●●
●
●
●●●●●
●
●●●●●
●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●
●●●
●
●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●● ●●●●
●●●●●


●●●
●
●●●●●


●●●
●●●


●●●
●
●
●


●
●
●
●


●
●●●


●●
●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●●●●●
●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●


●●●
●
●●
●●●●●●●
●
●


●
●●
●●●● ●●●●●●●
●●
●
●●●●●


●
●●●●●


●●
●●● ●●●●●●●●●●●


●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●
●●
● ●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●●


●●
●
●
●
●●●●●●●● ●●●●●●●●●
●●●
●
●●
●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●


●
●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●
●●●● ●●●●●●●●●● ●● ●●
●● ●●●●●●●●●
●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●●●●●
●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●●●
●●
●
●●●●●


●
●●●●●
●●
●●●●●●
●●●●●●●●


●●●●●●●●●●
●●●●●● ●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●● ●●●


●
●●
●


●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●


●●
●●●●●●●●●●●●●●●●●●●


●●
●●
●●
●
●
●


●


●●●
●
●●


●
●●●●●●●●
●
●●●●
●●●●●
●●●
●
●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●


●●●●●●● ●●●●
●


●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●


●
●●
●●●●●


●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●
●●●
●
●
●●●●●
●
●●●●●
●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●
●


●●●●
●
●●
●
●● ●● ●●●
●●● ●● ●●
●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
● ●


●●
●
●


●


●


● ●●
●
●●
●
●●●●●●●●


●
●●● ●● ●●●●
●●●
●
●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●


●●
●● ●●● ●●●●●● ●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●
●● ●


●●
●●
● ●●
● ●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●●●●●
●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●


●●●
●
●
●●●●●
●
●●●●●
●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●
●


●●●●
●
●●
●
●●●●●●●


●● ●●●●●
●●
●
●●●●●●●●●●●●●●●●●


●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●●


●●
●
●
●
●●●●●●●●●●● ●●●●●●


●●●
●


●●
●●
●●●●●●●●●●●●●●●


●●●●●●●●
●●●
●
●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●
●●●●●


●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●


●
●
●
●
●
●


●
●●●●●●●●


●
●


●
●●


●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●


●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●●●●●
●
●●●●●●●●● ●●●●●●


●
●


●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●
●●●
●


●
●●●●●
●


●●●●●
●●
●●●●●●


●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●


●●●
●●●●●


●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●


●
●●●●
●


●●
●
●●●●●●●
●●●●●●●


●●
●


●●●●●●●●●●●●●●●●●
●●


●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●● ●●●●●●


●
●●●●●●●●●●


●●
●


●
●
●●●●●●●●●●●●●●●●●●●●●


●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●● ●●


●●
● ●●


●●


●●


●
●●●●●●


●●
●●●●●


●●●
●


●●●●●
●●●
●●●


●●●
●
●


●
●
●


●
●


●
●●●
●●
●●●
●


●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●
●●


●
●●●●●●●●●●


●
●●
●●●●●


●
●●●●●●●●● ●●●●●●


●
●
●


●●●●
●●●●


●● ●
●
●●
●●●●●●●
●
●


●
●●


●●●●●●●●●
●●●


●
●


●●●●●
●


●●●●●●●
●●●●●●


●●●●●●● ●●●●●● ●●●●●
●●●●●●●● ●●●●●●●●●●●


●●●●●●●
●●●●●●●●●●●
●
●●
●
●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●


●●●●●●●●●●●●●●●●●
●●


●●●●●●●●●●●●●●●●●●●
●●


●●
●●


●
●


●


●


●●●
●
●●
●


●●●●●●●●
●
●●●●


●●●●●●●●●
●
●


● ●●●●●●●●●● ●●●●●●●●●●
●●
●●


● ●●●●●●●● ●●●●●●
●●●●
●●●●
●●●
●


●● ●●●●●●●●●●
●
● ●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●


●●●
●
●
●
●
●
●
●


●
●●●●●
●●●


●
●


●
●●


●●
●●●●●
●●
●


●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●●
●
●●●●●●●●●●
●
●●
●●●●● ●


●●●●●●●●● ●●●●●●
●
●
●
●●●●●●●●


●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●


●●●
●
●
●●●●●
●
●●●●●


●●
●●●●●●
●●●●●●●●


●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●●


●●
●
●
●
●●●●●●●●●●●●●●●●●


●●●
●
●●
●●
●●●●●●●●●●●●●●●


●●●●●●●●
●●●
●
●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●


●
●●
●●●●●
●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●
●●●
●
●
●●●●●
●
●●●●●
●●
●●●●●●


●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●●


●
●●
●
●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●
●●●
●
●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●


●
●●
●●●●●
●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●
●●●
●
●
●●●●●


●
●●●●●
●●
●●●●●●
●●●●●●●●●●●●●●●●●●


●●●●●●●●●●
●
●●●


●●●●●
●●●●●●●
●●●●●●●●●●●


●
●●
●


●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●


●●
● ●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●
●●●
●
●
●
●●●●●●●●●●●●●●


●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●


●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●●●●●


●
●●●●●●●●● ●●●●●●


●
●
●
●●●● ●●●●


●●●
●
●●
●●●●●●●
●
●


●
●●


●●●●●●●●●
●●●
●
●
●●●●●


●
●●● ●●


●●
●●●●●●●●●●●●●●


●●●●●●●●●●
●●●●●●●●●●
●
●●●


●●●●●
●●●●●●●


●●●●●●●●●●
●
●
●●
●


●●●●●●●
●●●●
●●●
●


●●●●
●
●●
●
●●●●●●●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●


●●
●●●●●●●●●●●●● ●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●
●●●
●


●
●
●●●●●●●●●●●●●●●●●


●●●
●
●●


●●
●●●●●●●●●●●●●●●●●●●●●●●●●●


●
●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●
●●●●●●●●● ●●
●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●
●●●
●●●
●●●
●
●
●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●●
●●●●●


●
●●●●●●●●● ●●●●●●


●
●
●
●●●●●●●●
●●●
●
●●
●●●●●●●
●
●


●
●●
●●●●●●●●●
●●●
●
●
●●●●●
●
●●●●●
●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●● ●●●
●●●●●●
●●●●●●●●●●●
●
●●
●
●●●●●●●


● ●●●
●●●
●
●●●●


●
●●


●
●●●●●●●
●●●●●●●
●●
●


●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●●●●●●●●
●
●●●●
●●●●●
●●●
●
●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●


●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●
●●
●●●
●●


●●


●
●●●●●●
●●


●●●●●
●●●
●
●●●●●
●●●
●●●


●●●
●
●


●
●
●
●


●


●
●●●
●● ●●●
●
●
●
●●
●●●●●●●
●●


●
●


●●●●●
●●


●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●●
●


●●
●
●●●●●●
●●●●
●


●●
●●●●●
●
●●●●●●●●●


lstat


10●●●●●●
●
●


●
●●●●●●●●
●●●
●
●●


●●●●●●●
●
●


●
●●
●●●●●●●●●●●
●●


●
●●●●●
●


●●●●●
●●
●●●●●●


●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●


●●●●●●●●
●●●●●●●
●●●●●●●●●●
●
●
●●
●
●●●●●●●
●●●●
●●●
●
●●●●
●
●●
●
●●●●●●●


●●●● ●●●
●●


●
●●●●●●●●●●●●●●●●●
●●


●●●●●●●●● ●●●●●●● ●●●
●●
●●
●●
●
●
●


●


●●●
●
●●
●
●● ●●●● ●●
●
●●●●●●●●●●


●●
●


●
●
●●●●●●●●●● ●●●●●●●●●●●


●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●


●
●●●●●●●●●●●●


●
●●●●●


●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●


●●●●●●●●●●●
●●●●●
●●●●●
●●


●●●
●●


●●


●
●●●●●●
●●
●●●●●
●●●
●
●●●●●


●●●
●●●
●●●


●
●


●
●
●
●
●


●
●●●●●●●●
●
●
●
●●
●●●●●●●
●●


●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●


●
●●
●
●●●●●●
●●●●


●
●●
●●●●●
●
●●●●●●●●●


0


10


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●
●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●
●
●●●●●
●
●
●●●●●●●
●●●●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●
●●●●●
●
●●●●●●●●●●●
●●●


●●●●●


●●●●●●● ●●●●●●●●●●
●
●
●●●●●● ●●●●●●●●●
●
●
●


●●●●
●●●● ●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●


●●●
●●●●●●●●●●●●●●


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●


●●●●●●●●●●●●●●● ●
●
●●


●●●●●
●
●


●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●
●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●
●


●●
●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●


●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
● ●


●
●●●●●●


●
●●●●●● ●●●●●


●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●● ●●●●●●●●●●


●
●


●
●


●● ●●●●●●
●


●●●●●●●●●●●
●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●


0 25


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●


●●●●●●●●●●●●●
●●●


●
●●●●●●●
●


●
●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●
●●
●●●●●


●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●●●●
●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●


●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●


●
●
●●
●
●●●●●
●
●
● ●●●●●●●●●●
●●


●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●


●
●
●
●
●●●
●●●●●
●
●● ●●●●●●●●●


●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●● ●


●●●
●●●●●●●●●●●●●●


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●
●● ●● ●●●


●
●● ●


● ●●


●●


●


●●●●●●●●
●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●● ●●●●●
●●● ●● ●●●●●
●
●●●●
●
●●
●
●●


●● ●●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●● ●●●●


●
●


●●
●
●●●●●
●
●
●●●●●●●
●●●●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●
●●●●●
●
●● ●●●●●●● ●●
●●●


● ●●● ●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●


0.4


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●


●●●●●●●●●●●●●
●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●


●●●●●●●●●● ●●●●●●●●
●●●●●●●


●
● ●●


●●●


●●


●


●●●●●●●●●●●
●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●


●●●●●●●●●●●
●●●●
●


●●


● ●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●
●
●●●●●
●
●
●●●●●●●
●●●●
●●●●●●●●●●●


●
●●●●●


●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●
●●●●●
●
●● ●●●●●●●●●


●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●


●
●
●●●●


●●●●●●
●●●


●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●


●●
●●●●●●●●●●●●●●


●●●●●●●●●●●●●
●


●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●


●●●●●●●
●
●


●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●


●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●●●●
●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●
●


●●●●
●


●●
●
●●


●●●
●


●●●●●●●●●●●
●●●●


●


●●


●●
●●●
●●
●●


●
●


●●


●●●●
●●●●●●●
●


●
●●


●
●●●●●
●
●


●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●●●●●●●
●


●
●
●


●●●
●●●●●
●


●●●●●●●●●● ●●●●


● ●●●●


●● ●●●●●●●●●●●●●●●
●
●


●●●●●●●●●●●●●●●
●
●


●
●●●●


● ●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●


●●●●●●
●●●●●●●●●


●●●●
●●●●●●●●●●●●
●


0


●●
●●●●●●


●●●●●●●●● ●● ●●●●●●●●●●
●
●●●●●●●●●


●●●●● ●●● ●●●●●●●●
●
●●●●●●●●


●
●●●●●●●●●● ●●●●●
● ●●●●●●●●●●●●● ●


●●
●●


●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●
●


●●●


●●●● ●●●●●● ●●●●●●●●●
●●●●


●
● ●


●
●●


●●●●●●●●●● ●●● ●●●●●●
●


●●


● ●
●●●


●●
●●


●
●


●●


●●● ●
●●●●●●●
●


●
●●


●
●●●●●●
●
●●●●●●●● ●●●●
●
●●●●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●


●
●●●●●●●●


●
●● ●●●●●●●●●


●●●


●●●●●


●●●●●●●●●●●●●●●●●
●


●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●


●●●●●●● ●●●●●●●●
●●●●●
●●●●●●●●● ●
●●●


●●●● ●●●●●●●●●
●


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●


●
●


●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●
●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●


●
●●●●●●


●
●●●●●●●


●●●●
●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●●●●●●●●●●●


●
●
●
●
●●●
●●●●●


●
●●●●●●●●●●●


●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●


5


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●


●●●●●●●
●


●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●
●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●


●
●●●●●●
●
●●●●●●●
●●●●
●●●●●●●●●●●


●
●●●●●
●●●●●●●●●●●●●●●●●●●●●


●
●
●
●
●●●
●●●●●
●
●● ●●●●●●●●●


●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●


●●●
●●●●●●●●●●●●●


●
●●


●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●●●●●●
●● ●
●
●●●●●●●
●


●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●
●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●●●●
●


●●●●●●●


●
●●●●●●●●


●
●●●●●
●


●●●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●
●
●●●●●


●
●
●●●●●●●


●●●●
●●


●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●


●
●
●
●●●


●●●●●
●


●● ●●●●●●●●●
●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●


●


14


●●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●


●
●●●●●●●●●


●●●●●●●●●●●●●
●● ●
●
●●


●●●●●
●


●
●●●●●●●●●●●●●●●


●●●●●●●●●●●●●●●
●●
●●●●●


●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●


●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●●●●
●
●●●●●●●


●
●●●●●●●●


●
●●● ●●


●


●●
●


●●●●●●●●
●●●●●●●●●●


●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●


●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●


●
●
●●
●
●●●●●●


●
●●●●●●●


●●●●
●●


●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●● ●●●●●●●●


●
●
●
●
●●●


●●●●●
●


●●●●●●●●●●●
●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●


●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●● ●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●


●●
●●●●●


● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●● ●●●●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●
●●●●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●
●●●●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●
●
●●●●●
●
●
●●●●●●●
●●●●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●
●●●●●
●
●●●●●●●●●●●
●●●


●●●●●


●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●


●
●


●
●●● ●


●●●●●●
●●●●●●●●●●●●●●●●●●● ●●●


●●●● ●●●●● ●●●●●●● ● ●● ●●●●●● ●●●●●●
●
●●●●●
●●●●●●●●●●


●●●●
●●●●●●●●●●●●●


10


●●
●●●●●●


●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●●●●●●●● ●●●●●●●
●
●●●●●●●●
●


●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●


●
●●●


●●●


●●


●


●●●●●●●●●●●
●
●●●●●●●


●
●●●●●●●●


●
●●●●●●


●●
●


●●●●●●●●● ●●●●●●● ●●●
●●●●
●
●●
●
●●


●●●
●
●●●●●●●●●●●●●●
●
●


●●


●●
●●●
●●
●●
●
●


●●


●●●●
●●●●●●●
●
●
●●
●
●●●●●●


●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●●●●●●●●


●
●● ●●●●●●●●●●●●


●●●●●


●●●●●●●●●●●●●●●●●●
●


●●●●●●●●●●●●●●●
●


●
●


●● ●●
●●●●●●


●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●


●●●●●●●●●
●●●●


●●●●●●●●●●●●●
medv


library(mda)
library(mlbench)
data(BostonHousing)
x <- BostonHousing
x[,4] <- as.numeric(x[,4])
pairs(x)


The variables seem very well suited to the methos: some have two “humps” – and the very
idea of the MARS algorithm is to separate such humps – we should end with gaussian-looking
variables.







CHAPTER 11. REGRESSION PROBLEMS – AND THEIR SOLUTIONS 849


1 crim


x[, i]


D
en


si
ty


0 40 80


0.
00


2 zn


x[, i]


D
en


si
ty


0 40 80
0.


00


3 indus


x[, i]


D
en


si
ty


0 10 20


0.
00


4 chas


x[, i]


D
en


si
ty


1.0 1.4 1.8


0
6


5 nox


x[, i]


D
en


si
ty


0.4 0.7


0
3


6 rm


x[, i]


D
en


si
ty


4 6 8


0.
0


0.
7


7 age


x[, i]


D
en


si
ty


0 40 80
0.


00
0


8 dis


x[, i]


D
en


si
ty


2 6 10


0.
00


9 rad


x[, i]


D
en


si
ty


0 10 20


0.
00


10 tax


x[, i]


D
en


si
ty


200 500


0.
00


0


11 ptratio


x[, i]


D
en


si
ty


12 16 20


0.
0


12 b


x[, i]


D
en


si
ty


0 200 400
0.


00
0


13 lstat


x[, i]


D
en


si
ty


0 20 40


0.
00


14 medv


x[, i]


D
en


si
ty


10 30 50


0.
00


log(x1)


log(x[, 1])


D
en


si
ty


−6 −2 2


0.
00


op <- par(mfrow=c(4,4))
for (i in 1:14) {
hist(x[,i],probability=T,


col=’light blue’, main=paste(i,names(x)[i]))
lines(density(x[,i]),col=’red’,lwd=3)
rug(jitter(x[,i]))


}
hist(log(x[,1]),probability=T,


col=’light blue’, main="log(x1)")
lines(density(log(x[,1])),col=’red’,lwd=3)
rug(jitter(log(x[,1])))


par(op)
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op <- par(mfrow=c(4,4))
for (i in 1:14) {
qqnorm(x[,i], main=paste(i,names(x)[i]))
qqline(x[,i], col=’red’)


}
qqnorm(log(x[,1]), main="log(x1)")
qqline(log(x[,1]), col=’red’)


par(op)


We take the logarithm of the variable to predict, becaus it is really far from gaussian (we
leave the others alone: MARS will separate their humps and they should, afterwards, look
normal). (At fisrt, I had not transformed it – the results were extremely poor: the forecast
error was as large as the the standard deviation of the variable...)
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x[,1] <- log(x[,1])
n <- dim(x)[1]
k <- sample(1:n, 100)
d1 <- x[k,]
d2 <- x[-k,]
r <- mars(d1[,-1],d1[,1])
p <- predict(r, d2[,-1])
res <- d2[,1] - p


op <- par(mfrow=c(4,4))
plot(res)
plot(res~p)
for (i in 2:14) {
plot(res~d2[,i])


}
par(op)
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op <- par(mfrow=c(2,2))
qqnorm(r$fitted.values, main="fitted values")
qqline(r$fitted.values)
hist(r$fitted.values,probability=T,


col=’light blue’, main=’fitted values’)
lines(density(r$fitted.values), col=’red’, lwd=3)
rug(jitter(r$fitted.values))
qqnorm(res, main="residuals")
qqline(res)
hist(res, probability=T,


col=’light blue’, main=’residuals’)
lines(density(res),col=’red’,lwd=3)
rug(jitter(res))
par(op)


If we compare with a naive regression, it is slightly better.
> mean(res^2)
[1] 0.6970905


> r2 <- lm(crim~., data=d1)
> res2 <- d2[,1] - predict(r2,d2)
> mean(res2^2)
[1] 0.7982593


A naive regression with anly the “hunched” variables (bad idea@ the other variables bring
som important information):
> kk <- apply(r$cuts!=0, 2, any)
> kk <- (1:length(kk))[kk]
> kk <- c(1, 1+kk)
> r3 <- lm(crim~., data=d1[,kk])
> res3 <- d2[,1] - predict(r3,d2)
> mean(res3^2)
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[1] 0.7930023


If we try to select the variables:
> library(MASS)
> r4 <- stepAIC(lm(crim~., data=d1))
> res4 <- d2[,1]-predict(r4,d2)
> mean(res4^2)
[1] 0.8195915


(You can try many other methods...)


11.15.28 HME (Hierarchical Mixture of Experts)


This is similar to CART, with the following differences. The nodes of the tree are probabilis-
tic. The nodes depend on a linear combinaition of the predictive variables, not of a single
variable. We perform a linear regression at each leaf (with CART, we assign a constant to
each leaf). There is no algorithm to find the structure of the tree: you have to choose it
yourself.
TODO: with R?


11.15.29 MART


TODO


11.15.30 TODO: TO SORT


heuristic(deal) Heuristic greedy search with random restart
Title: Learning Bayesian Networks with Mixed Variables


tune.rpart(e1071) Convenience tuning functions


11.15.31 Stacking


???
TODO


11.15.32 Bumping


???
TODO


11.16 Wide problems


TODO: put this somewhere else – it should be with ridge regression, partial least squares,
etc.


11.16.1 Supervised Principal component Analysis (SPCA)


Principal component Analysis is a simple and efficient means of reducing the dimensionality
of a data set, or reducing the number of variables one will have to look at but, it the
context of regression, it misses a point: in principal component regression, where one tries
to predict or explain a variable y from many variables x1, ..., xn, one computes the PCA
of the predictive variables x1,...,xn, and regresses y against the first components – but one
does not take the variable to predict into account! In other words, we select non-redundant
variables, that account for the shape of the cloud of points in the x variables, instead of
selecting non-redundant variables with some power to predict y.
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This is the same problem that leads to Partial Least Squares (PLS). Supervised principal
components are much easier to understand, though. The algorithm goes as follows:
Compute the principal components of those of the
predictive variables that are the most correlated with the
variable to predict y (using some threshold, chosen by
cross-validation).


Regress y against the first principal components.


Well, the actual algorithm is slightly more complicated: one does not directly us the corre-
lation to select the variables. For more details, see:
http://www-stat.stanford.edu/~tibs/ftp/spca.pdf
http://www-stat.stanford.edu/~tibs/superpc/tutorial.html


In R, this method is available in the “superpc” package and can accomodate classical or
survival regression.
TODO: Example...


SPCA (Supervised Principal Component Analysis)


train.obj$feature.score


F
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library(superpc)


# Some simulated data
n <- 50 # Number of observations (e.g., patients)
m <- 500 # Number of values to predict
p <- 1000 # Number of variables or "features" (e.g., genes)
q <- 20 # Number of useful variables
x <- matrix( rnorm((n+m)*p), nr=n+m )
z <- svd(x[,1:q])$u
y <- 1 - 2 * z[,1]
d <- list(
x = t(x[1:n,]),
y = y[1:n],
featurenames = paste("V", as.character(1:p),sep="")


)
new.x <- list(
x = t(x[-(1:n),]),
y = y[-(1:n)],


featurenames = paste("V", as.character(1:p),sep="")
)


# Compute the correlation (more precisely, a score) of
# each variable with the outcome.
train.obj <- superpc.train(d, type="regression")
hist(train.obj$feature.score,


col = "light blue",
main = "SPCA (Supervised Principal Component Analysis)")



http://www-stat.stanford.edu/~tibs/ftp/spca.pdf

http://www-stat.stanford.edu/~tibs/superpc/tutorial.html
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SPCA
## PROBLEM: This should not look like that...


# Compute the threshold to be used on the scores to select
# the variables to retain.
cv.obj <- superpc.cv(train.obj, d)
superpc.plotcv(cv.obj)
title("SPCA")
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fit.cts <- superpc.predict(
train.obj,
d,
new.x,
threshold = 0.7,
n.components = 3,
prediction.type = "continuous"


)
r <- superpc.fit.to.outcome(train.obj, new.x, fit.cts$v.pred)
plot(r$results$fitted.values, new.x$y,


xlab="fitted values", ylab="actual values",
main="SPCA forecasts")


abline( lm(new.x$y ~ r$results$fitted.values),
col="red", lwd=3 )


abline(0, 1, lty=2, lwd=2)







Chapter 12


Generalized Linear Models:
logistic regression, Poisson
regression, etc.


Let us now tackle regression when the variable to predict is qualitative.
TODO: In this chapter, I mention Discriminant Analysis, already tackled in the chapter
about PCA. Choose where to detail this...
TODO: Include LDA, naive bayesian classifier


12.1 Example: a classification problem


For the moment, in the regressions we have seen, the variable to predict was always a
(continuous) quantitative variable. However, this already enables us to investigate some
situations in which qualitative variables appear. Here is an example.


12.1.1 Using regression in a classification problem


We have three variables, two of them quantitative, X1 and X2, and one qualitative Y, with
two values. We want to predict Y from X1 and X2.
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n <- 10
N <- 10
s <- .3
m1 <- rnorm(n, c(0,0))
a <- rnorm(2*N*n, m1, sd=s)
m2 <- rnorm(n, c(1,1))
b <- rnorm(2*N*n, m2, sd=s)
x1 <- c( a[2*(1:(N*n))], b[2*(1:(N*n))] )
x2 <- c( a[2*(1:(N*n))-1], b[2*(1:(N*n))-1] )
y <- c(rep(0,N*n), rep(1,N*n))
plot( x1, x2, col=c(’red’,’blue’)[1+y] )


We can consider the qualitative variable as a quantitative variable, assuming two values, 0
and 1, and perform a linear regression against the others. We get an expression of the form


854
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Y = b0 + b1 X1 + x2 X2.


We can then part the (X1,X2) plane in two, along the “b0 + b1 X1 + x2 X2 = 1/2” line.
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plot( x1, x2, col=c(’red’,’blue’)[1+y] )
r <- lm(y~x1+x2)
abline( (.5-coef(r)[1])/coef(r)[3], -coef(r)[2]/coef(r)[3] )


12.1.2 Curvilinear regression and classification


The situation is the same as above, but this time, we regress Y against X1, X2, X1X2, X1ˆ2,
X2ˆ2.
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# I need a function to draw conics...
conic.plot <- function (a,b,c,d,e,f, xlim=c(-2,2), ylim=c(-2,2), n=20, ...) {
x0 <- seq(xlim[1], xlim[2], length=n)
y0 <- seq(ylim[1], ylim[2], length=n)
x <- matrix( x0, nr=n, nc=n )
y <- matrix( y0, nr=n, nc=n, byrow=T )
z <- a*x^2 + b*x*y + c*y^2 + d*x + e*y + f
contour(x0,y0,z, nlevels=1, levels=0, drawlabels=F, ...)


}
r <- lm(y~x1+x2+I(x1^2)+I(x1*x2)+I(x2^2))$coef
plot( x1, x2, col=c(’red’,’blue’)[1+y] )
conic.plot(r[4], r[5], r[6], r[2], r[3], r[1]-.5,


xlim=par(’usr’)[1:2], ylim=par(’usr’)[3:4], add=T)


12.1.3 Nearest neighbours


The situation is still the same. This time, in order to find the value of Y from those of X1 and
X2, we take the 10 points of the sample nearest from (X1,X2), we average the corresponding
Y values and round to 0 or 1.
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M <- 100
d <- function (a,b, N=10) {
mean( y[ order( (x1-a)^2 + (x2-b)^2 )[1:N] ] )


}
myOuter <- function (x,y,f) {
r <- matrix(nrow=length(x), ncol=length(y))
for (i in 1:length(x)) {
for (j in 1:length(y)) {
r[i,j] <- f(x[i],y[j])


}
}
r


}
cx1 <- seq(from=min(x1), to=max(x1), length=M)
cx2 <- seq(from=min(x2), to=max(x2), length=M)
plot( x1, x2, col=c(’red’,’blue’)[1+y] )
contour(cx1, cx2, myOuter(cx1,cx2,d), levels=.5, add=T)


The problem of the “outer” function is mentionned in the FAQ, where they provide another
solution, more “parallelized” than mine...
wrapper <- function(x, y, my.fun, ...) {
sapply(seq(along=x), FUN = function(i) my.fun(x[i], y[i], ...))


}
outer(cx1,cx2, FUN = wrapper, my.fun = d)


Here is another situation in which the nearest neighbours method proves more relevant than
the preceding.
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n <- 20
N <- 10
s <- .1
m1 <- rnorm(n, c(0,0))
a <- rnorm(2*N*n, m1, sd=s)
m2 <- rnorm(n, c(0,0))
b <- rnorm(2*N*n, m2, sd=s)
x1 <- c( a[2*(1:(N*n))], b[2*(1:(N*n))] )
x2 <- c( a[2*(1:(N*n))-1], b[2*(1:(N*n))-1] )
y <- c(rep(0,N*n), rep(1,N*n))
plot( x1, x2, col=c(’red’,’blue’)[1+y] )
M <- 100
cx1 <- seq(from=min(x1), to=max(x1), length=M)
cx2 <- seq(from=min(x2), to=max(x2), length=M)
#text(outer(cx1,rep(1,length(cx2))),
# outer(rep(1,length(cx1)), cx2),
# as.character(myOuter(cx1,cx2,d)))
contour(cx1, cx2, myOuter(cx1,cx2,d), levels=.5, add=T)


# Color the various areas
points(matrix(cx1, nr=M, nc=M),


matrix(cx2, nr=M, nc=M, byrow=T),
pch=’.’,
col=c("red", "blue")[ as.numeric( myOuter(cx1,cx2,d) >.5 )+1])







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.857
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pastel <- .9
plot( x1, x2, col=c(’red’,’blue’)[1+y] )
points(matrix(cx1, nr=M, nc=M),


matrix(cx2, nr=M, nc=M, byrow=T),
pch=16,
col=c(rgb(1,pastel,pastel), rgb(pastel,pastel,1))


[ as.numeric( myOuter(cx1,cx2,d) >.5 )+1])
points(x1, x2, col=c(’red’,’blue’)[1+y] )
contour(cx1, cx2, myOuter(cx1,cx2,d), levels=.5, add=T)


Let us vary the number of neighbours.
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plot( x1, x2, col=c(’red’,’blue’)[1+y] )
v <- c(3,10,50)
for (i in 1:length(v)) {
contour(cx1, cx2,


myOuter(cx1,cx2, function(a,b){d(a,b,v[i])}),
levels=.5, add=T, drawlabels=F, col=i+1)


}
legend(min(x1),max(x2),as.character(v),col=1+(1:length(v)), lty=1)


We remark that we should not take too many points.
If we do not take the 10 nearest points but just the nearest point, we get a Voronoi diagram.
http://www.perlmonks.org/index.pl?node_id=189941



http://www.perlmonks.org/index.pl?node_id=189941
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Here is a funny application of Voronoi tessellations: sea ice
modeling in computer-generated images (you can reuse the idea for
giraffe skin):


http://images.povcomp.com/entries/images/210_detail2.jpg
http://www.povcomp.com/entries/210_detail2.php
http://www.povcomp.com/entries/210.php
http://trific.ath.cx/software/gimp-plugins/voronoi/


They are also used to create mosaics.
http://nis-ei.eng.hokudai.ac.jp/~doba/papers/egshort02_mosaic.pdf


We shall see another application of Voronoi diagrams to spot
outliers.
TODO


Other applications:
http://www.voronoi.com/cgi-bin/voronoi_applications.php


TODO: give more examples...


There are several variants of this method: instead of taking the mean on the 10 neighbours,
we can take all the points but weigh them according to the distance to our point (such a
weighting scheme is called a “kernel”); we can replace the euclidian distance by another,
more relevant to the data; etc.


12.1.4 Technical note: kD trees, nearest neighbours and local re-
gression


Given a set of points x1, x2, ..., xN in Rˆn, and a new point y, we want to finc the x i nearest
to y. The naive method consists in examining all the points in turn, compute their distance



http://images.povcomp.com/entries/images/210_detail2.jpg

http://www.povcomp.com/entries/210_detail2.php

http://www.povcomp.com/entries/210.php

http://trific.ath.cx/software/gimp-plugins/voronoi/

http://nis-ei.eng.hokudai.ac.jp/~doba/papers/egshort02_mosaic.pdf

http://www.voronoi.com/cgi-bin/voronoi_applications.php
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with y, and retain the nearest. This may be fine of there is a single new point y, but it is
not very efficient if we plan to use it on many new points. Instead, we can preprocess the
points x1, ..., xN so as to quickly find the one nearest to a new given point.
In dimension one, this can be done as follows; instead of representing the points as an
unordered cloud, represent them as a tree: find the median, cut the cloud of points in two
along the median, proceed recursively with thowe two new clouds.
TODO: give an example.
(a numeric example; plot the tree, give a 1-dimensional
plot as we shall shortly be doing in 2 dimensions)


This is used to speed up data access in a database (when you create an “index” on a numeric
variable); it works well for requests of the form
Find the records for which x = 17
Find the records for which x <= 9
Find the records for which 9 <= x and x <= 17


This can be generalized in higher dimensions, under the name “kD tree” (for “k-dimensional
tree”): we split the cloud of points along the median of one of the coordinates and we change
the coordinate used at each step.
TODO: plot in 2D


There are several ways of choosing which coordinate to use for the split, e.g., “take each
coordinate in turn, cyclically”; or “median of the most spread dimension”; or (instead of
the median) “the point closest to the center of the widest dimension” (this enforces more
square cells).
TODO: plots, for those three algorithms, in two examples:
uniform random points in a square
points along a circle (this tends to be pathological).


As in dimension 1, this is used in DBMS (DataBase Management Systems) to speed up
requests of the form
Find the records with x = 17, y = 3 and z = 5
Find the records with x = 17
Find the records with x <= 17


For the last two examples, we explore the tree, but when it forks according to y or z, we
have to explore both branches.
TODO: a plot of such a tree?


kD trees can also be used to find the nearest neighbour of a point: the idea is to proceed
as with the naive algorithm, by examining all the points, but instead of takeing them in
an arbitrary order, we follow the tree (“depth first”) and we remember to distance to the
closedt point found so far: this allows us to prune whole branches, if their points are farther
that our best guess so far.
The main applications of k-D trees (and their generalization, BSP (Binary Space Partition-
ning) trees, where the cutting hyperplanes need not be orthogonal to the axes) are: indexing
geographical data (in spacial dsatabases or GIS, Geographical Information Systems); index-
ing multidimensional data in databases, even if the data are not geographical; culling objects
from 3-dimensional scenes, i.e., quickly deciding what is visible and should be rendered and
what is not currently visible and can thus be safely discarded; description of FPS (First
Person Shooter) video game levels (e.g., Quake); local regression, i.e., regression on the k
nearest neighbours of each point of our sample (contrary to the naive implementation, that
precomputes the regression at each sample point, kD trees allow us to perform the compu-
tations on the fly and therefore allow you to change the parameters (kernel width, degree)
without needing a retraining phase – the training phase basically consists in storing the
data); reducing the number of colours in an image (represent the colours as points in the
3-dimensional red-green-blue space, build a kD-tree on those points, stop when you have the
desired number of leaves, replace each leaf by its median); simulating the n-body problem
(build the kD tree of the n objects, for each node (starting with the deepest nodes), compute
the forces between its children (considered as points)).
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http://www.autonlab.org/autonweb/documents/papers/moore-tutorial.pdf
http://en.wikipedia.org/wiki/Binary_space_partitioning
http://en.wikipedia.org/wiki/Doom_engine
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
http://www.cs.cmu.edu/~kdeng/thesis/kdtree.pdf
http://www.liacc.up.pt/~ltorgo/PhD/th5.pdf
http://www.flipcode.com/articles/article_raytrace07.shtml


12.1.5 Comparing those methods


Regression is much more stable, it works fine with few observations, but the results are
imprecise. Furthermore, it assumes that the data have a simple structure.
On the contrary, the nearest neighbour method is more precise, does not assume anything
about the structure of the data, but is not very stable (i.e., a different sample can yield
completely different results) and works best with many observations.
Furthermore, the nearest neighbour method falls under the curse of dimension: if the di-
mension is high, the “nearest” neighbours are far away, most points are approximately at
the same distance from our point...
TODO: take two samples, a small (100 or 200 observations, to do the computations, and
another, larger (1e4), to validate them. Plot the error rate as a function of the number of
neighbours. TODO: check that it works...
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get.model <- function (n=10, m=2, s=.1) {
list( n=n, m=m, x=runif(n), y=runif(n), z=sample(1:m,n,replace=T), s=s )


}
get.sample <- function (model, n=200) {
i <- sample( 1:model$n, n, replace=T )
data.frame( x=rnorm(n, model$x[i], model$s),


y=rnorm(n, model$y[i], model$s),
z=model$z[i] )


}
nearest.neighbour.predict <- function (x, y, d, k=10) {
o <- order( (d$x-x)^2 + (d$y-y)^2 )[1:k]
s <- apply(outer(d[o,]$z, 1:max(d$z), ’==’), 2, sum)
order(s, decreasing=T)[1]


}
m <- get.model()
d <- get.sample(m)
N <- 1000
d.test <- get.sample(m,N)


n <- 50
r <- rep(0, n)
# Very slow
for (k in 1:n) {
for(i in 1:N) {
r[k] <- r[k] +
(nearest.neighbour.predict(d.test$x[i], d.test$y[i], d, k) != d.test$z[i] )


}
}
plot(r/N, ylim=c(0,1), type=’l’, xlab="Error rate")
abline(h=c(0,.5,1), lty=3)
rm(d.test)


With a smaller sample:



http://www.autonlab.org/autonweb/documents/papers/moore-tutorial.pdf

http://en.wikipedia.org/wiki/Binary_space_partitioning

http://en.wikipedia.org/wiki/Doom_engine

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

http://www.cs.cmu.edu/~kdeng/thesis/kdtree.pdf

http://www.liacc.up.pt/~ltorgo/PhD/th5.pdf

http://www.flipcode.com/articles/article_raytrace07.shtml
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m <- get.model()
d <- get.sample(m, 20)
N <- 1000
d.test <- get.sample(m,N)
n <- 50
r <- rep(0, n)
# Very slow
for (k in 1:n) {
for(i in 1:N) {
r[k] <- r[k] +
(nearest.neighbour.predict(d.test$x[i], d.test$y[i], d, k) != d.test$z[i] )


}
}
plot(r/N, ylim=c(0,1), type=’l’, xlab="Error rate")
abline(h=c(0,.5,1), lty=3)
rm(d.test)


12.1.6 Other examples


The nearest neighbour method remains valid with more than two classes.
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nearest.neighbour.plot <- function (d, k=10, model=NULL) {
col <- rainbow(max(d$z))
plot( d$x, d$y, col=col )
cx <- seq(min(d$x), max(d$x), length=100)
cy <- seq(min(d$y), max(d$y), length=100)
pastel <- .8
colp <- round(pastel*255 + (1-pastel)*col2rgb(col))
colp <- rgb(colp[1,], colp[2,], colp[3,], max=255)
points(matrix(cx,nr=100,nc=100),


matrix(cy,nr=100,nc=100,byrow=T),
col = colp[
myOuter(cx,cy, function(a,b){
nearest.neighbour.predict(a,b,d,k)


})
],
pch=16


)
points( d$x, d$y, col=col )


if(!is.null(model)){
points(model$x,model$y,pch=’+’,cex=3,lwd=3,col=col[model$z])


}
}
m <- get.model(n=10, m=4)
d <- get.sample(m)
nearest.neighbour.plot(d, model=m)


TODO: plot the theoretical boundary.
TODO: there is already a package for this...
library(help=knnTree)


Exercice: use a kernel instead.
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12.1.7 TODO: lda, qda


TODO: Read chapter 4 of "The Elements of Statistical Learning"


12.1.8 Mixture discriminant analysis


TODO
library(mda)
?mda


12.1.9 Flexible discriminant analysis


TODO
library(mda)
?fda


12.2 Naive Bayes classifyer


12.2.1 Toy example


We consider two binary random variables X and Y and we try to predict Y from X.
For instance, we try to predict the name of a fruit from its shape.
X = "round" or "long"
Y = "apple" or "non-apple" (e.g.: bananam, orange)


We have a set of fruits to learn to recognise them: we know their shape and we know if they
are an apple or not. For instance:


| pomme | pas une pomme
-----+---------+-----------------
rond | |
-----+---------+-----------------
long | |


TODO: choose numeric values


When we see a new fruit, we can try to guess wether it is an apple in the following way: we
compute the conditionnal probabilities


P( Y = apple et X = round )
P( Y = apple | X = round ) = ----------------------------


P( X = round )


P( Y = non-apple et X = round )
P( Y = non-apple | X = round ) = --------------------------------


P( X = round )


and we conpare them. If the first is the larger, we shall say it is an apple, if it is the second,
we shall say it is not.
With our values:
TODO


12.2.2 The Bayes formula


All the presentations of the naive Bayes classifier relie on the Bayes formula. Indeed, the
formula we have use,


P( Y = apple et X = round )
P( Y = apple | X = round ) = ----------------------------







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.863


P( X = round )


can also be written
P( X = round | Y = apple ) * P( Y = Apple )


P( Y = apple | X = round ) = --------------------------------------------
P( X = round )


which is called “the Bayes formula”.
When we only had one predictive variable, it was not that useful, but we shall see that with
several, it becomes handy.


12.2.3 Several predictiva variables, non-binary variables


This idea can easily be generalized to several predictive variables (shape of the fruit, colour,
pips or stone, etc.).


P(X1=b1 and ... and Xn=bn and Y=a)
P(Y=a|X=(b1,b2,...,bn)) = ---------------------------------


P(X1=b1 and ... and Xn=bn)


But, if there are many predictive variables, some problems may occur: in some cases, we
have not observed simultaneously b1, b2, ..., and bn. What can we do?
It is here that conditionnal probabilities really become useful.


P(X=(b1,...,bn)|Y=a) * P(Y=a)
P(Y=a|X=(b1,b2,...,bn)) = -------------------------------


P(X=(b1,...,bn))


If the Xi are independant (it is a reasonnable hypothesis, iven if it is false: otherwise, we
would have to investigate the dependancy relations, the interactions, between the Xi – this
would require much more data), this can be written


P(X1=b1|Y=a) * ... * P(Xn=bn|Y=a) * P(Y=a)
= --------------------------------------------


P(X=(b1,...,bn))


We are interested in the value of a tha maximizes this quantity. As a does not appear in
the denominator, we can get rid of it and find the value of a that maximizes the numerator
P(X1=b1|Y=a) * ... * P(Xn=bn|Y=a) * P(Y=a).


A naive bayesian classifier will thus be used in two steps: first, compute the conditionnal
probabilities
P(Xi=bj|Y=a)


for all the values of i, j and a and the a priori probabilities
P(Y=a)


from the learning data set and then, in a second step, given new values for the Xi, find the
value of a that maximizes
P(X1=b1|Y=a) * ... * P(Xn=bn|Y=a) * P(Y=a).


12.2.4 Hypotheses


We had to assume that the predictive variables were independant (this is the meaning of the
word “naive” in the expression “naive Bayes classifier”). This hypothesis is usually wrong
– however, the forecasts are nonetheless rather reliable.
http://www.cs.washington.edu/homes/pedrod/mlj97.ps.gz


TODO: read this document...



http://www.cs.washington.edu/homes/pedrod/mlj97.ps.gz
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12.2.5 Implementation in R


As the idea is relatively simple, we can easily implement ourselves such a predictor.
my.bayes <- function (y, x, xp) {
# TODO:
# we should check that y, the columns of x and xp are factors,
# that xp and x have the same number of columns,
# that the levels of the columns of xp and x are the same
# (or at least that the values in the columns of xp are among the
# levels of x)
na <- names(x)
m <- dim(x)[2]
# Compute the conditionnal probabilities
pc <- list()
for (i in 1:m) {
a <- table(data.frame(y,x=x[,i]))
a <- a / apply(a,1,sum)
pc[[ na[i] ]] <- a


}
# Compute the a priori probabilities
pap <- table(y)
pap <- pap/sum(pap)
# To avoid numerical instability, we consider sums of logarithms
# of probabilities instead of products of probabilities
pc <- lapply(pc,log)
pap <- log(pap)
# Compute the P(X1=b1|Y=a) * ... * P(Xn=bn|Y=a) * P(Y=a)
papo <- matrix(0, nr=dim(xp)[1], nc=length(pap))
colnames(papo) <- names(pap)
# I am sure we could do this with no loop...
for (i in 1:dim(xp)[1]) {
for (j in 1:length(pap)) {
papo[i,j] <- pap[j]
for (k in 1:dim(x)[2]) {
papo[i,j] <- papo[i,j] + pc[[ na[k] ]][j,xp[i,k]]


}
}


}
papo <- papo - apply(papo,1,mean)
papo <- exp(papo)
levels(y)[ apply(papo, 1, function (a) { which(a==max(a))[1] }) ]


}


# Data
library(e1071)
data(HouseVotes84)
y <- HouseVotes84[,1]
x <- HouseVotes84[,-1]
# Err...
# I forgot to account for missing value
i <- which(!apply( apply(x,1,is.na), 2, any ))
x <- x[i,]
y <- y[i]


# Compute the forecasts: correct in 92% of the cases.
yp <- my.bayes(y,x,x)
mean(y==yp)
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12.2.6 Implemetation in R


Actually, it is already there – and the function, contrary to ours, accounts for missing values.
library(e1071)
?naiveBayes


For sample data, have a look at
library(mlbench)
data(package=mlbench)


12.2.7 Precision and recall rates


TODO: recall what it is
library(mlbench)
data(DNA)
d <- DNA
d$Class <- factor(ifelse(d$Class==’n’,’n’,’i’))
library(e1071)
r <- naiveBayes(Class~.,d)
i <- sample(1:dim(d)[2],100)
p <- predict(r, d[,-length(d)][i,]) # Long...
A <- sum(p == ’i’ & d$Class[i] == ’i’)
B <- sum(p == ’i’ & d$Class[i] != ’i’)
C <- sum(p != ’i’ & d$Class[i] == ’i’)
# Precision rate
100 * A/(A+B)
# Recall rate
100 * A/(A+C)


12.2.8 ROC Curve


TODO


library(mlbench)
data(DNA)
d <- DNA
d$Class <- factor(ifelse(d$Class==’n’,’n’,’i’))
library(e1071)
r <- naiveBayes(Class~.,d)
p <- predict(r, d[,-length(d)], type=’raw’)


12.2.9 Practical example: spam filtering


For several years, bayesian classifiers have been used in mail filters – the interesting point
is that they learn the kind of mail you receive and the kind of spam that flood the web –
everyone ends up with a different filter.
http://www.paulgraham.com/spam.html
http://www.xml.com/pub/a/2003/11/19/udell.html


K. Williams, An Introduction to Machine Learning with Perl
http://conferences.oreillynet.com/presentations/bio2003/williams_ken.ppt


The variable to predict, Y, has two values: “spam” and “non-spam”. There is a predictive
variable for each word (yes, that means thousands of predictive variables – actually, we
shall restrict ourselves to the most common words and end up with hardly more than one
thousand words), with two values: “present” or “absent”.
The learning step is carried out from messages whose nature is known – for instance, the
messages you received last week).
More generally, text classification is one of the main applications of the naive Bayes classifier



http://www.paulgraham.com/spam.html

http://www.xml.com/pub/a/2003/11/19/udell.html

http://conferences.oreillynet.com/presentations/bio2003/williams_ken.ppt
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TODO: give other examples (URL)


12.2.10 Other naive Bayes classifier


There is another notion of a “naive Bayes classifier”, in which the predictive variables are
quantitative: these are counting variables – in the spam example or in the text classification
example, we not only look at the presence/absence of a word, but also hoz many times it
occurs.
Should you wish to distinguish the two classifiers, you can can the binary one “Binomial
Naive Bayes Classifier” and the counting variable one “Multinomial Naive Bayes Classifier”.
A. McCallum, K. Nigam
A Comparison of Event Models for Naive Bayes Text Classification
http://www-2.cs.cmu.edu/%7Eknigam/papers/multinomial-aaaiws98.pdf


12.2.11 Other Bayes classifiers


There are variants of the naive Bayes classifier that tackle its overly naive hypothesis (the
independance of the predictive variables).
TAN (Tree-augmented Naive Bayes) model the dependance relations between predictive
variables by a tree.
Bayesian networks (very trendy for a couple of years, as were the neural networks in tge
1990s) model the dependance relations between the predictive variables by a graph.
http://www.vision.ethz.ch/gm/bnclassifiers.pdf


The Holmes and Watson examples (they are actually taken from Finn
Jensen’s book: An introduction to Bayesian Networks):
http://www.ai.mit.edu/courses/6.825/fall02/pdf/6.825-lecture-15.pdf


12.2.12 Other (unsorted) examples


More generally, Bayesian classifiers may be used with any classification problem.
1. We want to know if a family name comes from southern Asia or not. For this, we look
at the presence/absence of 4-letter strings in the name.
http://dimax.rutgers.edu/%7Esguharay/newfinalpresentation.pdf


2. Handwritten character recognition, on a PDA.
3. Voice recognition, on a mobile phone.
4. We have a bunch of biology research article abstracts and we are looking for sentences
that describe gene interactions. To this end, we process by hand a few hundred sentences:
we look at the words it contains (our predictive variables) and we state if it describes a gene
interaction (our variable to predict). From this learning corpus, we compute the conditionnal
and a priori probabilities. Given a new sentence, the Bayes classifier gives us the probability
that it describes an interaction.
http://zoonek2.free.fr/bioinfo/TM/rapport.pdf


12.3 Discriminant Analysis


We have already mentionned it above: we want to predict a qualitative variable from several
quantitative variables. More geometrically, we are looking for a plane (or a subspace of
smaller dimension) in which the various values of the quantitaive variable correspond to
points as far away as possible.



http://www-2.cs.cmu.edu/%7Eknigam/papers/multinomial-aaaiws98.pdf

http://www.vision.ethz.ch/gm/bnclassifiers.pdf

http://www.ai.mit.edu/courses/6.825/fall02/pdf/6.825-lecture-15.pdf

http://dimax.rutgers.edu/%7Esguharay/newfinalpresentation.pdf

http://zoonek2.free.fr/bioinfo/TM/rapport.pdf
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library(MASS)
n <- 100
k <- 5
x1 <- runif(k,-5,5) + rnorm(k*n)
x2 <- runif(k,-5,5) + rnorm(k*n)
x3 <- runif(k,-5,5) + rnorm(k*n)
x4 <- runif(k,-5,5) + rnorm(k*n)
x5 <- runif(k,-5,5) + rnorm(k*n)
y <- factor(rep(1:5,n))
plot(lda(y~x1+x2+x3+x4+x5))


12.4 Logistic Regression


12.4.1 Generalized Linear Model


Regression with quantitative variables can be written
E(Y) = a0 + a1 x1 + ... + an xn.


But if Y only has a finite number of variables, this is no longer relevant: we can use numbers
for the values of Y, but Y will be bounded, will only assume a fixed number of values, known
in advance, while the right hand side of the expression is not bounded and can take an infinite
number of values – it does not look very serious and can become troublesome when you want
to predict Y.
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n <- 100
x <- c(rnorm(n), 1+rnorm(n))
y <- c(rep(0,n), rep(1,n))
plot(y~x)
abline(lm(y~x), col=’red’)


The idea of the Generalized Model (GLM)) is to replace E(Y) by something else.
For logistic regression, the variable to predict, Y, has only two values, 0 and 1, and we are
interested in the probability of each.
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P[ Y == 1 ] = a0 + a1 x1 + ... + an xn.


Hardly better: actually, it is the same formula (because E(Y)=P(Y==1)) and we have the
same problem: the left hand side is bounded, the right hand side is not. To get rid of the
problem, we can apply some transformation to the left hand side, a bijection between the
interval (0,1) and the real line – in GLM parlance, such a function is called a “link”.
One often uses the logistic function>


p
logit(p) = log -------


1 - p


We can write
P(win)


logit( P(winr) ) = log --------.
P(lose)


The quotient P(win)/P(lose) is called the “odds” (bookmakers often use this expression:
“the odds are 3 to 1”, etc.)
Here is the plot of this function.
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x <- seq(0,1, length=100)
x <- x[2:(length(x)-1)]
logit <- function (t) {
log( t / (1-t) )


}
plot(logit(x) ~ x, type=’l’)


The “probit” function, the inverse of the cumulative distribution function of the gaussian
distribution, is another link.
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curve(logit(x), col=’blue’, add=F)
curve(qnorm(x), col=’red’, add=T)
a <- par("usr")
legend( a[1], a[4], c("logit","probit"), col=c("blue","red"), lty=1)


The “log-log” function is yet another link.
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curve(logit(x), col=’blue’, add=F)
curve(qnorm(x), col=’red’, add=T)
curve(log(-log(1-x)), col=’green’, add=T)
abline(h=0, lty=3)
abline(v=0, lty=3)
a <- par("usr")
legend( a[1], a[4],


c("logit","probit", "log-log"),
col=c("blue","red","green"),
lty=1)


You might also think about transforming the data with the inverse of the link function,
perform a linear regression and apply the link to the result. It would not work, because the
initial data are 0 and 1 and would give infinite values – we are no longer trying to model
the data values themselves, but their probabilities.
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ilogit <- function (l) {
exp(l) / ( 1 + exp(l) )


}
fakelogit <- function (l) {
ifelse(l>.5, 1e6, -1e6)


}
n <- 100
x <- c(rnorm(n), 1+rnorm(n))
y <- c(rep(0,n), rep(1,n))
yy <- fakelogit(y)
xp <- seq(min(x),max(x),length=200)
yp <- ilogit(predict(lm(yy~x), data.frame(x=xp)))
yp[is.na(yp)] <- 1
plot(y~x)
lines(xp,yp, col=’red’, lwd=3)


So we give up Least Squares Estimation and compute a Maximum Likelihood Estimator.
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Logistic regression, by hand
n <- 100
x <- c(rnorm(n), 1+rnorm(n))
y <- c(rep(0,n), rep(1,n))
f <- function (a) {
-sum(log(ilogit(a[1]+a[2]*x[y==1]))) - sum(log(1-ilogit(a[1]+a[2]*x[y==0])))


}
r <- optim(c(0,1),f)
a <- r$par[1]
b <- r$par[2]
plot(y~x)
curve( dnorm(x,1,1)*.5/(dnorm(x,1,1)*.5+dnorm(x,0,1)*(1-.5)), add=T, col=’red’)
curve( ilogit(a+b*x), add=T )
legend( .95*par(’usr’)[1]+.05*par(’usr’)[2],


.9,
c(’theoretical curve’, ’MLE’),
col=c(’red’, par(’fg’)),
lty=1, lwd=1)


title(main="Logistic regression, by hand")


This can be done directly, with the “glm” function.
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Logistic regression with the "glm" function
#
# BEWARE:
# Do not forget the "family" argument -- otherwise, it would be a
# linear regression -- the very thing we are trying to avoid.
#
r <- glm(y~x, family=binomial)
plot(y~x)
abline(lm(y~x),col=’red’,lty=2)
xx <- seq(min(x), max(x), length=100)
yy <- predict(r, data.frame(x=xx), type=’response’)
lines(xx,yy, col=’blue’, lwd=5, lty=2)
lines(xx, ilogit(r$coef[1]+xx*r$coef[2]))
legend( .95*par(’usr’)[1]+.05*par(’usr’)[2],


.9,
c(’linear regression’,
’prediction with "predict"’,
"prediction with the coefficients"),


col=c(’red’, ’blue’, par(’fg’)),


lty=c(2,2,1), lwd=c(1,5,1))
title(main=’Logistic regression with the "glm" function’)


In particular, the predicted values, which are probabilities, are indeed between 0 and 1 –
with linear regression, they were not bounded.
We can compare the various kinds of regression: logistic regression yields the results closer
to the theoretical curve.
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Comparing linear and logistic regression
n <- 100
x <- c(rnorm(n), 1+rnorm(n))
y <- c(rep(0,n), rep(1,n))
plot(y~x)
# Brutal prediction
m1 <- mean(x[y==0])
m2 <- mean(x[y==1])
m <- mean(c(m1,m2))
if(m1<m2) a <- 0
if(m1>m2) a <- 1
if(m1==m2) a <- .5
lines( c(min(x),m,m,max(x)),


c(a,a,1-a,1-a),
col=’blue’)


# Linear regression
abline(lm(y~x), col=’red’)
# Logistic regression
xp <- seq(min(x),max(x),length=200)


r <- glm(y~x, family=binomial)
yp <- predict(r, data.frame(x=xp), type=’response’)
lines(xp,yp, col=’orange’)
# Theoretical curve
curve( dnorm(x,1,1)*.5/(dnorm(x,1,1)*.5+dnorm(x,0,1)*(1-.5)), add=T, lty=3, lwd=3)
legend( .95*par(’usr’)[1]+.05*par(’usr’)[2],


.9, #par(’usr’)[4],
c(’Brutal prediction’, "Linear regression", "Logistic regression",
"Theoretical curve"),


col=c(’blue’,’red’,’orange’, par(’fg’)),
lty=c(1,1,1,3),lwd=c(1,1,1,3))


title(main="Comparing linear and logistic regression")


Do not forget to have a look at the examples from the “glm” manual:
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demo("lm.glm")


TODO: Compare the various links.


12.4.2 Reading the result


As for linear regression, we have three means of displaying the result.
The “print” function”:
> r


Call: glm(formula = y ~ x, family = binomial)


Coefficients:
(Intercept) x


-0.4864 0.9039


Degrees of Freedom: 199 Total (i.e. Null); 198 Residual
Null Deviance: 277.3
Residual Deviance: 239.7 AIC: 243.7


The “summary” function:
> summary(r)


Call:
glm(formula = y ~ x, family = binomial)


Deviance Residuals:
Min 1Q Median 3Q Max


-1.94200 -0.99371 0.05564 0.97949 1.87198


Coefficients:
Estimate Std. Error z value Pr(>|z|)


(Intercept) -0.4864 0.1804 -2.696 0.00702 **
x 0.9039 0.1656 5.459 4.79e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


Null deviance: 277.26 on 199 degrees of freedom
Residual deviance: 239.69 on 198 degrees of freedom
AIC: 243.69


Number of Fisher Scoring iterations: 3


The “anova” function:
> anova(r)
Analysis of Deviance Table


Model: binomial, link: logit


Response: y


Terms added sequentially (first to last)


Df Deviance Resid. Df Resid. Dev
NULL 199 277.259
x 1 37.566 198 239.693


There is also the “aov” function.
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> aov(r)
Call:


aov(formula = r)


Terms:
x Residuals


Sum of Squares 9.13147 40.86853
Deg. of Freedom 1 198


Residual standard error: 0.45432
Estimated effects may be unbalanced


Let us also mention the “manova” function.
?summary.manova


12.4.3 Residuals and plots


As usual, we have a wealth of plots to assess the quality of the regression results.
The Pearson residuals are defined as


y i - \hat y i
r i = ----------------


s i


where s i is the estimation of the standard deviation of the noise. There is also a normalized
version (this is the same sa with linear regression: the standard deviation of the noise and
the standard deviation of the residuals are different) and a standardized version (we divide
by the estimation of the standard deviation obtained by removing observation “i”).
You will notice that y i is 0 or 1, while \hat y i is a probability (between 0 and 1), which
explains the shape of the plot: se see two curves, one above the axis, the other under, that
correspond to the two possible values of y i. One of those curves is decreasing and tends to
0 in + infinity, for the other, it is the opposite.
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glm(y ~ x)


Residuals vs Fitted


89


172


82


n <- 100
x <- c(rnorm(n), 1+rnorm(n))
y <- c(rep(0,n), rep(1,n))
r <- glm(y~x, family=binomial)
plot(r, which=1)


Actually, this simulation does not faithfully reflect the model underlying the logistic regres-
sion. It would rather be like this:







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.874


●●


●


●●


●●● ●●


●


●


●


●


●


●


●●●● ●


●● ●


●


●


●


●


●


● ●


● ●● ●


●● ●


●


●


● ●


●● ●●●


●


● ●


● ●


●


●●


●


●


● ●● ●


●


●


●


●●


● ●


●●


●


● ●


●● ●


●


●●


●●


●


●● ●


● ● ●


●


●


● ● ●


●


●


● ●


●


●


●


●● ●● ●●●


● ●● ● ●


● ● ●


●●


●


● ●


●


● ●●●


●


●● ●● ●


● ●


● ●


●


●


●


●


●


●● ● ●●●●●


●


●


●


●


●


●


●


●● ●


●●


● ●● ●


● ●


●


● ●●


● ●


●● ●●● ●● ●


●


●● ●●


● ●


● ●


● ●●


●


● ●


●


●


●


●


●


●


●●● ●


●●


●


●


●


●


●●


●● ● ●


● ●


●


●


● ●


●


●


●● ●


●●


● ● ●


●


●


●


●


●


●


● ● ●●● ●●


●●


●


●


●●


●


●


●● ●


●●


●


●


● ●


● ● ●


●


●●


●


●●


●


●●


●●● ● ●


●


● ●


●●


●


●●


●●


● ●


●● ●


●●●


● ●


● ●


●


●


●


●


● ●


● ●


●


●


●


● ●●


● ●●


●


●●


●


●●●


●


● ●


●●


●


●


●


●●


● ●●


●


●


●● ●


● ● ●


●


●● ● ●


●●


●● ●


●●


●


●●


●● ●●● ●●● ●


●● ●●


●●


● ●● ●


● ● ●


●


●


● ●●


●


● ●●●


●


●● ●● ●●


●●


●


●


● ●


●● ●


● ●


●● ●


●


● ●


●


●


●


● ●


●●● ●


●


●


● ●●


●●


●


●● ●


●●


●● ●


●●


●


●


●●


●


●


● ●


● ● ●● ●● ● ●● ●


●


●


●


●


●


●


●● ●● ●● ●


●


●● ●●● ●


●●


● ●● ●●


●● ●


●


●● ●


●


●


●● ● ●


●● ●


●●


●


● ●


● ●


●


●


● ●●


●


●


●


● ●


● ●


●●● ● ● ●●●


●


●


●●


●


●●


● ●● ● ●


●


●


●


●


●


●●●


●●


● ●● ●● ●


● ●


●● ●


●


●●● ●


●


● ●


●


●


●


●


● ●● ● ●


●●


●●


●


●●● ● ●●


●


●


●


● ●●


●


●● ●●


●● ●


●


●


● ●●


●●


●● ●● ●● ●● ●


●


● ● ●


● ●


●●


●


●


●●●


●


●


● ●●●●


●


●


●


● ● ●●


● ●● ●● ●


●


● ●●


●● ●


●●


●●


●


●


● ●


● ● ●


●


●●


●


●●


●


●


● ●


● ●●


●●● ●


●


●


●● ●●


●


●


● ●


●


●● ● ●●


● ● ●●●


●


●●●


●●● ●● ●


●


●●● ●●


● ●


●


●●


●


●


●


●


●


●● ●


●


●●


● ●


●●


● ● ●


●● ●


● ●


●


● ●●●●


●


●


● ●●


●


●


● ●


● ●


● ●●


●


●● ●●


●


●


●


● ●


●●● ●


●


● ●


●● ●●


●


●


●


●


● ●●


●


● ●


● ● ●●● ● ●


●


● ●


●


●


● ●●


● ●


● ●


●


●●


●


●


●


●


●


● ●● ●


● ● ●


●●


●


●


● ● ●● ●


●


●● ●


● ●● ●●


●● ●●● ●


●● ●


●●● ●


●●


●


● ●● ●●


●


●


●●


●● ●


●●


● ●


● ●● ●●


●


●


●


●●


●


●


●


● ●


●


●


●● ●●


●● ●


●● ●●● ●●


●●


●●● ●


●


●● ●


● ●


●


●● ●


● ●● ●● ●●


●●● ●


●● ●● ●


●●


●


●● ●●● ●●


●


●


●


●●


●


●●●


●


● ●●


●● ●


●


●


●● ●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


−4 −2 0 2 4


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


x


y


n <- 1000
a <- -2
b <- 1
x <- runif(n, -4, 5)
y <- exp(a*x+b + rnorm(n))
y <- y/(1+y)
y <- rbinom(n,1,y)
plot(y~x)


●0
1
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boxplot(x~y, horizontal=T)
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Histogram of x[y == 1]
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op <- par(mfrow=c(2,1))
hist(x[y==1], probability=T, col=’light blue’)
lines(density(x[y==1]),col=’red’,lwd=3)
hist(x[y==0], probability=T, col=’light blue’)
lines(density(x[y==0]),col=’red’,lwd=3)
par(op)
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glm(y ~ x)


Residuals vs Fitted


905


611186


rt <- glm(y~x, family=binomial)
plot(rt, which=1)


TODO: give concrete examples of pathological situations.
We are also suggested to look at the gaussian quantile-quantile plot of the residuals – but I
do not understand whym because the residuals are not supposed to be gaussian.
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plot(rt, which=2)


Histogram of rt$residuals
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xlim=c(-10,10),
probability=T, col=’light blue’)


points(density(rt$residuals, bw=.5), type=’l’, lwd=3, col=’red’)


However, one can transform those residuals to get a gaussian distribution: these are the
Anscombe residuals – the transformation is rather complex and R does not seem to know
it...
Exercice: implement this transformation, in an approximate manner, with a simulation.
We can also look at the absolute value of the residuals.
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glm(y ~ x)
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plot(rt, which=3)


and the Cook distances.
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plot(rt, which=4)


12.4.4 Deviance, residuals, AIC


The deviance is defined by
D = -2(L-Lsat)


where L is the log-likelihood of our model and Lsat the log-likelihood of the saturated model
(with as many variables as observations).
TODO: understand. (Where do those new variables come from?)
We are happy if D/df < 1.
> rt$deviance
[1] 362.0677


We also have the deviance of the null model (the model with no variables, corresponding
to the hypothesis “the predictive variables have no effect”), i.e., the probability of Y=1 is
constant and does not depend on the predictive variables).
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> rt$null.deviance
[1] 1383.377


The AIC (Akaike Information Criterion) is preferable to the deviance to compare models,
because it accounts for the number of parameters in those models.
> rt$aic
[1] 366.0677


It is defined by
- 2 * log-likelihood + 2 * number of parameters.


There are a few variants, such as the BIC,
- 2 * log-likelihood + ln(number of observations) * number of parameters.


We have already seen the various residuals.
Pearson residuals (aka raw residuals, standardized residuals, studentized residuals):


y i - \hat y i
----------------


s i


Deviance residuals: contribution of each observation to the deviance.
Anscombe residuals: we transform the variable to that the residuals follow a gaussian dis-
tribution (the “t” function is complicated):


t(y i) - t(\hat y i)
----------------------


t’(y i) s i


As with linear regression, we can measure the leverage, with the “hat matrix” (but it is not
exactly the same matrix).
TODO: with R
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# It is supposed not to be the same as in the linear situation.
# Here, it seems to be the same...
plot(hat(x), type=’h’)


We also have the Cook distance, as for linear regression.
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12.4.5 Model comparisons


Likelihood Ratio test: to compare two nested models with q1 and q2 parameters,we look
at D2 - D2, that asymptotically follows a Chiˆ2 distribution (if we start with a binomial or
Poisson distribution) or a Fisher distribution (if we start with a gaussian distribution) with
q2 - q1 degrees of freedom.
TODO: understand


Wald test: it is a quadratic approximation of the Likelihood Ratio test.
library(car)
?linear.hypothesis


12.4.6 TODO: to sort, to rewrite


(Answer to a question I was asked by email)
Let us consider the data
library(mlbench)
data(BostonHousing)
y <- BostonHousing[,1]
y <- factor(y>median(y))
x1 <- BostonHousing[,2]
x2 <- BostonHousing[,3]


We can compute the logistic regression with the “glm” function.
glm(y~x1+x2, family=binomial)


or with the “lrm” function in the “Design” package, that provides much more information.
library(Design)
lrm(y~x1+x2)


This yields:
> lrm(y~x1+x2)
Logistic Regression Model


lrm(formula = y ~ x1 + x2)
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Frequencies of Responses
FALSE TRUE
253 253


Obs Max Deriv Model L.R. d.f. P C Dxy
506 3e-06 234.13 2 0 0.862 0.724


Gamma Tau-a R2 Brier
0.725 0.363 0.494 0.145


Coef S.E. Wald Z P
Intercept -1.66990 0.27245 -6.13 0e+00
x1 -0.04954 0.01280 -3.87 1e-04
x2 0.17985 0.02084 8.63 0e+00


Question:
> 1. In a logistic regression, how do we know if the model is
> "good"? I.e., do we have an equivalent of the R^2?


There are several equivalents of the Rˆ2 for logistic regression. The simplest, “pseudo-Rˆ2”
or “McFadden’s Rˆ2” is


(deviance of the model) - (deviance of the null model)
--------------------------------------------------------


(deviance of the null model)


I recall that the deviance is
- 2 log(L)


where L is the likelihood and that the “null model” is “y ˜1” (the model with no predictive
variables, the model that assumes that the quantities we are modelling (the probability of
Y) are constant).
It can be interpreted as the “proportion of the deviance explained by the model” – similarly,
the Rˆ2 was the “proportion of variance explained by the model”.
But it does not tell you if the model is good: if the Rˆ2 is low, it can mean that there is a
lot of noise or that the model is incomplete.
The idea is the same as for linear models: plots. To learn how to read them, let us start
with a few simulations.
Random data:
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n <- 1000
y <- factor(sample(0:1,n,replace=T))
x <- rnorm(n)
r <- glm(y~x,family=binomial)
op <- par(mfrow=c(2,2))
plot(r,ask=F)
par(op)







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.881
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n <- 1000
x <- rnorm(n)
a <- 1
b <- -2
p <- exp(a+b*x)/(1+exp(a+b*x))
y <- factor(ifelse( runif(n)<p, 1, 0 ), levels=0:1)
r <- glm(y~x,family=binomial)
op <- par(mfrow=c(2,2))
plot(r,ask=F)
par(op)







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.882
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Data from the model, with random errors (I do not see anything on the plot, but the
estimators of a and b are biased towards zero):
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Cook's distance


Residuals vs Leverage


668186


462


n <- 1000
x <- rnorm(n)
a <- 1
b <- -2
p <- exp(a+b*x)/(1+exp(a+b*x))
y <- ifelse( runif(n)<p, 1, 0 )
i <- runif(n)<.1
y <- ifelse(i, 1-y, y)
y <- factor(y, levels=0:1)
col=c(par(’fg’),’red’)[1+as.numeric(i)]
r <- glm(y~x,family=binomial)
op <- par(mfrow=c(2,2))
plot(r,ask=F, col=col)
par(op)







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.883
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n <- 1000
x <- rnorm(n)
a <- 1
b <- -2
p <- exp(a+b*x)/(1+exp(a+b*x))
y <- ifelse( runif(n)<p, 1, 0 )
i <- runif(n)<.5 & abs(x)>1
y <- ifelse(i, 1-y, y)
y <- factor(y, levels=0:1)
col=c(par(’fg’),’red’)[1+as.numeric(i)]
r <- glm(y~x,family=binomial)
op <- par(mfrow=c(2,2))
plot(r,ask=F, col=col)
par(op)







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.884


●


●


●


●


● ●●


●


●


●


●●


●
●


●●


●


●


●


●
●


●
● ●


●


●


●
●


●
●


●
●


●


● ●


●


●


●


●


●


●


● ●


●


●●●


● ●


●


●


●


●


●


●


●


●


●
● ●


●


●


●


●


●


●


●● ●


●


● ● ●


●


●


●


●
●●


●
●


●


●●


●


●


● ●
●


● ●
●


●


●
●


●


●


●


●


●
●● ●


●
●


●


●


●


● ●
●


●


●
●


●
●●


●


●


● ●


●


●


●


●


●


●


●


●


● ● ●


●


●


●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●●


●


●


●
●


●
●


●


●


●●●


●


●


●


● ●
●


●●


●●●


●
●●●●


●


●


●
●


●●


●


●


●


●


●
●


●


●●


●●


●


●


●


● ● ●


●


●


●


●


●


●
●


●
●●


● ●●


●


●
●


●


●


●
● ●


●


●●


●


● ●
●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●●
●


● ●


●


●


●●


●●


● ●●●


●


● ● ●●●
●


●


●
●


●


● ●●


●


●●●
●


●
●


●


●


●


●


●


●


●


●


● ●● ●●


●


●●


●
●


●


●


●
● ●


●


● ●●●


●
●


●


●


●


●●


●● ●●


●


●


●


●
●


● ● ●


●


● ●


●


●
●


●●


●
● ●


● ●


●


●


●


●
●


●●


●


●


●


●


●


●


●


●●
●


●●


●


●


●


●
●


● ●


●


●


●


●
●


●
● ●


●


●


●


●


●


●


●


●●


●


●


●●


●


●


●
●


●
●


●
●


●


●
●


● ●●
●


●●


●


●


●


●


●


●


●


●


●


●●
●


●


●


●
●


●


●●


●


● ●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●


●●●


●


●


●
●


●


●


●


●


●


●●
●


● ● ●


●


●
●


●


●


●


●●


●


●●


●


● ● ●


●


●


●


●
●


●


●


●


●


●


●●
●


●


●


●
●●●


●


●


●


●


●


●


●


●


●


●●
● ●


●


●


● ●


●


●


●


●


●


●


●
●


●
●●●


● ●


●● ●●


●


●


●


●


● ●


●


●


●●


●


●


●


●


●


●


●
●●


●


●●


●


●


●


●●


●
●


●


●


●●● ●


●


●
●


●
●●


●
●


●●
●


●


●●


●


● ●
●


●
●


●


●●
●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●● ●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●●


●●


● ●
●


●
●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●


●
●


●


●


●
●


●
●●


●


●


●
●


●


●
●


●


●


●


● ●


●


● ●


●


●


●
●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


● ●


●
●


●
●


●


●


●


●


●


●


●


●


●


● ●
●●


●


●● ●


●


●
● ●


●


●
●


●
●


●


●


●


●●
●


●●●
●


●


●


●


●
●


●


● ●


●● ● ●


●●


●


●


●
● ●


●


●


●
●●


●
●


●
●


●
●


● ●●●


●


●●●


●


●


●


●


●


●


●


●
●


●


●
●


●


●
●


●


●


●


●
● ●●


● ●


●


●


●


●


● ●●


●●


●


●


● ●


●


●


●


●


●
●


● ●●


●


●
●● ●


● ●


● ●
●


●


●
● ●●


●


●
●


●
●●


●


●


●


●


●● ●


●


●


● ●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●●


●●●


●


●


●


●


● ●


●
●


●


●


●


●


● ●


●● ● ●
● ●


●


● ●
●●●●


●


●


● ● ●
●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●
●


●


●


● ●


● ●


●


●


●


−3 −2 −1 0 1 2 3


−
4


−
2


0
2


x


P
ar


tia
l R


es
id


ua
l


6.66134e−15
r <- lrm(y~x,y=T,x=T)
P <- resid(r,"gof")[’P’]
resid(r,"partial",pl=T)
title(signif(P))


One variable too many:


−5 0 5


−
3


−
1


1
2


3


Predicted values


R
es


id
ua


ls


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●
●●●


●


●


●


●
●


●


●


●
●●●


●


●


●


●


●


●


●


●


●
●●


●
●


●


●


●


●


●●
●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●●●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●●
●


●


●


●


●


●


●


●


●
●


●
●


●


●
●


●


●●●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


● ● ●●●●●
●


●


●


●


●


●
●●


●


●


●
●


●●


●


●


●● ●


●●
●


●
●


●●


●


●
●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●●●


●


●


●


●


●


●


●


●●


●●
●


●


●


●


●
●


●


●


●●


●
●


● ●
●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


● ● ●


●


● ●


●


●
●


●
●


●


●


●


●


●●●


●
●


●
●


●


●


●


●


●


● ●


●


●


●


●
●


●●


●


●
●


●


●


●●


●
●


●
●●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●
●


●


●


●
●


●
●


●


●


●


●


●


●


●●


●


●●


●
●●


●


●


●●●
●


●


●


●


●


●


●
●


●


●


●


●●


●


●
●


●


●


●
●●●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●●●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●●●
●


●●


●


●


●


●
●


●●


●


●


●


●
●


●
●●


●


●


●●


●


● ●


●


●
●


●


●


●


●


●


●


●


●


●


●●
●●


●


●
●●


●


●


●●
●


●
●


●


●
●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


●●


●
●


●


●


●


●


●


●●


●


● ●


●
●


●


●


●


●


●


●●●


●●


●


●


●


●


●


●


●


●●


●●
●


●


●


●
●


●


●


●


●
●


●●


● ●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●●
●


●


●


●


●●


●●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●● ● ●
●


●


●


●


●●●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●●


●
●


●


●


●●


●


●


●


●
●


● ●


●
● ●


●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●
●●


●


●


●


●


●
●


●
●


●
●


●


●●●
●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●●
●


●
●


●


●


●


●


●


●


●


●


●●●


●


●


●


●


●


●


●
●


●


●


●●


●


●


●●


●


●


●
●


●●


●


●


●●


●


●


●


●●


●●


●


●


●


●
●


●


●


●


●


●


●
●●


●
●


●


●


●


●
●●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●●●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●●


●


●


●
●


●●
●


●
●●


●


●●


●


●


●


●


●


●


●●●


●●


●
●


●


●


●


●


●
●


●


●●


●


● ●


●


●
●


●●
●


●


●


●


●●


●


●
●


●


●


●


●


●


● ●●


●


●


●


●


●


●


●


●


●
●


●●


●


●
●


●


●


●


●●


●
●


●


●●
●


●


●


●


●●


●


●


●


●
●


●


●


●
●


●
●


●●


●●


●


●


●


●


●● ●
●


●


●
●


●●


●
●●


●


●
●


●


●


●


●


●●
●


●●
●


●


●


● ●
●


●


●


●●


●●


●● ●
●●●


●


●


●


Residuals vs Fitted


66135


707


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●
●●●


●


●


●


●
●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●
●●


●
●


●


●


●


●


●●


●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●


●


●●●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●●●● ●●●
●


●


●


●


●


●


●●


●


●


●
●


●
●


●


●


●●●


●●
●


●
●


●●


●


●
● ●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●●●


●


●


●


●


●


●


●


●●


●●
●


●


●


●


●
●


●


●


●●


●
●


●●
●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●●
●


●


●●


●


●
●


●
●


●


●


●


●


●●●


●
●


●
●


●


●


●


●


●


●●


●


●


●


●
●


●●


●


●
●


●


●


●●


●
●


●
●●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●
●


●


●


●
●


●
●


●


●


●


●


●


●


●●


●


●●


●
●●


●


●


●●●
●


●


●


●


●


●


●
●


●


●


●


●
●


●


●
●


●


●


●
●●●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●●●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●
●●


●


●●


●


●


●


●
●


● ●


●


●


●


●
●


●
●●


●


●


●●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


● ●
●


●


●


●


●●
●


●


●●
●


●
●


●


●
●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


●
●


●


●


●


●


●


●


●


●●


●


●
●


●
●


●


●


●


●


●


●●●


●●


●


●


●


●


●


●


●


●●


●●
●


●


●


●
●


●


●


●


●
●


●●


●●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●●
●


●


●


●


●●


●●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●●
●●


●


●


●


●


●●●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●●


●
●


●


●


●●


●


●


●


●
●


●●


●
●●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●


●


●


● ●


●


●


●


●


●


●
●


●


●


●


●
●●


●


●


●


●


●
●


●


●


●
●


●


● ●●
●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


● ●●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●●


●


●


●
●


●●


●


●


●●


●


●


●


●●


●●


●


●


●


●
●


●


●


●


●


●


●
●●


●
●


●


●


●


●
●●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●●●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●●
●


●
●●


●


●●


●


●


●


●


●


●


●●●


●●


●
●


●


●


●


●


●
●


●


●●


●


●
●


●


●
●


●●
●


●


●


●


●●


●


●
●
●


●


●


●


●


●●●


●


●


●


●


●


●


●


●


●


●


●●


●


●
●


●


●


●


●●


●
●


●


●●
●


●


●


●


●●


●


●


●


●
●


●


●


●
●


●
●


●●


●
●


●


●


●


●


●●●
●


●


●
●


●●


●
●●


●


●
●


●


●


●


●


●●
●


●●
●


●


●


●●
●


●


●


●●


●●


●●●
●●●


●


●


●


−3 −2 −1 0 1 2 3


−
3


−
1


1
2


3


Theoretical Quantiles


S
td


. d
ev


ia
nc


e 
re


si
d.


Normal Q−Q


661
35


707


−5 0 5


0.
0


0.
5


1.
0


1.
5


Predicted values


S
td


. d
ev


ia
nc


e 
re


si
d.


●


●


●


●


●


●


●


● ●


●


●
●


●


●


●
●


●
●●


●
●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●


●


●
●●


●


●


●


● ●


●


●●


●


● ●


● ●●


●


●●


●


●


●


●


●


●
●
●●


●


●


●
●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
● ●


●


●


●●
●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●
●


●


● ●
●


●


●


●


●
●


●
●


●●
●


●


●


●


●


●


●


●●


●
●


●


●


●
●


●


●


●●


●


●
●


●


●
●


●●


●


●


●


●●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●●


●
●


●


●


● ●


●


●


●


●


●●


●
●


●
●


●


●
●


● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●


●


●


●
●●


●


●


●


●●
● ●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●●


●


●


●


●●
●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●●
●●


●


●


●


●


●●


●


●


●


●


●


●●
●●


●
●


●


●


●●


●


●


●●●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●●●


●


●●


●


●


●


●


●●


●


●


●


●
●


●●


●


●
●


●


●


●


●


●


●


●


●
●


●
●●


●
●


●


● ●
●●


●


●●
●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●●
●


●
●


●
●


●


●


●


●


●


●


●


● ●


●


●


●


●
●


●
●


●●


●
●


●


●


●


●


●


●


●
●


●
●


●


●


● ●


●
●


●


●


●


●


●


●


●


●


● ●●
● ●


●


●


●


●
●●


●


●
●


●
●


●


●


●


●


●


●


●●
●


●


●


●


●


● ●


●


●


●


●


●●●


●●


●●


●


● ●


●


●
●


●


●●


●


●


●


●


●


●


●


●


●
●


●
● ●


●● ●


●
●


●


●


●


●


●
●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●


●


●


●


● ●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


● ●●●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


● ●


●
●


●


●


●


●


●●
●


●


●
●


●


●


●


●


●
●●


●
●


●
●


●


●


●


●


●


●●


●


●


●


● ●


●
●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●


●●


●
●


●


●


●


●


●


●


●


●


● ●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


● ●
●●


●


●


●


●


●
●


●


●
●●


●


●


●


●●


●●


●


●


●


●


●


●


●
●


●


● ●


●●


●


●


●


●


●


●
●●●


●


●


●


●


●


●


● ●


●


●


●


●
●●


●
●


●


●


●


●●


●●


●●●


●


●


●


●


●


●


●


●
●


●●


●


●


●


● ●


●


●


●


●


●


●


●


●


●●


●


●


●
●


●


●


●


●


●●
●


●


●●


●


●●


●


●


●


●


●


●


●●
●●●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●●


●


●


●


●


●


●


●


●


●


●


●
●


● ●


●


●


●


●


●
●


●


●


●


●
●


●●
●


●
●


●


●●


●


●


●


●


●
●


●


●


●


●
●


●
●●


●


●
●


●●


●


●


●


●


●


●●


●


●
●


●


●


●


●


●


●●


●●


●


●●


●


●


●


●


●


●


●


●


●●
●●


●
●


●


●
●


●


●
●


●


Scale−Location
661


35707


0.000 0.005 0.010 0.015


−
3


−
1


1
2


3


Leverage


S
td


. d
ev


ia
nc


e 
re


si
d.


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


●
●●●


●


●


●


●
●


●


●


●
● ● ●


●


●


●


●


●


●


●


●


●
●●


●
●


●


●


●


●


● ●
●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●●●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
●


●


●●
●


●


●


●


●


●


●


●


●
●


●
●


●


●
●


●


●●●


●


●●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●
●


●


●


●


●●●● ●●●
●


●


●


●


●


●
●●


●


●


●
●


●●


●


●


●●●


● ●
●


●
●


●●


●


●
●●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●●
●


●


●


●


●


●


●


●


●●


●●●
●


●


●


●
●


●


●


●●


●
●


●●
●


●
●


●


●


●


●


●


●●


●


●


●


●


●


●


●


●
●


●


●


●


●●
●


●


●●


●


●
●


●
●


●


●


●


●


● ●●


●
●


●
●


●


●


●


●


●


●●


●


●


●


●
●
●●


●


●
●


●


●


●●


●
●


●
● ●


●


●
●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●●
●


●


●


●
●


●
●


●


●


●


●


●


●


●●


●


●●


●
●●


●


●


●●●
●


●


●


●


●


●


●
●


●


●


●


● ●


●


●
●


●


●


●
●●●


●


●●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●●●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●●●
●


● ●


●


●


●


●
●


●●


●


●


●


●
●


●
●●


●


●


●●


●


●●


●


●
●
●


●


●


●


●


●


●


●


●


● ●
●●


●


●
●●


●


●


● ●
●


●
●


●


●
●


●


●


●


●


●


●
●●


●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●●


● ●


●
●


●


●


●


●


●


●●


●


●●


●
●


●


●


●


●


●


●●●


●●


●


●


●


●


●


●


●


● ●


●●
●
●


●


●
●


●


●


●


●
●


●●


●●


●


●


●


●


●


●


●


●


●●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●
●


●●
●


●


●


●


● ●


●●


●


●


●


●
●


●


●
●


●


●


●


●


●


●


●


●● ●●
●


●


●


●


●● ●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●


●


●●


●


●


●


●


●


●●


●
●


●


●


● ●


●


●


●


●
●


●●


●
●●
●


●


●


●●


●


●


●


●


●


● ●


●


●


●


●


●


●●


●


●


●


●


●


●
●


●


●


●


●
●●


●


●


●


●


●
●


●
●


●
●


●


●●●
●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●●
●


●
●


●


●


●


●


●


●


●


●


●● ●


●


●


●


●


●


●


●
●


●


●


●●


●


●


● ●


●


●


●
●


●●


●


●


●●


●


●


●


●●


●●


●


●


●


●
●


●


●


●


●


●


●
●●


●
●


●


●


●


●
●●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
● ● ●


●
●


●


●


●


●


●


●


●


●●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


● ●


●


●


●
●


●●
●


●
●●


●


●●


●


●


●


●


●


●


●● ●


●●


●
●


●


●


●


●


●
●


●


●●


●


●●


●


●
●


●●
●


●


●


●


●●


●


●
●


●


●


●


●


●


●●●


●


●


●


●


●


●


●


●


●
●


● ●


●


●
●


●


●


●


●●


●
●


●


●●
●


●


●


●


●●


●


●


●


●
●


●


●


●
●


●
●


●●


● ●


●


●


●


●


●●●
●


●


●
●


●●


●
● ●


●


●
●


●


●


●


●


●●
●


●●
●


●


●


●●
●


●


●


●●


●●


● ●●
●●●


●


●


●


Cook's distance


Residuals vs Leverage


661


707


689


n <- 1000
x1 <- rnorm(n)
x2 <- rnorm(n)
a <- 1
b <- -2
p <- exp(a+b*x1)/(1+exp(a+b*x1))
y <- factor(ifelse( runif(n)<p, 1, 0 ), levels=0:1)
r <- glm(y~x1+x2,family=binomial)
op <- par(mfrow=c(2,2))
plot(r,ask=F)
par(op)







CHAPTER 12. GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, POISSON REGRESSION, ETC.885
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n <- 1000
x <- rnorm(n)
a <- 1
b1 <- -1
b2 <- -2
p <- 1/(1+exp(-(a+b1*x+b2*x^2)))
y <- factor(ifelse( runif(n)<p, 1, 0 ), levels=0:1)
r <- glm(y~x,family=binomial)
op <- par(mfrow=c(2,2))
plot(r,ask=F)
par(op)
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r <- lrm(y~x,y=T,x=T)
P <- resid(r,"gof")[’P’]
resid(r,"partial",pl=T)
title(signif(P))


Well, those plots seem much less useful than they were for linear regression.
Question:
> 2. What about the Wald, Hosmer and Lemshow, Somer’s D tests?
> What do they test? How do we compute them? How do we interpret
> them?


The Wald test I know (there might be another one with the same name) is an approximation
of the likelihood ratio test: prefer the genuine one.
The likelihood ratio test compares two nested models whose parameters have been estimated
by the maximum likelihood method. In R, it is computed by the “anova” function. (The
“F test” comparing a linear model to the trivial model is a particular case of it.)
We would expect to be able to perform this test as with linear models:
r <- glm(y~x1+x2, family=binomial())
anova(r)


but no...
You can perform the test by hand: the difference of the deviances of two nested models
(here, the model we are interested in and the null model) follows, asymptotically, a Chiˆ2
distribution with p degrees of freedom, where p is the number of parameters that are fixed
in the smaller model.
r <- glm(y~x1+x2, family=binomial())
pchisq(r$null.deviance - r$deviance, df=2, lower.tail=F)


You can use this test to compare two non-trivial models – but they have to be nested.
r0 <- glm(y~x1+x2, family=binomial)
r1 <- glm(y~x1, family=binomial)
r2 <- glm(y~x2, family=binomial)
lr.test <- function (r.petit,r.gros) {
pchisq(r.petit$deviance - r.gros$deviance, df=1, lower.tail=F)


}
lr.test(r1,r0)
lr.test(r2,r0)


Here, we find that the model y ˜ x1+x2 is significantly better that y ˜ x1, with a risk of
error inferior to 1e-21, and that the model y˜x1+x2 is significantly better than y˜x2, with
a risk of error under 1e-6.
Actually, the “lrm” function (in the Design package) already performs this test.
lrm(y~x1+x2)
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In our example,
Obs Max Deriv Model L.R. d.f. P C Dxy
506 3e-06 234.13 2 0 0.862 0.724


Gamma Tau-a R2 Brier
0.725 0.363 0.494 0.145


the p-value is zero, so the model is significantly better than the trivial one.
I think that “Wald’s test” also refers to the test checking if a regression coefficient is zero
(under the null hypothesis that this coefficient is zero, the estimated coefficient, divided by
its standard deviation, follows a gaussian distribution; if you square it , it follows a Chiˆ2
distribution with one degree of freedom). Thus, if we look at the last column of the result
of the previous function,


Coef S.E. Wald Z P
Intercept -1.66990 0.27245 -6.13 0e+00
x1 -0.04954 0.01280 -3.87 1e-04
x2 0.17985 0.02084 8.63 0e+00


you can tell that the intercept and the x2 coefficient are non-zero with a negligible risk of
error and that the x1 coefficient is non-zero with a risk of error of 0.1%.
Actually, we already had those results with the “glm” function:
> summary(r0)
Call:
glm(formula = y ~ x1 + x2, family = binomial)


Deviance Residuals:
Min 1Q Median 3Q Max


-2.5902 -0.7571 0.1312 0.6106 2.0397


Coefficients:
Estimate Std. Error z value Pr(>|z|)


(Intercept) -1.66990 0.27245 -6.129 8.84e-10 ***
x1 -0.04954 0.01280 -3.870 0.000109 ***
x2 0.17985 0.02084 8.632 < 2e-16 ***


(Dispersion parameter for binomial family taken to be 1)


Null deviance: 701.46 on 505 degrees of freedom
Residual deviance: 467.33 on 503 degrees of freedom
AIC: 473.33


Number of Fisher Scoring iterations: 6


I have never heard of the Hosmer and Lemeshow test, but Google refers me to
http://www.biostat.wustl.edu/archives/html/s-news/1999-04/msg00147.html
http://maths.newcastle.edu.au/~rking/R/help/03b/0735.html
http://www.learnlink.mcmaster.ca/OpenForums/00031830-80000001/00040559-80000001/


0045CA16-00977198-005B1B21


which claim that this test is obsolete. The “residuals.lrm” function in the Design package
has a test to replace it – but I do not know what is behind it, neither how to interpret it.
library(Design)
?residuals.lrm


For our example:
> resid( lrm(y~x1+x2, y=T, x=T), "gof" )
Sum of squared errors Expected value|H0 SD


7.328945e+01 7.632820e+01 5.739924e-01
Z P


-5.294060e+00 1.196300e-07


I do not know Somers’s D, but some simulations can help interpret it.



http://www.biostat.wustl.edu/archives/html/s-news/1999-04/msg00147.html

http://maths.newcastle.edu.au/~rking/R/help/03b/0735.html

http://www.learnlink.mcmaster.ca/OpenForums/00031830-80000001/00040559-80000001/0045CA16-00977198-005B1B21

http://www.learnlink.mcmaster.ca/OpenForums/00031830-80000001/00040559-80000001/0045CA16-00977198-005B1B21
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> library(Design)
> somers2(x1,as.numeric(y)-1)


C Dxy n Missing
0.2846475 -0.4307051 506.0000000 0.0000000


> somers2(-x1,as.numeric(y)-1)
C Dxy n Missing


0.7153525 0.4307051 506.0000000 0.0000000
> somers2(x2,as.numeric(y)-1)


C Dxy n Missing
0.8551532 0.7103064 506.0000000 0.0000000


> somers2(-x2,as.numeric(y)-1)
C Dxy n Missing


0.1448468 -0.7103064 506.0000000 0.0000000
> somers2(rnorm(506),as.numeric(y)-1)


C Dxy n Missing
0.50564764 0.01129529 506.00000000 0.00000000


It seems to be interpretable as a correlation, when one of the variables only has two values,
0 and 1.
So we have the same problems as with correlation: it is only relevant for linear relations.
Thus the following computations give (approximately) 1 and 0.
n <- 1000
a <- rnorm(n)
b <- ifelse(a<0,0,1)
somers2(a,b)


b <- ifelse(abs(a)<.5,0,1)
somers2(a,b)


12.5 TODO


# age
age <- c(25.0, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 65.0)
# Number of successes
n <- c(100, 150, 120, 150, 130, 80, 170, 100)
# predictive variable
Y <- c(10, 20, 30, 50, 60, 50, 130, 80)


f<-Y/n
g<-log(f/(1-f)) # Transforming the data
w<-n*f*(1-f) # Weights
r<-predict(lm(g~age,weights=w)) # Weighted regression
p<-exp(r)/(1+exp(r)) # Inverse transform
plot(age,f,ylim=c(0,1))
lines(age,p)
symbols(age,f,circles=w,add=T)
# Iterate...
w<-n*p*(1-p)
gu<-r+(f-p)/p/(1-p)
r<-predict(lm(gu~age,weights=w))
# Once more
p<-exp(r)/(1+exp(r))
w<-n*p*(1-p)
gu<-r+(f-p)/p/(1-p)
r<-predict(lm(gu~age,weights=w))


Actually, we get the results of
glm(cbind(Y,n-Y)~age,family=binomial)
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12.6 Variants of logistic regression


12.6.1 Log-linear model (Poisson regression)


The veriable to predict is no longer a binary variable, but a counting variable. To perform
this Poisson regression, we still use the “glm” function, with the “family=poisson” argument.
I do not give any example her but just refer to those from the manual.
library(MASS)
?epil
?housing


TODO: Give an example (at least a simulation).
See also the “loglm”, “multinom”, “gam” functions.
?loglm
library(nnet)
?multinom
library(mgcv)
?gam
library(survival)
?survexp


12.6.2 If the qualitative variable to predict has more than two val-
ues (first attempt)


Actually, I do not really know how to proceed.
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# NO!
n <- 100
x <- c( rnorm(n), 1+rnorm(n), 2.5+rnorm(n) )
y <- factor(c( rep(0,n), rep(1,n), rep(2,n) ))
r <- glm(y~x, family=binomial)
plot(as.numeric(y)-1~x)
xp <- seq(-5,5,length=200)
yp <- predict(r,data.frame(x=xp), type=’response’)
lines(xp,yp)


Let us try to encode the variable to predict with binary variables, by hand.
First attempt: brutally, thoughtlessly.
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n <- 100
x <- c( rnorm(n), 10+rnorm(n), 25+rnorm(n), -7 + rnorm(n) )
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
y1 <- factor(c( rep(0,n), rep(0,n), rep(1,n), rep(1,n) ))
y2 <- factor(c( rep(0,n), rep(1,n), rep(0,n), rep(1,n) ))
r1 <- glm(y1~x, family=binomial)
r2 <- glm(y2~x, family=binomial)
xp <- seq(-50,50,length=500)
y1p <- predict(r1,data.frame(x=xp), type=’response’)
y2p <- predict(r2,data.frame(x=xp), type=’response’)


plot(as.numeric(y)-1~x)
lines(xp,y1p+2*y2p)
lines(xp,y1p, col=’red’)
lines(xp,y2p, col=’blue’)


It does not workm because Y1 and Y2 do not come from a logistic model:
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plot(as.numeric(y1)-1~x)
lines(xp,y1p, col=’red’)


Second attempt.
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n <- 100
x <- c( rnorm(n), 10+rnorm(n), 25+rnorm(n), -7 + rnorm(n) )
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
y1 <- factor(c( rep(0,n), rep(1,n), rep(1,n), rep(1,n) ))
y2 <- factor(c( rep(0,n), rep(0,n), rep(1,n), rep(1,n) ))
y3 <- factor(c( rep(0,n), rep(0,n), rep(0,n), rep(1,n) ))
r1 <- glm(y1~x, family=binomial)
r2 <- glm(y2~x, family=binomial)
r3 <- glm(y3~x, family=binomial)
xp <- seq(-50,50,length=500)
y1p <- predict(r1,data.frame(x=xp), type=’response’)
y2p <- predict(r2,data.frame(x=xp), type=’response’)
y3p <- predict(r3,data.frame(x=xp), type=’response’)


plot(as.numeric(y)-1~x)
lines(xp,y1p+y2p+y3p)


Same problem...
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plot(as.numeric(y1)-1~x)
lines(xp,y1p, col=’red’)


Third attempt: with ordinal variables.
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n <- 100
x <- c( -7+rnorm(n), rnorm(n), 10+rnorm(n), 25+rnorm(n))
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
y1 <- factor(c( rep(0,n), rep(1,n), rep(1,n), rep(1,n) ))
y2 <- factor(c( rep(0,n), rep(0,n), rep(1,n), rep(1,n) ))
y3 <- factor(c( rep(0,n), rep(0,n), rep(0,n), rep(1,n) ))
r1 <- glm(y1~x, family=binomial)
r2 <- glm(y2~x, family=binomial)
r3 <- glm(y3~x, family=binomial)
xp <- seq(-50,50,length=500)
y1p <- predict(r1,data.frame(x=xp), type=’response’)
y2p <- predict(r2,data.frame(x=xp), type=’response’)
y3p <- predict(r3,data.frame(x=xp), type=’response’)


plot(as.numeric(y)-1~x)
lines(xp,y1p+y2p+y3p)
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n <- 100
x <- c( -.7+rnorm(n), rnorm(n), 1+rnorm(n), 2.5+rnorm(n))
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
y1 <- factor(c( rep(0,n), rep(1,n), rep(1,n), rep(1,n) ))
y2 <- factor(c( rep(0,n), rep(0,n), rep(1,n), rep(1,n) ))
y3 <- factor(c( rep(0,n), rep(0,n), rep(0,n), rep(1,n) ))
r1 <- glm(y1~x, family=binomial)
r2 <- glm(y2~x, family=binomial)
r3 <- glm(y3~x, family=binomial)
xp <- seq(-5,5,length=500)
y1p <- predict(r1,data.frame(x=xp), type=’response’)
y2p <- predict(r2,data.frame(x=xp), type=’response’)
y3p <- predict(r3,data.frame(x=xp), type=’response’)


plot(as.numeric(y)-1~x)
lines(xp,y1p+y2p+y3p)
lines(xp,round(y1p+y2p+y3p, digits=0), col=’red’)


12.6.3 Ordinal Logistic Regression


You can also use logistic regression to forecast an ordinal qualitative variable (i.e., a qualita-
tive variable whose values are ordered, – e.g., its values could be “low”, “medium”, “high”).
Here are some of the models you might want to use.
Proportionnal odds model (the effects are monotonic with respect to the quantitative vari-
able):


1
P[ Y >= j | X ] = -----------------------


- ( a j + X b )
1 + e


Continuation ratio model:
1


P [ Y = j | Y >= j, X ] = -----------------------
- ( a j + X b )
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1 + e


Actually, our attempts in the preceding paragraph have led us to the first model.
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n <- 100
x <- c( -.7+rnorm(n), rnorm(n), 1+rnorm(n), 2.5+rnorm(n))
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
ordinal.regression.one <- function (y,x) {
xp <- seq(min(x),max(x), length=100)
yi <- matrix(nc=length(levels(y)), nr=length(y))
ri <- list();
ypi <- matrix(nc=length(levels(y)), nr=100)
for (i in 1:length(levels(y))) {
yi[,i] <- as.numeric(y) >= i
ri[[i]] <- glm(yi[,i] ~ x, family=binomial)
ypi[,i] <- predict(ri[[i]], data.frame(x=xp), type=’response’)


}
plot(as.numeric(y) ~ x)
lines(xp, apply(ypi,1,sum), col=’red’, lwd=3)


}
ordinal.regression.one(y,x)
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n <- 100
v <- .2
x <- c( -.7+v*rnorm(n), v*rnorm(n), 1+v*rnorm(n), 2.5+v*rnorm(n))
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
ordinal.regression.one(y,x)


Here is the second.
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n <- 100
x <- c( -.7+rnorm(n), rnorm(n), 1+rnorm(n), 2.5+rnorm(n))
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
ordinal.regression.two <- function (y,x) {
xp <- seq(min(x),max(x), length=100)
yi <- list();
ri <- list();
ypi <- matrix(nc=length(levels(y)), nr=100)
for (i in 1:length(levels(y))) {
ya <- as.numeric(y)
o <- ya >= i
ya <- ya[o]
xa <- x[o]
yi[[i]] <- ya == i
ri[[i]] <- glm(yi[[i]] ~ xa, family=binomial)
ypi[,i] <- predict(ri[[i]], data.frame(xa=xp), type=’response’)


}


# The plot is trickier to draw than earlier
plot(as.numeric(y) ~ x)
p <- matrix(0, nc=length(levels(y)), nr=100)
for (i in 1:length(levels(y))) {
p[,i] = ypi[,i] * (1 - apply(p,1,sum))


}
for (i in 1:length(levels(y))) {
p[,i] = p[,i]*i


}
lines(xp, apply(p,1,sum), col=’red’, lwd=3)


}
ordinal.regression.two(y,x)
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n <- 100
v <- .1
x <- c( -.7+v*rnorm(n), v*rnorm(n), 1+v*rnorm(n), 2.5+v*rnorm(n))
y <- factor(c( rep(0,n), rep(1,n), rep(2,n), rep(3,n) ))
ordinal.regression.two(y,x)


Actually, it is already implemented:
library(MASS)
?polr
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12.6.4 Multilogistic regression (aka Multinomial regression)


We want to predict a qualitative variable, with more tham two values.
TODO
Model:


P( Y=1 | X=x )
log ---------------- = b {1,0} + b 1 x


P( Y=k | X=x )


P( Y=2 | X=x )
log ---------------- = b {2,0} + b 2 x


P( Y=k | X=x )


P( Y=k-1 | X=x )
log ------------------ = b {k-1,0} + b {k-1} x


P( Y=k | X=x )


(fit with MLE)


library(nnet)
?multinom


If the variable is binary, we get the same results as with a
classical logistic regression -- TODO: check this.







Chapter 13


Analysis of Variance (Anova)


Analysis of variance is merely regression when the predictive variables are qualitative – more
precisely, it refers to the tests one performs in that context.
Covariance analysis is regression with some qualitative predictive variables and some quan-
titative predictive variables (the latter are then called “covariates” or “covariables”).
The easiest way to understand analysis of variance is as a generalization of Student’s test: it
tells you if the mean of a quantitative variable is the same in several groups (Student’s test
is limited to the case of two groups) or, in other words, if a quantitative variables depends
on a qualitative variable.
A more general way of understanding analysis of variance (and this is the point of view
chosen by R’s “anova” function) is as a test comparing two models: checking if a quantitative
variable y depends on a qualitative variable x is equivalent to comparing the models y ˜ x
and y ˜ 1 (if the two models are significantly different, the more complex one, y ˜ x, brings
more information, i.e., the quantitative variable y depends on the qualitative variable x,
i.e., the mean of y is not the same in the groups defined by x).
We shall present analysis of variance in this order: regression with qualitative predictive
variables, generalization of Student’s test, model comparison.
In a later chapter, we shall present, more quickly, a few generalizations of analysis of variance:
mixed models, hierarchical models, panel models, graphical models, bayesian networks.
TODO:
The end of this chapter is not completely written yet and
overlaps with the next chapter.


13.1 Regression with qualitative predictive variables


Before tackling anova itself (i.e., the tests related to a regression with qualitative predictive
variables), let us focus on the regression with qualitative variables itself. Actually, there is
not a big difference with classical regression.


13.1.1 Binary variable


That is simple: you code it with 0 or 1 and you perform a regression as usual.


0
1


−2 −1 0 1 2 3 4


x


y


n <- 200
x <- sample(0:1, n, replace=T)
y <- 2*(x==0) +rnorm(n)
plot( y ~ factor(x),


horizontal = TRUE,
xlab = ’y’,
ylab = ’x’,
col = "pink" )


896
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plot(density(y[x==0]),
lwd = 3,
xlim = c(-3,5),
ylim = c(0,.5),
col = ’blue’,
main = "Density in each group",
xlab = "x")


lines(density(y[x==1]),
lwd = 3,
col = ’red’)
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lm(y~x) when x is qualitative


x


y


plot(y ~ x,
main = "lm(y~x) when x is qualitative")


abline(lm(y ~ x),
col = ’red’)


As there are only two possible values for the predictive variable, there are only two forecasts:
the means of the corresponding groups.
> predict(lm(y~x), data.frame(x=c(0,1)))


1 2
2.0785496 -0.1654518
> tapply(y,x,mean)


0 1
2.0785496 -0.1654518


You can also wonder whether the means in these two groups are significantly different, with
a Student test
> t.test(y[x==0], y[x==1])


Welch Two Sample t-test
data: y[x == 0] and y[x == 1]
t = 15.1062, df = 197.472, p-value = < 2.2e-16


or with an anova (the anova is the last line of the result (“summary”) of a regression).
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> summary(lm(y~x))
Call:
lm(formula = y ~ x)
Residuals:


Min 1Q Median 3Q Max
-3.7520 -0.5786 0.1071 0.6504 2.7427
Coefficients:


Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1283 0.1068 19.93 <2e-16 ***
x1 -2.1218 0.1440 -14.73 <2e-16 ***
Residual standard error: 1.013 on 198 degrees of freedom
Multiple R-Squared: 0.523, Adjusted R-squared: 0.5206
F-statistic: 217.1 on 1 and 198 DF, p-value: < 2.2e-16


You can also explicitely ask for an analysis of variance, i.e., explicitely compare the y ˜ x
model with the trivial one y ˜ 1.
> anova( lm(y~x), lm(y~1) )
Analysis of Variance Table
Model 1: y ~ x
Model 2: y ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)


1 198 203.27
2 199 426.11 -1 -222.84 217.07 < 2.2e-16 ***


I never remerber in which order to list the models to be compared: here, the number of
degrees of freedom is negative, the sum of squares is negative, so the order is wrong –
but the p-value is correct. I should have put the first model first. In any case, the result
is only meaningful if the models are embedded in one another, i.e., if one (the first) is a
simplification of the other.
This might seem trivial: we do not need to know about regression in order to compare means
– Student’s test will do. Things become less simple when you have both qualitative and
quantitative variables.


13.1.2 Two predictive variables, one qualitative (binary), another
quantitative


We now try to predict a quantitative variable, y, from a qualitative variable, x1, and another
quantitative variable, x2.
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y ~ (1 | x1) + x2


x2


y


x1 = 0
x1 = 1


n <- 200
x1 <- sample(0:1, n, replace=T)
x2 <- rnorm(n)
y <- 1 - 2*(x1==0) + x2 +rnorm(n)
plot( y ~ x2,


col = c(par(’fg’), ’red’)[1+x1],
main = "y ~ (1 | x1) + x2")


rc <- lm( y ~ x1+x2 )$coef
abline(rc[1], rc[3])
abline(rc[1]+rc[2], rc[3],


col = ’red’)
legend(par(’usr’)[2], par(’usr’)[3], # Bottom right


xjust = 1, yjust = 0,
c("x1 = 0", "x1 = 1"),
col = c("red", par("fg")),
lty = 1,
lwd = 3)
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y ~ (1 | x1) + x2
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x1 = 1 x1 <- ifelse(x1==1, "x1 = 1", "x1 = 0")
library(lattice)
xyplot( y ~ x2 | x1,


panel = function (x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y)


},
main = "y ~ (1 | x1) + x2"
)


The preceding model, with no interaction term, yields parallel lines. If we add an interaction
term, the lines are no longer parallel.
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y ~ x2 + (x2 | x1)


x2


y


n <- 200
x1 <- sample(0:1, n, replace=T)
x2 <- rnorm(n)
y <- 1 + x2 - (x1==1)*(2+3*x2) + rnorm(n)
plot( y ~ x2,


col = c(par(’fg’), ’red’)[1+x1],
main = "y ~ x2 + (x2 | x1)" )


# With no interaction term (dotted lines)
rc <- lm( y ~ x1 + x2 )$coef
abline(rc[1], rc[3],


lty = 3)
abline(rc[1]+rc[2], rc[3],


col = ’red’, lty = 3)
# with
rc <- lm( y ~ x1 + x2 + x1:x2 )$coef
abline(rc[1], rc[3])
abline(rc[1]+rc[2], rc[3]+rc[4],


col=’red’)
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y ~ x2 + (x2 | x1)
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xyplot( y ~ x2 | x1,


panel = function (x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y)


},
main = "y ~ x2 + (x2 | x1)"
)


y ~ x2 + (x2 | x1)


x2


y


−6


−4


−2


0


2


4


−2 −1 0 1 2


●


●


●
●


●
●


●


●


●


●
●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●
●


●


● ●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


x1 = 0


−2 −1 0 1 2


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


● ●


●


●


●
●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


● ●


●
● ●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


x1 = 1 # One might also want to compare the intercepts
xyplot( y ~ x2 | x1,


panel = function (x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y)
panel.abline(v=0, h=0, lty=3)


},
main = "y ~ x2 + (x2 | x1)"
)


Actually, this is merely a linear regression of each value of the qualitative variable.
TODO: interaction plot (matrix plot)
if the lines are parallel, there is no interaction.


13.1.3 Two qualitative (binary) predictive variables


TODO


13.1.4 Two qualitative (binary) predictive variables: interactions


When you have several quanlitative variables, interactions can start playing an important
role. For instance, it is possible that the mean of Y does not depend on X1 nor on X2, but
on the pair (X1,X2). For instance
E[ Y | X=(0,0) ] > E[ Y | X=(0,1) ]
E[ Y | X=(1,0) ] < E[ Y | X=(1,1) ]
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Here is a more graphical example.


0
1


−1 0 1 2


y does not seem to depend on x1


y


x1


n <- 1000
l <- 0:1
v <- .5
x1 <- factor( sample(l, n, replace=T), levels=l )
x2 <- factor( sample(l, n, replace=T), levels=l )
y <- ifelse( x1==0,


ifelse( x2==0, 1+v*rnorm(n), v*rnorm(n) ),
ifelse( x2==0, v*rnorm(n), 1+v*rnorm(n) )


)


boxplot( y ~ x1,
horizontal = TRUE,
col = "pink",
main = "y does not seem to depend on x1",
xlab = "y",
ylab = "x1" )


0
1


−1 0 1 2


y does not seem to depend on x2


y


x2


boxplot( y ~ x2,
horizontal = TRUE,
col = "pink",
main = "y does not seem to depend on x2",
xlab = "y",
ylab = "x2" )
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−0.5 0.0 0.5 1.0 1.5


−
1


0
1


2


Interactions between x1 and x2


x1 (jittered)


y


x2 = 0
x2 = 1


plot( as.numeric(x1) - 1 + .2*rnorm(n),
y,
col = c("red", "blue")[as.numeric(x2)],
xlab = "x1 (jittered)",
main = "Interactions between x1 and x2")


legend(par(’usr’)[2], par(’usr’)[3], # Bottom right
xjust = 1, yjust = 0,
c("x2 = 0", "x2 = 1"),
col = c("red", "blue"),
lty = 1,
lwd = 3)


TODO: Just for fun, a 3-dimensional boxplot, with PoVRay or Rgl.


13.1.5 Qualitative variable with more that two values


Let us consider a qualitative variable with four values: 0, 1, 2, 3.
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●


0
1


2
3


−4 −2 0 2 4 6


x now has four values


x


y


n <- 200
x <- sample(0:3, n, replace=T)
y <- 2*(x==0) + 5*(x==2) -2*(x==3) + rnorm(n)
plot( y ~ factor(x),


horizontal = TRUE,
col = "pink",
xlab = ’y’,
ylab = ’x’,
main = "x now has four values" )


We cannot code it with those four numbers: this would imply that these values are ordered,
that their effects are monotonic, that the effect of “4” is exactly twice that of “2”, which
is itself exactly twice that of “1”. Instead, you can use several boolean variables (one also
speaks of “dummy” variables, boolean variables or 0-1 variables), that assume only two
values.
x1 <- as.numeric(x==1)
x2 <- as.numeric(x==2)
x3 <- as.numeric(x==3)


There are other ways of coding our qualitative variable: they will yield the same forecasts,
the same statistics (F statistic, p-value, etc.), but the coefficients will have a different inter-
pretation.
Then, we perform a regression, as usual.
> lm(y ~ x1+x2+x3)


Call:
lm(formula = y ~ x1 + x2 + x3)


Coefficients:
(Intercept) x1 x2 x3


2.178 -2.293 2.844 -4.110


Actually, R does this transformation itself when one of the predictive variables is a factor
(beware: it HAS to be a factor, it it is merely a variable with integral values, it will be
considered as a quantitative variable).
> lm(y ~ factor(x))


Call:
lm(formula = y ~ factor(x))


Coefficients:
(Intercept) factor(x)1 factor(x)2 factor(x)3


2.178 -2.293 2.844 -4.110


As our variable only has four values, there are only four values to predict: the means of the
four groups. (You can try to interpret the coefficients direclty – we will explain how to do
that shortly – but it is much easier, more symetric, to think in terms of predicted values.)
> predict(lm(y~factor(x)), data.frame(x=c(0,1,2,3)))


1 2 3 4
2.1778596 -0.1148520 5.0220615 -1.9325181
> tapply(y,x,mean)


0 1 2 3
2.1778596 -0.1148520 5.0220615 -1.9325181
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As above, we can add in quantitative predictive variables (and here again, this is equivalent
to performing a regression for each value of the qualitative variable).
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y ~ x2 + (x2 | x1)


x2


y


n <- 1000
x1 <- sample(1:4, n, replace=T)
x2 <- runif(n, min=-1, max=1)
y <- (x1==1) * (2 - 2*x2) +


(x1==2) * (1 + x2) +
(x1==3) * (-.5 + .5*x2) +
(x1==4) * (-1) +
rnorm(n)


cols <- c(par(’fg’), ’red’, ’blue’, ’orange’)
plot( y ~ x2,


col = cols[x1],
main = "y ~ x2 + (x2 | x1)" )


x1 <- factor(x1)
r <- lm( y ~ x1*x2 )
xx <- seq( min(x2), max(x2), length = 100 )
for (i in levels(x1)) {
yy <- predict(r, data.frame(
x1 = rep(i, length(xx)),


x2 = xx
))
lines(xx, yy,


col = cols[as.numeric(i)],
lwd = 3)


}


13.1.6 Contrasts


If the variables are not binary, R can create the dummy variables himself. However, let us
see how this can be done.
Example, with two variables:
Two qualitative variables U and V with 3 values (a, b and c).
Replace U by two variables X1 and X2.
If U=a, take X1=1 and X2=0.
If U=b, take X1=0 and X2=1.
If U=c, take X1=X2=0.
Similarly replace V by two variables X3 and X4.


The model with no interaction is
Y ~ X1 + X2 + X3 + X4


But it is not the only way of creating those dummy variables. Here is another coding.
Replace U by two variables X1 and X1
If U=a, take V1=1, V2=0.
If U=b, take V1=0, V2=1.
If U=c, take V1=V2=-1.
Similarly replace V by X3 and X4.


If you want interactions, things can become trickier...
Replace U by two variables X1 and X1
If U=a, take V1=1, V2=0.
If U=b, take V1=0, V2=1.
If U=c, take V1=V2=-1.
Similarly replace V by X3 and X4.
Y ~ V1 + V2 + V3 + V4 + V1V3 + V1V4 + V2V3 + V2V4


You can ask R to use a coding or another.
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> options()$contrasts
unordered ordered


"contr.treatment" "contr.poly"


> apropos("contr\\.")
[1] "contr.helmert" "contr.poly" "contr.sum" "contr.treatment"


By default, SPlus uses Helmert contrasts (but many people think it is a bad idea because they
are difficult to interpret – I personnally think they are all difficult to interpret and suggest
not to interpret them directly but use them to compute quantities easier to interpret).
n <- 100
l <- 1:4
x <- factor( sample(l, n, replace=T), levels=l )
y <- ifelse(x==1, rnorm(n),


ifelse(x==2, -4+rnorm(n),
ifelse(x==3, -2+rnorm(n), 4+rnorm(n))))


The “model.matrix” function will tell you what matrix is actually used in the regression.
> cbind(x,y)[1:5,]


x y
[1,] 3 -2.1962202
[2,] 4 3.9745616
[3,] 1 0.3440235
[4,] 4 2.7521184
[5,] 2 4.3539651


> model.matrix(y~x)[1:5,]
(Intercept) x2 x3 x4


1 1 0 1 0
2 1 0 0 1
3 1 0 0 0
4 1 0 0 1
5 1 1 0 0


> model.matrix(y~x, contrasts=list(x=contr.helmert))[1:5,]
(Intercept) x1 x2 x3


1 1 0 2 -1
2 1 0 0 3
3 1 -1 -1 -1
4 1 0 0 3
5 1 1 -1 -1


> model.matrix(y~x, contrasts=list(x=contr.poly))[1:5,]
(Intercept) x.L x.Q x.C


1 1 0.2236068 -0.5 -0.6708204
2 1 0.6708204 0.5 0.2236068
3 1 -0.6708204 0.5 -0.2236068
4 1 0.6708204 0.5 0.2236068
5 1 -0.2236068 -0.5 0.6708204


> model.matrix(y~x, contrasts=list(x=contr.sum))[1:5,]
(Intercept) x1 x2 x3


1 1 0 0 1
2 1 -1 -1 -1
3 1 1 0 0
4 1 -1 -1 -1
5 1 0 1 0


The default coding, “contr.treatment”, is not symetric: one of the values is considered as
central and the others are compared to it. You can specify which one with the “relevel”
function.
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Here are the results with the (default) “contr.treatment” contrasts.
> lm(y~x)


Call:
lm(formula = y ~ x)


Coefficients:
(Intercept) x2 x3 x4


-0.1659 -3.7780 -2.0133 3.8462


Idem with “contr.helmert”.
> a <- options()$contrasts
> a[1] <- "contr.helmert"
> options(contrasts=a)
> lm(y~x)


Call:
lm(formula = y ~ x)


Coefficients:
(Intercept) x1 x2 x3


-0.65218 -1.88902 -0.04143 1.44416


With “contr.sum”
> a <- options()$contrasts
> a[1] <- "contr.sum"
> options(contrasts=a)
> lm(y~x)


Call:
lm(formula = y ~ x)


Coefficients:
(Intercept) x1 x2 x3


-0.6522 0.4863 -3.2918 -1.5270


And finally with “contr.poly”.
> a <- options()$contrasts
> a[1] <- "contr.poly"
> options(contrasts=a)
> lm(y~x)


Call:
lm(formula = y ~ x)


Coefficients:
(Intercept) x.L x.Q x.C


-0.6522 2.9747 4.8188 -0.3238


Let us sum up the results.
contr.treatment -0.1659 -3.7780 -2.0133 3.8462
contr.helmert -0.65218 -1.88902 -0.04143 1.44416
contr.sum -0.6522 0.4863 -3.2918 -1.5270
contr.poly -0.6522 2.9747 4.8188 -0.3238


Let us see what happens if the effects are monotonic.
n <- 100
v <- .3
l <- 1:4
x <- factor( sample(l, n, replace=T), levels=l )
y <- ifelse(x==1, -3+v*rnorm(n),
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ifelse(x==2, -1+v*rnorm(n),
ifelse(x==3, 1+v*rnorm(n), 3+v*rnorm(n))))


a <- options()$contrasts
for (i in c("contr.treatment", "contr.helmert", "contr.sum", "contr.poly"))


{
a[1] <- i
options(contrasts=a)
print(lm(y~x)$coef)


}


We get:
contr.treatment -2.911686 1.887725 3.938457 5.914572
contr.helmert 0.02350254 0.94386256 0.99819831 0.99312780
contr.sum 0.02350254 -2.93518867 -1.04746355 1.00326881
contr.poly 0.02350254 4.42617327 0.04419473 -0.05313457


TODO: explain how to interpret the coefficients. (I am sure I have already written this
somewhere...)
TODO: One could be tempted to choose another coding, easier to
interpret:
Replace U by 3 variables
If U=a, take X1=1, X2=0, X3=0
If U=b, take X1=0, X2=1, X3=0
If U=c, take X1=0, X2=0, X3=1
Explain why it does not work.
Explain how to get the corresponding coefficients.


13.2 ANalysis Of VAriance (Anova)


This is another name for regression with qualitative predictive variables or, more precisely,
for the tests performed in this setup.


13.2.1 Anova: comparing more than two means


We have seen that regression with a single qualitative predictive variable was nothing more
than a computation of means. In this setup, anova is merely a test to compare means: a
generalization of Student’s T test, with an arbitrary number of samples (and not just two).
The assumptions are the same as with Student’s T test: the samples are to be gaussian, to
have the same variance, the observations are to be independant.
You can rephrase this in terms of regressions: We have two variables, X and Y, variable Y is
quantitative and we are interested in its mean, variable X is qualitative (it gives the sample
number, or the class of the observation – e.g., the species if you are comparing different
animal species). We want to know if Y depends in X. i.e., we perform a regression of Y
against X. This can be written as
Y = a0 + a1*(X==1) + a2*(X==2) + a3*(X==3) + a4*(X==4)


and we compare this model with the trivial one
Y = b0.


Here is a simulation:
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N <- 10
a <- rnorm(N)
b <- rnorm(N)
c <- rnorm(N)
d <- rnorm(N)
df <- data.frame(
y = c(a,b,c,d),
x = factor(c(rep(1,N), rep(2,N), rep(3,N), rep(4,N)))


)
plot( y ~ x,


data = df,
main = "Our 4 samples" )
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plot(density(df$y,bw=1),
xlim = c(-6,6),
ylim = c(0,.5),
type = ’l’,
main = "our 4 samples",
xlab = "y")


points(density(a,bw=1), type=’l’, col=’red’)
points(density(b,bw=1), type=’l’, col=’green’)
points(density(c,bw=1), type=’l’, col=’blue’)
points(density(d,bw=1), type=’l’, col=’orange’)


The plot below represents the value of a statistical variable on three samples. We want
to know if those three samples come from the same population. To this end, we start to
compare the means of those three samples. The three means will be different, of course, but
will they be significantly different? Here, the difference between the means is rather high
compared to the “width” of the bell-shaped curves, that have almost no overlap. For this
reason, in this example, we would reject the hypothesis “the means are equal”.
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The means are significantly different
curve( dnorm(x-2), from=-6, to=6, col=’red’,


xlab = "", ylab = "" )
curve( dnorm(x+2), add = T, col = ’green’)
curve( dnorm(x+2+.2), add = T, col = ’blue’)
curve( dnorm(x+2-.3), add = T, col = ’orange’)
x <- c(2, -2, -2.2, -1.7)
segments(x, c(0,0,0,0),


x, rep(dnorm(0),4),
col = c(’red’, ’green’, ’blue’, ’orange’) )


title("The means are significantly different")


This is very different in the following plot. Even though the means are the same as above,
the differences between the means are small compared to the width of the bell-shaped curves,
that overlap a lot. For this reason, we shall not reject the hypothesis “the means are equal”.
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The means are not significantly different
s <- 3
curve( dnorm(x-2, sd=s), from=-6, to=6, col=’red’,


xlab = "", ylab = "" )
curve( dnorm(x+2, sd=s), add=T, col=’green’)
curve( dnorm(x+2+.2, sd=s), add=T, col=’blue’)
curve( dnorm(x+2-.3, sd=s), add=T, col=’orange’)
x <- c(2, -2, -2.2, -1.7)
segments( x, c(0,0,0,0), x, rep(dnorm(0, sd=s),4),


col=c(’red’, ’green’, ’blue’, ’orange’) )
title("The means are not significantly different")


In order to quantify those qualitative and graphical reasonnings, we need a way of measuring
the width of those “bell-shaped curves”: we could take the variance of each sample but that
would give us four numbers, one for each as we prefer a single number; so we take the mean
of those variances – if the three samples actually come from the same population, the mean
of the variances is indeed an estimator of the variance of the whole population. We also
need a measure of the dispersion of the means: we could take the variance of the means,
but in order to compare it with the mean of the variances, we multiply it by the size of the
samples – we get another estimator of the variance of the whole population.
Finally, we consider the ratio (here, n is the size of each sample – to simplify things, we
assume they have the same size)


n * (variance of the means)
F = -----------------------------


mean of the variances
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TODO: check this formula.
If F >> 1, we reject the hypothesis that the means are equal; if F is small, we do not
reject it. As all tests, it is not symetric. One can show that if the means are equal, the
the expected value of F is 1; if the means are different, the expectation is larger than 1. Of
course, it happens that F<1: in that case, we do not reject the hypothesis.
This quotient, F, follows an F distribution with ******** and ****** degrees of freedom.
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When I know the distribution but not its parameters
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N <- 5000 # Iterations
n <- 5 # Sample size
k <- 3 # Number of groups
r <- rep(NA, N)
for (i in 1:N) {
l <- matrix(rnorm(n*k), nc=k)
r[i] <- n * var(apply(l,2,mean)) /


mean(apply(l,2,var))
}
plot(sort(r), qf(ppoints(N),k-1,(k-1)*n),
main = "When I know the distribution but not its parameters")


abline(0,1,col="red")
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When I know the distribution but not its parameters
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N <- 5000 # Iterations
n <- 5 # Sample size
k <- 3 # Number of groups
r <- rep(NA, N)
for (i in 1:N) {
l <- matrix(rnorm(n*k), nc=k)
r[i] <- n * var(apply(l,2,mean)) /


mean(apply(l,2,var))
}
plot(sort(r), qf(ppoints(N),k-1,k*(n-1)),
main = "When I know the distribution but not its parameters")


abline(0,1,col="red")
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1.
0


curve( df(x, 2, 2), from=0, to=4, ylim=c(0,1),
xlab = "", ylab = "", main = "" )


curve( df(x, 2, 10), add=T, col=’red’ )
curve( df(x, 4, 2), add=T, col=’green’ )
curve( df(x, 4, 6), add=T, col=’green’ )
curve( df(x, 4, 10), add=T, col=’green’ )
curve( df(x, 4, 20), add=T, col=’green’ )
curve( df(x, 6, 2), add=T, col=’blue’ )
curve( df(x, 6, 6), add=T, col=’blue’ )
curve( df(x, 6, 10), add=T, col=’blue’ )
curve( df(x, 6, 20), add=T, col=’blue’ )


If we literally follow the definition,
n <- 10
a <- rnorm(n)
b <- rnorm(n)
c <- rnorm(n)
d <- 1+rnorm(n)
sx2 <- var(c( mean(a), mean(b), mean(c), mean(d) ))
sp2 <- mean(c( var(a), var(b), var(c), var(d) ))
MSbetween <- n * sx2
dlbetween <- 4-1
MSwithin <- sp2
dlwithin <- 4*(n-1)
F <- MSbetween / MSwithin


we find
> F
[1] 5.137807


But usually, we perform the computations in a slightly different way, by remembering that
varance may be computed from sums of squares.
Var(X) = E[ (X-EX)^2 ]


= E[X^2] - (EX)^2


The computations then go as follows.
# Sums
sa <- sum(a)
sb <- sum(b)
sc <- sum(c)
sd <- sum(d)
s <- sa + sb + sc + sd
# Sums of squares
ssa <- sum(a^2)
ssb <- sum(b^2)
ssc <- sum(c^2)
ssd <- sum(d^2)
ss <- ssa + ssb + ssc + ssd
# The values we are interested in
# SS = Sum of Squares
# MS = Mean Square
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# effect = between = explained variance
SSeffect <- (sa^2/n + sb^2/n + sc^2/n + sd^2/n) - s^2/(4*n)
dleffect <- 4-1
MSeffect <- SSeffect/dleffect
SStotal <- ss - s^2/(4*n) # ????
# error = within = residuals = residual variance
SSerror = SStotal - SSeffect
dlerror <- 4*(n-1)
MSerror <- SSerror/dlerror
F <- MSeffect / MSerror


res <- matrix( nrow=3, ncol=5 )
rownames(res) <- c("Effect", "Error", "Total")
colnames(res) <- c("SS", "df", "MS", "F", "p-value")
res[,1] <- c(SSeffect, SSerror, SStotal)
res[,2] <- c(dleffect, dlerror, dleffect+dlerror)
res[,3] <- c(MSeffect, MSerror, NA)
res[,4] <- c(F, NA, NA)
res[,5] <- c(1-pf(F,dleffect,dlerror), NA, NA)
print(res, na.print="")


This yields:
SS df MS F p-value


Effect 15.18513 3 5.0617083 5.137807 0.00463538
Error 35.46678 36 0.9851884
Total 50.65191 39


The correlation ratio is defined as
> SSeffect/SStotal
[1] 0.2997937


We then say that “30% of the variations are explaines by the explainatory variable” (here,
the “explainatory variable” is the variable telling in which group each observation is).
We now understand a little more the result produced by R:
> df <- data.frame(
+ y = c(a,b,c,d),
+ x = factor(c(rep(1,n),rep(2,n),rep(3,n),rep(4,n)))
+ )
> anova(lm(y~x, data=df))
Analysis of Variance Table


Response: y
Df Sum Sq Mean Sq F value Pr(>F)


x 3 15.185 5.062 5.1378 0.004635 **
Residuals 36 35.467 0.985
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


The only number we are interested in is the p-value: here, we can reject the hypothesis “the
four means are equal” with a risk of error inferior to 1%.


13.2.2 Rˆ2, adjusted Rˆ2


TODO


13.2.3 Model


The model underlying analysis of variance is the following. We want to predict a quantitative
variable Y with a qualitative variable X:
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Y = a0 + a1*(X==1) + ... + an*(X==n) + noise


which may also be written as
Y = a 0 + a X + noise


or (if we write i (previously X) the group of observation number j)
Y ij = a + b i + c ij


The interpretation of this F test is the same as for a linear regression between quantitative
variables: we measure which part of the variance of Y is explained by X.
The model may also contain several predictive variables
y = something that depends on the value of u


+ something that depends on the value of v
+ noise


i.e.,
y = f(u) + g(v) + noise


i.e., if u and v are qualitative,
Y ijk = a + b i + c j + d ijk


We can also add some interaction terms
y = something that depends on the value of u


+ something that depends on the value of v
+ something that depends on the value of (u,v)
+ noise


i.e.,
y = f(u) + g(v) + h(u,v)


i.e.,
Y ijk = a + b i + c j + d ij + e ijk.


When some predictive variables are quatitative and others qualitative, we call this “covari-
ance analysis” (and the quantitative predictive variables are called “covariates”) – but it is
only a vocabulary change, the ideas, the computations are the same.


13.2.4 Example


TODO: give a (real) example with two predictive variables.


13.2.5 Comparing models


In R, the “anova” command is more general: it is used to compare regression models.
Analysis of variance, as we have just presented it, is actually a comparison of the model
studied (say, y ˜ x) with the trivial (empty) model (here, y ˜ 1).
n <- 200
k <- 5
m <- sample(0:1, k, replace=T, # The means (perhaps equal,


p = c(.9,.1)) # perhaps not)
x <- factor(sample(1:k,n,replace=T))
y <- rnorm(n,m[x])
anova( lm(y~x), lm(y~1) )


This yields:
Analysis of Variance Table


Model 1: y ~ x
Model 2: y ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)
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1 195 184.366
2 199 226.197 -4 -41.831 11.061 4.177e-08 ***


And indeed:
> m
[1] 0 0 0 1 0


Actually, you can use the “anova” function to compare any two embedded models: for
instance, two non-trivial models, or even more that two models. But the models have to
be nested (to compare non-nested models, use the BIC (Bayesian Information Criterion) –
more about this somewhere else in this document).
TODO: give a real example.


anova( lm(y~x1+x2), lm(y~x1), lm(y~1) )
anova( lm(y~x1+x2), lm(y~x2), lm(y~1) )


Of course, you will be careful not to perform too many tests: each time, you have a 5%
chance of claiming to see something that is not there – in the end, you would be sure to
spot some artefactual phenomenon.


13.2.6 Likelihood ratio test


TODO


13.3 ANOVA vocabulary


One of the most disturbing things when one tries to understand analysis of variance is
the vocabulary used: many complicated words, never (or rarely) explained, for very simple
things. Here is a compendium of some of these words (only those I have inderstood – and I
am not even sure I have understood them properly)...
In the following examples, I shall be mainly using the “aov” function: however, I advise
you not to use it unless you are absolutely confident in your understanding of its “Error”
argument – I for one, do not understand it: expect more mistakes in this part than in the
rest of this document.


13.3.1 Simple anova, one-factor anova, one-way anova


It is the analysis of variance with a simple predictive variable (i, in the following model).
Y ij = a + b i + e ij


In R, you will write
y ~ x


where y is the variable to predict and x the predictive (qualitative) variable.
Here is an example:
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●


A B C


−
1


0
1


2


Simple anova: y ~ x
n <- 30
x <- sample(LETTERS[1:3],n,replace=T, p=c(3,2,1)/6)
x <- factor(x)
y <- rnorm(n)
plot(y ~ x,


col = ’pink’,
xlab = "", ylab = "",
main = "Simple anova: y ~ x")


Here, the analysis of variance tells us that the three samples might have the same mean.
> summary(aov(y~x))


Df Sum Sq Mean Sq F value Pr(>F)
x 2 2.271 1.135 1.1193 0.3307
Residuals 97 98.391 1.014


13.3.2 Double anova, two-factor anova, two-way anova


It is the analysis of variance with two predictive variables (i and j in the following model).
Y ijk = a + b i + c j + e ijk


In R, you would write
y ~ x1 + x2


In this example, the predictive variables do not interact. If you have enough data, you can
look if the interact, i.e., you can compare with the model
Y ijk = a + b i + c j + d ij + e ijk


In R, the model with an interaction term would be written
y ~ x + y + x:y


or
y ~ x * y


Here is another simulation.
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Double anova: y ~ x1 + x2


y
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B n <- 100


x1 <- sample(LETTERS[1:3],n,replace=T,p=c(3,2,1)/6)
x1 <- factor(x1)
x2 <- sample(LETTERS[1:2],n,replace=T,p=c(3,1)/4)
x2 <- factor(x2)
y <- rnorm(n)
i <- which(x1==’A’ & x2==’B’)
y[i] <- rnorm(length(i),.5)
library(lattice)
bwplot( ~ y | x1 * x2,


layout = c(1,6),
main = "Double anova: y ~ x1 + x2")


Here is the corresponding anova:
> summary(aov(y~x1*x2))


Df Sum Sq Mean Sq F value Pr(>F)
x1 2 2.855 1.427 1.4716 0.2348
x2 1 0.487 0.487 0.5021 0.4803
x1:x2 2 0.241 0.121 0.1243 0.8833
Residuals 94 91.175 0.970


When the groups do not have the same size, the result will depend on the order in which
you list the predictive variables...
> summary(aov(y~x2*x1))


Df Sum Sq Mean Sq F value Pr(>F)
x2 1 0.798 0.798 0.8230 0.3666
x1 2 2.544 1.272 1.3112 0.2744
x2:x1 2 0.241 0.121 0.1243 0.8833
Residuals 94 91.175 0.970


In this situation you might want to use the “anova” function to compare three or four
(nested) models.
anova( lm(y~1), lm(y~x1), lm(y~x1+x2), lm(y~x1*x2) )


13.3.3 Interaction plot


This plot can help you see if a model with two predictive variables need an interaction term.
When comparing y ˜ x1 + x2 with y ˜ x1 * x2, we can plot y as a function of x1, for each
value of x2: we get a curve for each value of x2. You can also interchange the role of x1 and
x2.
Parallel lines indicate there is no interaction.
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x1 <- gl(2,2,4,c(0,1))
x2 <- gl(2,1,4,c(0,1))
n <- function (x) {
as.numeric(as.vector(x))


}
y1 <- n(x1) + n(x2)
interaction.plot(
x1, x2, y1,
main = "Interaction plot: No interaction"


)
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y2 <- n(x1) + n(x2) - 2*n(x1)*n(x2)
interaction.plot(
x1, x2, y2,
main = "Interaction plot: Interaction"


)


13.3.4 Repeated measure anova


There are several predictive variables, say X1 and X2, and several observations for each
value of (X1,X2).
This is a particular case of two-way anova – a case in which we can, if needed, consider an
interaction term: the model would be y˜x1+x2 (no interaction) of y˜x1*x2 (interaction).


13.3.5 Cross-factor anova


There are several predictiva variables, say X1 and X2, and a single observation for each
value of (X1,X2); in this case we do not have enough data to study the interaction between
X1 and X2.
This is a particular case of two-way anova.


13.3.6 Hierarchical anova


This is still a double anova, i.e., a model of the form
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Y ijk = a + b i + c j + e ijk


but now, the value of i determines that of j, i.e., i and j both define groups in the data, and
the groups defined by i are contained in those defined by j. For instance
i = Number of the leaf (from 1 to 100)
j = Number of the tree (from 1 to 10: leaves 1 to 10 are in tree 1,


leaves 11 to 20 on tree 2, etc.)


Other example:
i = pupil
j = classroom


Other example:
i = country
j = region (a region is a set of countries)


Here is a simulation of such data.
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Hierarchical anova
n <- 2000 # Number of experiments
k <- 20 # Number of subjects
l <- 4 # Number of groups
kl <- sample(1:l, k, replace=T) # Group of each subject
x1 <- sample(1:k, n, replace=T)
x2 <- kl[x1]
A <- rnorm(1,sd=4)
B <- rnorm(k,sd=4)
C <- rnorm(l,sd=4)
y <- A + B[x1] + C[x2] + rnorm(n)
x1 <- factor(x1)
x2 <- factor(x2)
op <- par(mfrow=c(1,2))
plot(y~x1, col=’pink’)
plot(y~x2, col=’pink’)
par(op)
mtext("Hierarchical anova", line=1.5, font=2, cex=1.2)


You can put this in a single plot, by using a different color for each group
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# If the data were real, we wouldn’t know kl.
# One may recover it that way.
kl <- tapply(x2,


x1,
function (x) {
a <- table(x)
names(a)[which(a==max(a))[1]]


})
kl <- factor(kl, levels=levels(x2))
plot( y ~ x1, col = rainbow(l)[kl],


main = "Hierarchical anova")
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and reordering the subjects.
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x1 <- factor(x1, levels=order(kl))
kl <- sort(kl)
plot( y ~ x1, col = rainbow(l)[kl],


main = "Hierarchical anova")
legend(par(’usr’)[2], par(’usr’)[3], # Bottom right


xjust = 1, yjust = 0,
1:l, # Is this right?
col = rainbow(l),
lty = 1,
lwd = 3)


If we try to naively model this, the fact that the variables are nestes is not taken into account
and prevents us from estimating the effects of x2: once we know the effects of x1, there is
nothing left.
> a <- x1
> b <- x2
> lm(y~a+b)
Call:
lm(formula = y ~ a + b)
Coefficients:
(Intercept) a11 a18 a19 a1 a2


10.0156 -2.7380 -2.6942 -0.7015 -15.9302 -11.5106
a8 a13 a14 a15 a3 a4


-13.3365 -3.0425 -10.6694 -10.7422 -15.2508 -20.9595
a9 a17 a20 a5 a7 a10


-21.8916 -19.5307 -19.9899 -11.1213 -7.5232 -10.9528
a12 a16 b2 b3 b4


-5.8704 -6.5261 NA NA NA


Instead, we can use the “lme” function from the “nlme” package, or the “lmer” function
from the newer “lme4” package.
TODO


13.3.7 Within subject


For each subject.
For instance, we might want to compute the variance for all the observations on a given
subject: this would be a “within subject” variance.


13.3.8 Across subjets


Mean (or anything else) accross all the subjects.
For instance, we can compute the variance of all the observations, regardless of the subject:
this would be called the “across-subject variance”.


13.3.9 Experience design


In some cases, you can choose the values of the predictive variables, because they just
describe the conditions in which the experiment was conducted.
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This contrasts with the usual setup where the predictive variables are random variables.
TODO: understand what follows (actually, there are entire
books on the subject).
CRD: Completely Randomized Design
RCBD: Randomized Block Design
Latin Square: Randomized Block Design with two series of blocks
BIB: Balanced incomplete Block Design
Factorial Design


13.3.10 Between-subject design


In such a design, we assume there is no difference between the subjects.
In other words, this is classical regression.


13.3.11 In-subject design


This time, we consider there are differences between the subjects. This is often the case
in psychological experiments: the subjects undergo various experiments, but each subject
undergoes several experiments.
You can consider the “subject” variable as another qualitative variable, whose effects should
be taken into account – but we are not interested in the differences between the subjects,
we do not want to know that subject 1 is faster than subject 2, but we want to account for
those differences.
This is actually one motivation for the notion of mixed models.
From a practical point of view, the “anova table” in the result will have one more row, for
the subjects. This is called “anova within”.


13.3.12 Split-splot design


We have two qualitative predictive variables, X1 and X2. We first divide the subjects into
“plots”, one for each value of X1. Then, in each plot, we assign each subject to a given value
of X2 (i.e., we split the plot). The values of X2 are nested in those of X1. This was initially
used in farming: the plots are fields (or groups of fields, close together), the subplots are
sections of those fields.


13.3.13 Hierarchical design


We have two qualitative variables, X1 and X2, and X2 is nested within X1, i.e., X1 partitions
the subjects into groups and X2 partitions each group into smaller groups. For instance:
X1: continent
X2: country


X1: (number of the) tree
X2: (number of the) leaf on the tree


13.3.14 Between-subject factor


A qualitative variable whose value is completely determined once we know the others. For
instance, the group the subject belongs to, when each subject belongs to only one group.


13.3.15 Avova within


See above, “in-subject design”.


13.3.16 Carry-over effects


In an in-subject design, the tests performed on the subjects must be independant (for in-
stance, if he is asked to perform the same task in different conditions, the second time, the
differences might be due to the differing conditions or to the memory of the first experiment).







CHAPTER 13. ANALYSIS OF VARIANCE (ANOVA) 920


13.3.17 Effects


This is the name given to the parameters of the regression (i.e., the values we want to
estimate).


13.3.18 Fixed effects


The effects, i.e., the parameters of the regression, are numbers. This is what you are used
to.


13.3.19 Random effects


The effects, i.e., the parameters in the regression, are not numbers, but random variables,
that depend on the subject.
This can be written
y = alpha + beta x + noise
alpha ~ group # Random effect (it depends on the group)
beta ~ 1 # Fixed effect (it is the same for all the


# observations, regardless of their group)


In this example, the intercept depends on the group, an we assume that the distribution of
these intercepts is normal, with a mean and a variance to be determined, while the slope is
the same for all groups. We say that the intercept is a random effect and the slope a fixed
effect.
This model can also be written (this is closer to the syntax actually used by R to describe
mixed models in the “lme4” package).
y ~ 1 + x + ( 1 | group )


where the terms can be read as:
1: fixed effect (average of alpha over


all the groups)
x: fixed effect of x (beta, in the model above)
(1 | group): random effect (alpha, in the model above,


has been decomposed as a sum of a
group-independant value (fixed effect) and a
group-dependant value (random effect) by
requesting that the mean of the
group-dependant value be zero).


13.3.20 Random effects


The model is
Y ij = a i + b x ij + c ij


where
i is the subject number
j is the experiment number
x is a predictive quantitative variable


This is very similar to a classical linear regression, but the intercept depends on the subject
– the slope does not.
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n <- 1000
k <- 9
subject <- factor(sample(1:k,n,replace=T), levels=1:k)
a <- rnorm(k,sd=4)
b <- rnorm(1)
x <- rnorm(n)
y <- a[subject] + b * x + rnorm(n)
plot(y~x, main="Fixed effects")
abline(lm(y~x))


We do not see much... There is a line, indeed, but the points are very far away from this
line...
Actually, there are several lines (one for each subject).
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col <- rainbow(k)
plot(y~x, main="Random effects")
for (i in 1:k) {
points(y[subject==i] ~ x[subject==i], col=col[i])
abline( lm(y~x, subset=subject==i), col=col[i] )


}


This situation is very simple: the lines are actually parallel. In real-world examples, they
need not be parallel, they need not even be lines. With all the subjects on the same plot,
you do not see anything – so we use several plots.
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9 library(lattice)
xyplot(y~x|subject, main = "Random effects")


13.3.21 Within effects, within-subject effects


Other name for “random effects”.


13.3.22 Summary


The following (incomplete) table recalls the main models we have seen.
Model Name
-----------------------------------------------------------------------------------
Y ij = a + b i + c ij 1-factor anova


i: predictive qualitative variable


Y ijk = a + b i + c j + d ijk 2-factor anova, with no interaction
i: qualitative predictive variable
j: other qualitative predictive variable
i and j are independant


Y ijk = a + b i + c j + d ij + e ijk 2-factor anova, with interactions


Y ijk = a + b i + c j + d ijk hierarchical anova
i and j: predictive qualitative variables
i: subject number
j: group number (each subject


is in only one group)
j is completely determined by i


13.3.23 Repeated measures


We measure the same quantity (i.e., we perform the same experiment) on each subject
several times.
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Repeated measures: y ~ x | subject


x


y


n <- 30
k <- 10
subject <- gl(k,n/k,n)
x <- gl(n/k,1,n)
y <- rnorm(k)
y <- rnorm(n, y[subject])
y[ x==2 ] <- y[ x==2 ] + 1


# I do not see anything
plot(y ~ x,


col = ’pink’,
main = "Repeated measures: y ~ x | subject")


−
3


−
2


−
1


0
1


2
3


Repeated measures: y ~ x | subject
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8
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9
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10


interaction.plot(
x, subject, y,
main = "Repeated measures: y ~ x | subject"


)


Here is the analysis of variance:
> summary(aov( y ~ x + Error(subject/x) ))


Error: subject
Df Sum Sq Mean Sq F value Pr(>F)


Residuals 9 40.000 4.444


Error: subject:x
Df Sum Sq Mean Sq F value Pr(>F)


x 2 8.6491 4.3245 7.8876 0.003468 **
Residuals 18 9.8689 0.5483


Forgetting the error term is equivalent to considering the box-and-whiskers boxes above: we
do not see anything.
> summary(aov(y~x))


Df Sum Sq Mean Sq F value Pr(>F)
x 2 8.649 4.325 2.3414 0.1154
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Residuals 27 49.869 1.847


We could also have taken the subject number a predictive variable: but then, we have too
many parameters to estimate, there is no information (people often say “degree of freedom”)
left to perform a test:
> summary(aov(y~x*subject))


Df Sum Sq Mean Sq
x 2 8.649 4.325
subject 9 40.000 4.444
x:subject 18 9.869 0.548


We shall see later that this is a “mixed model” – no need to understand the “aov” function
and its “Error” argument.


13.3.24 Split-splot


The subjects are separated into several groups and we perform several measures for each
subject.


●
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y ~ x | subject/group


x


y


n <- 50
k <- 10
subjet <- gl(k,n/k,n)
group <- sample(1:3, k, replace=T)[subjet]
group <- factor(group)
x <- gl(n/k,1,n)
y <- rnorm(n)
y[x==1] <- y[x==1] + 1
plot(y~x, col=’pink’,


main = "y ~ x | subject/group")


Here is the analysis of variance (x is the only within-subject factor, because each subject
belongs to only one group):
> summary(aov( y ~ x * group + Error(subject/x) ))


Error: subject
Df Sum Sq Mean Sq F value Pr(>F)


group 2 1.7068 0.8534 0.5958 0.5768
Residuals 7 10.0260 1.4323


Error: subject:x
Df Sum Sq Mean Sq F value Pr(>F)


x 4 25.149 6.287 4.5296 0.00601 **
x:group 8 1.994 0.249 0.1795 0.99191
Residuals 28 38.865 1.388


13.3.25 Hierarchical design


This is the same as the split-splot design, but we have two levels of grouping: each subject
is in a group, each group is in a class.
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n <- 64
group <- gl(16,n/16,n)
supgroup <- gl(4,n/4,n)
subjet <- gl(64,n/64,n)
y <- rnorm(n)


TODO: plot
y ~ group, col=supgroup


Here, each subject appears exactly once.
The analysis of variance requires two steps: first, we check if the larger groups (“classes”)
are meaningful:
> summary(aov( y ~ supgroup + Error(group) ))


Error: group
Df Sum Sq Mean Sq F value Pr(>F)


supgroup 3 0.8376 0.2792 0.2675 0.8475
Residuals 12 12.5227 1.0436


Error: Within
Df Sum Sq Mean Sq F value Pr(>F)


Residuals 48 50.131 1.044


then, if there are dissimilarities within the larger groups, because of the smaller groups.
> summary(aov( y ~ supgroup:group ))


Df Sum Sq Mean Sq F value Pr(>F)
supgroup:group 15 13.360 0.891 0.8528 0.6173
Residuals 48 50.131 1.044


13.3.26 Hierarchical design (2)


TODO
Let us consider the same example, but this time, each subject appears several times.
n <- 256
group <- gl(16,n/16,n)
supgroup <- gl(4,n/4,n)
subjet <- gl(64,n/64,n)
y <- rnorm(n)


We first check if the larger groups are meaningful:
summary(aov( y ~ supgroup + Error(supgroup/group*subjet) ))


TODO: I have a few doubts
Furthermore, R takes a very long time to do the computations...


13.3.27 The “Error” argument in the “aov” function


y ~ predictive variables + Error(
Subjet / (sum or product of the predictive variables whose


effect is likely to change from one subject to another)
)


This allows you to perform tests:
Are there significant variations from one subject to the next?
How does the effect of the predictive variables depend on the subject?


The variables whose effects are likely to depend on the subject are sometimes called “within
effects” or “within-subject factors”.
The syntax
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subject / v


is equivalent to
subject + v %in% subject


13.3.28 TODO


One-way analysis of variance: Y ij = a + b i + c ij
Unbalanced anova: The groups do not have the same size
(the computations are trickier -- but the computer does them for us)


Nested design: Y ijk = a + b i + c ij + d ijk
No c j term
Example: i = tree number, j = leaf number
Example: i = father (sire) number, j = mother number
(in farming, the same male will be used several times, but the
mother only once: you have to wait until she gives birth)


Nested unbalanced anova


13.3.29 Anova within and error terms


Here is another example: we investigate the duration of a cold in subjects that have received
a drug or a placebo. If we perform the experiment with different subjects, the differences
between the subjects are larger that those induced by the drug.
n <- 10
subjet <- gl(n,2)
treatment <- gl(2,1,2*n, 0:1)
duration <- ifelse( treatment==1, rpois(2*n,2), rpois(2*n,3) )
summary(lm( duration ~ treatment )) # Not significant


There is no significant effect
> summary(lm( duration ~ treatment ))


Call:
lm(formula = duration ~ treatment)


Residuals:
Min 1Q Median 3Q Max


-2.20 -1.20 -0.10 0.45 3.80


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 3.2000 0.5033 6.358 5.46e-06 ***
treatment1 -1.2000 0.7118 -1.686 0.109
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 1.592 on 18 degrees of freedom
Multiple R-Squared: 0.1364, Adjusted R-squared: 0.08838
F-statistic: 2.842 on 1 and 18 DF, p-value: 0.1091


However, if we perform two experiments with each subject (they have to catch two colds
each), one with the placebo, one with the drug, we see that the cold is shortened by the
drug.
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n <- 10
subject <- gl(n,2)
traitement <- gl(2,1,2*n, 0:1)
duree <- ifelse( traitement==1, rpois(2*n,2), rpois(2*n,3) )
sans <- duree[2*(1:n)-1]
avec <- duree[2*(1:n)]
plot(sans+rnorm(n), avec+rnorm(n))
abline(0,1)


Proportion of subjects for which the drug is efficient:
> sum(sans>avec)/n
[1] 0.8


From the Wilcoxon test, it is significant
> wilcox.test(avec,sans, paired=T)


Wilcoxon signed rank test with continuity correction


data: avec and sans
V = 3.5, p-value = 0.02355
alternative hypothesis: true mu is not equal to 0


We can compare this with a regression.
> summary( lm(I(sans-avec) ~ 1) )


Call:
lm(formula = I(sans - avec) ~ 1)


Residuals:
Min 1Q Median 3Q Max


-2.20 -0.20 -0.20 0.55 1.80


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 1.2000 0.3887 3.087 0.013 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 1.229 on 9 degrees of freedom


Actually, this is simply a Student T test.
> t.test(sans-avec)


One Sample t-test


data: sans - avec
t = 3.087, df = 9, p-value = 0.01299
alternative hypothesis: true mean is not equal to 0
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95 percent confidence interval:
0.3206314 2.0793686
sample estimates:
mean of x


1.2


You can also formulate this as a regression (it is more general: some subjects may have
undergone more that two experiments).
> summary(lm( duree ~ traitement + subject )) # significant


Call:
lm(formula = duree ~ traitement + subject)


Residuals:
Min 1Q Median 3Q Max


-1.100e+00 -1.750e-01 9.714e-17 1.750e-01 1.100e+00


Coefficients:
Estimate Std. Error t value Pr(>|t|)


(Intercept) 2.6000 0.6446 4.033 0.00296 **
traitement1 -1.2000 0.3887 -3.087 0.01299 *
subject2 1.5000 0.8692 1.726 0.11849
subject3 -0.5000 0.8692 -0.575 0.57923
subject4 -1.0000 0.8692 -1.150 0.27961
subject5 2.5000 0.8692 2.876 0.01829 *
subject6 0.5000 0.8692 0.575 0.57923
subject7 -0.5000 0.8692 -0.575 0.57923
subject8 3.5000 0.8692 4.027 0.00299 **
subject9 -0.5000 0.8692 -0.575 0.57923
subject10 0.5000 0.8692 0.575 0.57923
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 0.8692 on 9 degrees of freedom
Multiple R-Squared: 0.8712, Adjusted R-squared: 0.7281
F-statistic: 6.088 on 10 and 9 DF, p-value: 0.006023


We get the same value
Here is yet another way of presenting the computations:
> summary(aov(duree ~ traitement + Error(subject/traitement)))


Error: subject
Df Sum Sq Mean Sq F value Pr(>F)


Residuals 9 38.800 4.311


Error: subject:traitement
Df Sum Sq Mean Sq F value Pr(>F)


traitement 1 7.2000 7.2000 9.5294 0.01299 *
Residuals 9 6.8000 0.7556
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


However, be VERY careful at how you write those “error terms”. To understand, you might
want to consult
http://cran.r-project.org/doc/contrib/rpsych.html


More generally:
summary(aov( resultat ~ a1 * a2 * a3 * b1 * b2 + Error(subj/(a1+a2+a3)) ))


where a1, a2, a3 are within-subject factors and b1, b2 are between-subject factors.



http://cran.r-project.org/doc/contrib/rpsych.html
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Formula | Model
------------------------------------------------------
y ~ j | y = a j + Error
y ~ j + Error(i) | y = a j + b i + Error
y ~ j + Error(i/j) | y = a j + c {i,j} + Error


Exercise: In the example above, should we writre the error term as Error(subject) or Er-
ror(subject/traitement)?
The “lme” function, in the “nlme” package, does comparable things (the data are different:
otherwise, we would get a closer p-value).
> summary( lme(duree ~ traitement, random = ~ 1 | subject) )
Linear mixed-effects model fit by REML
Data: NULL


AIC BIC logLik
67.44822 71.00971 -29.72411


Random effects:
Formula: ~1 | subject


(Intercept) Residual
StdDev: 0.7601167 0.8850613


Fixed effects: duree ~ traitement
Value Std.Error DF t-value p-value


(Intercept) 3.2 0.3689324 9 8.673676 <.0001
traitement1 -1.3 0.3958114 9 -3.284392 0.0095
Correlation:


(Intr)
traitement1 -0.536


Standardized Within-Group Residuals:
Min Q1 Med Q3 Max


-0.98547570 -0.73238917 0.03706879 0.48334911 1.85051895


Number of Observations: 20
Number of Groups: 10


The “nlme” function is a non-linear generalization of “lme” – a mixture of “lme” and “nls”.


13.3.30 Mixed models


Sometimes, we are not interested in all the coefficients of the model. For instance, we might
want to study the effect of a drug on the results to a given test, following the model
Y ij = a + b i + c j + e ij


where i is the “treatment” variable (drug or placebo) and j is the subject number. We are
interested in b i (the effect of the drug), not in c j (the differences between the subjects) –
however, we want to account for differences between subjects when evaluating the effects of
the drug.
That is a mixed model: a regression model, when we are not interested in the actual values
of some coefficients.
(There is one more difference: we shall assume that those coefficients we are interested are
random variables, that follow a gaussian distribution of unknown mean and variance).
In terms of matrices, a linear model is
Y = X b + e


(X and Y anr known, we want to explain Y from X, e is random, we are looking for b) while
a mixed model is
Y = X b + Z u + e


(X, Y and Z are known, u and e are random, we are looking for b). We say that b are the
fixed effects and u the random effects.
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13.3.31 Fixed effects


These are the predictive variables we are interested in in a mixed model (more precisely, the
“effects” are the corresponding coefficients).


13.3.32 Random effects


These are the predictive variables we are not interested in. They are usually qualitative,
taking a very large number of values, and we only have a few of those values (e.g., in an
experiment on humans, the “subject” variable tells which human is being considered, among
the 5 to 10 billions at hand – but the experiment was only conducted on a few dozens of
humans).


13.3.33 Mixed model and linear model


You might be tempted to see a mixed model as a particular case of a linear model (put X
and Z in the same matrix, b and u in the same vector, estimate b and u, only report the
estimated values of b). There are however a few differences.
In a mixed model, we have fewer parameters to estimate, so we can get results with fewer
data.
There are also a few differences in the tests that can be performed (to use a vocabulary I
do not really like: we have more “degrees of freedom” with a mixed model).
The mixed model assumes that the random effects (i.e., the coefficients we are not interested
in) follow a gaussian distribution – in a linear model, there is no such assumption.


13.3.34 Mixed models and Generalized Least Squares (GLS)


Let us recall that in the linear model (Ordinary Least Squares, OLS), the variance of the
noise term is a scalar matrix (i.e., a multiple of the identity matrix, i.e., the noise terms are
independant and have the same variance). With the Generalized Least Squares, this matrix
no longer need be diagonal.
This is exactly what we have in a moxed model.
Y = X b + Z u + e.


If we write R and G the variance-covariance of e and u, the variance of Y is
Var(Y) = ZGZ’+R.


So, even if e and u are scalar matrices, the variance of Y can be more complex: the moxed
model is not a particular case of the linear model where we discard the coefficients we are
not interested in, but rather a particular cas of generalized least squares.


13.4 Mixed models


The following terms are more or less equivalent:
Mixed models
Random Coefficient Model


HLM (Hierarchical Level Model)
Multilevel Analysis
Grouped Data


Panel Data
Longitudinal Data


13.4.1 Hierarchical Models


In classical models, we have a universe (for instance, the British population) from which we
sample subjects, at random, in which we perform experiments or measurements (income,
sex, age, weight, etc.).
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In hierarchical model, this sampling is performed in (at least) two steps. We have a first
universe (say, that of British cities), from which we sample. For each of those elements, we
measure a few variables of interest (latitude, longitude, size, taxes, average income, etc.).
For each of those elements (cities), we have another universe (its inhabitants), from which
we now sample elements (people) on which we measure the variables we are interested in
(income, age, etc.)
If we out the collected data in a table, we get two tables.
City Area Inhabitants
----------------------------------------
A 1 28000
B 7 50000
C 3 15000


Subject City Income Age
-------------------------------
Artaud A 30 32
Balzac A 50 38
Camus B 10 21
Descartes C 20 49
Etiemble C 27 36
Fenelon C 23 29
Gide B 15 56


It will be easier to put everything in a single table – but some data will be repeated.
Subject City Area Inhabitants Income Age
---------------------------------------------------------------
Artaud A 1 28000 30 32
Balzac A 1 28000 50 38
Camus B 7 50000 10 21
Descartes C 3 15000 20 49
Etiemble C 3 15000 27 36
Fenelon C 3 15000 23 29
Gide B 7 50000 15 56


In this example, we have two sampling levels (city and subject) and we have variables defined
at each level (area and number of inhabitants are defined for the cities, i.e., are the same
for all the inhabitants of a given city; income and age are subject-level variables).
Now that we have given a numeric example, let us perform a few simulations and look at a
few plots.
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# There are 12 cities
n.cities <- 12


# The area of those cities (more reasonably, the logarithm
# of their areas) are gaussian, independant variables.
area.moyenne <- 5
area.sd <- 1
area <- rnorm(n.cities, area.moyenne, area.sd)


a <- rnorm(n.cities)
b <- rnorm(n.cities)


# 200 inhabitants sampled in each city
n.inhabitants <- 20
city <- rep(1:n.cities, each=n.inhabitants)


# The age are independant gaussian variables, mean=40, sd=10
# We could have chosen a different distribution for each city.


# (either randomly, or depending on their area or population).
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age <- rnorm(n.cities*n.inhabitants, 40, 10)


# The income (the variable we try to explain) is a function of the
# age, but the coefficients depend on the city
# Here, the coefficients are taken at random, but they could
# depend on the city area or population.
# Here, the coefficients are independant -- this is rarely the case
a <- rnorm(n.cities, 20000, sd=2000)
b <- rnorm(n.cities, sd=20)
income <- 200*area[city] + a[city] + b[city]*age +


rnorm(n.cities*n.inhabitants, sd=200)


plot(income ~ age, col=rainbow(n.cities)[city], pch=16)


We do not see much on this plot. One idea is to consider a different plot for each city: this
is what the “lattice” package provides (recall that the general idea of “lattice” (or “treillis”)
plots: slicing a cloud of points). Remember the syntax,
variable to predict ~ predictive variables | group


we shall use it again when estimating the coefficients of mixed models (i.e., estimating the
mean and variance of a and b, the covariance of (a,b), performing tests to know if a and b
really depend on the city).
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city library(lattice)
xyplot(income ~ age | city)


In this example, both a and b depended on the city. But perhaps only one of them depends
n the city – or even, none.
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city a <- rnorm(n.cities, 20000, sd=2000)
b <- rep(rnorm(1, sd=20), n.cities)
income <- 200*area[city] + a[city] + b[city]*age +


rnorm(n.cities*n.inhabitants, sd=200)
xyplot(income ~ age | city)
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city a <- rep( rnorm(1, 20000, sd=2000), n.cities )
b <- rnorm(n.cities, sd=20)
income <- 200*area[city] + a[city] + b[city]*age +


rnorm(n.cities*n.inhabitants, sd=200)
xyplot(income ~ age | city)
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city a <- rep( rnorm(1, 20000, sd=2000), n.cities )
b <- rep(rnorm(1, sd=20), n.cities)
income <- 200*area[city] + a[city] + b[city]*age +


rnorm(n.cities*n.inhabitants, sd=200)
xyplot(income ~ age | city)


13.4.2 Other motivation


Mixed models appear when the observations are no longer independant: the subjects belong
to groups (we know the groups, but there are too many of them, we cannot take a subject
from all the groups) and the variables measured on the subjects of a given group have similar
values.
TODO: more details
TODO: give an example?


Example: The results at an exam depend on the class.
Example: cluster sampling


13.4.3 more complex models


You can have more that two levels:
student/class/teacher/school/city/country


TODO: other examples


You can move the variables from one level to another: for instance, you can consider the
income of a subject, or the average income in a city.
TODO: give the R syntax to describe those more complicated models.
The various random variables at hand need not be independant: the model can give the
shape of this variance-covariance matrix.
TODO: details
TODO: more precise examples


13.4.4 The ecological fallacy


A commom mistake is to perform an analysis at a given level and draw conclusitons at
another.
Example: if there is a correlation between the rate of illiteracy and the presence of a certain
ethnic minority, this does not mean that you will have the same correlation at the subject
level.
But rest reassured, you can of course perform multi-level analyses, for instance, by trying
to predict a subject-level variable from subject-level and group-level variables.
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13.4.5 Levels are not predictive variables


For instance, the name of the city should not be used to predict anything – simply because
we have sampled among the cities, we do not have all the cities.


13.4.6 Regressions galore


The first idea (and often, the first step), when analysing grouped data, is to perform a
regression in each group (or, at least, look at each group separately – e.g., with a lattice
plot). Let us go back to one of our simulated examples above.
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city n.cities <- 12
area <- rnorm(n.cities, 5, 1)
a <- rnorm(n.cities)
b <- rnorm(n.cities)
n.inhabitants <- 20
city <- rep(1:n.cities, each=n.inhabitants)
age <- rnorm(n.cities*n.inhabitants, 40, 10)
a <- rnorm(n.cities, 20000, sd=2000)
b <- rep(rnorm(1, sd=20), n.cities)
income <- 200*area[city] + a[city] + b[city]*age +
rnorm(n.cities*n.inhabitants, sd=200)
xyplot(income ~ age | city)


The “lmList” function in the “nlme” package performs a regression in each group.
library(nlme)
d <- data.frame(income, age, city, area=area[city])
r <- lmList(income ~ age | city, data=d)


this yields:
> summary(r)
Call:
Model: income ~ age | city
Data: d


Coefficients:


(Intercept)
Estimate Std. Error t value Pr(>|t|)


1 21479.14 162.7878 131.94565 0
2 24026.24 274.6432 87.48163 0
3 19633.32 169.5408 115.80292 0
4 17354.47 205.3334 84.51853 0
5 22675.63 207.5127 109.27345 0
6 22732.46 235.9244 96.35486 0
7 21292.20 178.5410 119.25666 0
8 20044.50 185.1989 108.23230 0
9 18924.25 136.4418 138.69835 0
10 20630.17 147.8031 139.57873 0
11 20572.80 170.0011 121.01566 0
12 18025.29 180.2910 99.97887 0


age
Estimate Std. Error t value Pr(>|t|)
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1 -6.0190190 4.343643 -1.38570746 0.16726531
2 4.3642466 6.469611 0.67457638 0.50066630
3 5.1117531 4.252501 1.20205817 0.23065717
4 0.2409800 5.088937 0.04735370 0.96227508
5 0.2023943 5.150521 0.03929589 0.96869078
6 8.0885149 5.755782 1.40528515 0.16137312
7 7.9947740 4.245020 1.88333011 0.06099939
8 4.2547386 4.528523 0.93954232 0.34850184
9 2.9008258 3.713258 0.78120777 0.43553568
10 3.4318408 3.813179 0.89999457 0.36912542
11 -3.1825003 3.956591 -0.80435410 0.42207690
12 -1.3094108 4.573603 -0.28629742 0.77492474


Residual standard error: 195.6667 on 216 degrees of freedom


Here, we see that the intercept depends on the city while the slope does not. We say that
the intercept is a “random coefficient” (or a random effect) and that the slope is a fixed
coefficient (or a fixed effect).
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library(nlme)
d <- data.frame(income, age, city, area=area[city])
r <- lmList(income ~ age | city, data=d)
plot(intervals(r))


Exercise: Take the area into account.


13.4.7 TODO


The rest...


13.4.8 TODO: TO SORT







Chapter 14


Mixed Models


There is a big confusion in the litterature between “anova” (Analysis of variance: for us, it
will just be variance-based tests to compare models) and “mixed models” (because anova
is not limited to the classical regression models we have presented but can also be used to
study mixed models). As a rule of thumb, when people stop to be intelligible and start to
use a lot of incomprehensible words, they are laboriously, unknowingly trying to fit mixed
models. I hope, in this chapter to clarify things and explain that it is, actually, very simple
– provided the computer does the computations for us, that is.
TODO: This chapter is not written yet.


TODO: state the structure of this chapter
Correlated observations (GLS), Mixed models
Longitudinal data, panel data
Graphical models, Bayesian networks, Probabilistic
Relational Models (PRM)


14.1 Mixed models


14.1.1 Generalized Least Squares (GLS)


One of the assumptions of linear regression is that the noises are independant identically
distributed gaussian variables. But sometimes, one should expect some dependance between
those noises: for instance, when you perform several experiments on the same subject, the
fact that it is the same subject will have some influence on the results; other example, when
you study a time-dependant phenomenon, there might be a noise term for each observation,
but the noises of two nearby observations are likely to be close – the same applies for spatial
observations.
One way to take into account these dependances consists in estimating the variance-covariance
matrix and use the Generalized Least Squares (GLS) method.
The simplest use of the GLS method is when the noises are independant but have different
variances – they are heteroskedastic. In this case, the variance-covariance matrix is diagonal.
TODO: give an example


When the observations are performed over time, successive noises might be correlated. For
example, we may posit that the noises form an AR(1) (order-1 Auto-Regrerssive) process.
The variance-covariance matrix is then of the form
1 rho rho^2 ... ... rho^(n-1)
rho 1 rho rho^2 ... rho^(n-1)
rho^2 rho 1 rho ... ...
...
rho^(n-1) ... 1


TODO: Give an example


You could generalize this example to spatial observations,


937
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Cov(i,j) = exp( - alpha * distance between the points i and j ).


TODO: numeric examples
library(nlme)
?gls


14.1.2 GLS systems


Sometimes, you want to solve an over-determined linear system, for instance, you work
for an asset manager, you are provided with return forecasts (we call these “alpha”) for a
series of assets, but for some assets, you have two forecasts, and some forecasts are not for
individual assets but groups of assets (we call these “portfolios”). For instance,
alpha1 = .03
alpha2 = .1
alpha3 = -.05


alpha1 = -.05
alpha2 = .08


(alpha1 + alpha2 + alpha3)/3 = .02


How do we combine all these? The most direct way, if you have no further information, is
to see the problem as a regression problem.
x <- matrix(c( 1, 0, 0,


0, 1, 0,
0, 0, 1,
1, 0, 0,
0, 1, 0,
1/3, 1/3, 1/3 ),


nc = 3, byrow = TRUE)
y <- c(.03, .1, -.05, -.05, .08, .02)
lm( y ~ x )


We get
alpha1 = -0.008636
alpha2 = 0.091364
alpha3 = -0.047273


Bit this is not the end of the story: you might actually have more information that that.
First, the various forecasts usually come from different sources, that you trust more or less.
# The first source is not that reliable, but has a wide
# coverage: there is a forecast for all the assets.
alpha1 = .03 With variance 1
alpha2 = .1 With variance 1
alpha3 = -.05 With variance 1


# The second source is more reliable
alpha1 = -.05 With variance .5
alpha2 = .08 With variance .5


# The last source is the forecast on a portfolio:
# this is usually much easier to do, and the forecast
# errors on the various assets tend to cancel out:
# this is our most precise forecast.
(alpha1 + alpha2 + alpha3)/3 = .02 With variance .2


TODO: computatitons in this case
The GLS system can be written in matrix form
P1 * alpha = forecast1 With variance 1
P2 * alpha = forecast2 With variance .5
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P3 * alpha = forecast3 With variance .2


Where the matrices P1, P2, P3 are
1 0 0


P1 = 0 1 0
0 0 1


P2 = 1 0 0
0 1 0


P3 = ( 1/3 1/3 1/3 )


Actually, the variances themselves can be matrices: this means that the errors on the various
foreacsts you make are not independant, they are (gaussian and) correlated. This can be
written
P1 * alpha = forecast1 With V1
P2 * alpha = forecast2 With V2
P3 * alpha = forecast3 With V3


or even
A x = b with variance V


It the errors were independant and identically distributed, we would have V=1 and we would
try to find x that minimizes the mean square error
(A x - b)’ (A x - b)


This is the length of the Ax-b vector for the Euclidian distance. Here, we simply replace
this distance by one that takes the matrix V into account: the Mahalanobis distance (we
have already seen it somewhere in this book).
Minimize (A x - b)’ V^-1 (A x - b)


The computations yield
2 A’ V^-1 (A x - b) = 0


and then
x = (A’ V^-1 A)^-1 A’ V^-1 b


To check that it is correct and indeed better than the least squares estimate (when we know
the matrix V), let us perform a small simulation.
%%G
P <- matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 1,
1, 0, 0,
0, 1, 0,
1/3, 1/3, 1/3),
nc = 3,
byrow = TRUE)


V <- diag(c(1,1,1, .5, .5, .2))
alpha true <- rnorm(3)


N <- 100 # Number of samples
n <- 100 # Sample size
res <- res ls <- matrix(NA, nr=N, nc=3)
library(MASS) # For mvrnorm
x0 <- rnorm(3) # Real values
for (i in 1:N) {
b <- mvrnorm(1, mu = P %*% x0, Sigma = V)
# The GLS solution
res[i,] <-
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solve( t(P) %*% solve(V, P), t(P) %*% solve(V, b) )
# The usual least-squares solution
res ls[i,] <- solve( t(P) %*% P, t(P) %*% b)


}


x <- cbind(
GLS = apply(t(t(res) - x0), 2,


function (x) sum(x^2)) / N,
LS = apply(t(t(res ls) - x0), 2,


function (x) sum(x^2)) / N
)
y <- paste("x", as.vector(row(x)), sep="")
z <- colnames(x)[ as.vector(col(x)) ]
x <- as.vector(x)
y <- as.factor(y)
z <- as.factor(z)
library(lattice)
dotplot(~ x | y, group=z,


layout = c(1,3),
pch = 16,
cex = 2,
xlim = range(-.1*x,1.1*x),
auto.key = TRUE,
main = "Mean Sqaure error of LS and GLS estimates",
xlab = "")


%--


The mean square error is indeed smaller...
> apply(t(t(res) - x0), 2, function (x) sum(x^2))
[1] 307.7805 310.0312 682.9758


> apply(t(t(res ls) - x0), 2, function (x) sum(x^2))
[1] 340.6182 346.2469 830.7217


14.1.3 Mixed Models


Here is our last example: we have made an experiment on several subjects, in different
conditions, and we would like to know if the conditions have an influence on the result. If
each subject is used only once (for instance, if you study how children learn to read), you
cannot take into account the differences between subjects; but if the experiment is non-
destructive, you can reuse the subjects and compare their results in different conditions.
If your analysis takes into account the differences between the subjects, you can spot the
effects of the different conditions even if their amplitude is dwarfed by the differences between
subjects.
If you want a variance-covariance matrix to apply the GLS method in this context, you can
try with
Cov(i,j) = 1 if i = j


= alpha if experiments i and j were performed
on the same subject


= 0 otherwise


But there is another way of modeling those experiments:
Result of experiment i on subject j =


effect of experiment i + effect of subject j.


With letters and indices:
Yij = a i + b j + noise ij.


The difference between such a model and a classical regression
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Y ~ experiment + subject


is that the effects of the subjects, b j, are NOT parameters of the model – they form a
random variable, assumed to be gaussian, whose mean and variance are to be estimated.
Indeed, considering them as parameters to be estimated would not make sense, since usually
the subjects only form a sample of the population (e.g., if they are human beings, we just
have a handful of them, not the whole Earth population). Furthermore, this allows us to
reduce the number of parameters to be estimated.
Before we start giving examples, a word about the vocabulary: “effects” just means “pa-
rameters in the model”; “fixed effects” are the effects to be estimated (in the example above,
“a i” or “effects of experiment i”), “random effects” are the effects not to be estimated, for
which we only want an estimation of the mean and the variance (in the example above,
“b j” of “effects of subject j”).


14.1.4 Example


TODO: Example 1, a model of the form
y ~ experiment + (1 | subject)


TODO: Present the nlme library


14.1.5 Which effects are random?


If you have a single predictive variable, you can simply plot the cloud of points, with a
different colour for each group, a regression line for each, and assess, visually, if the slope is
the same in all the groups and if the intercept is the same.
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(Non−)mixed model: no random effects


x


y


# No random effects
N <- 200
k <- 4
x <- rnorm(N)
g <- sample(1:k, N, replace=TRUE)
a <- rep(runif(1,-1,1), k)
b <- rep(runif(1,-1,1), k)
y <- a[g] + b[g] * x + .2 * rnorm(N)
plot(x, y, col=rainbow(k)[g],


main="(Non-)mixed model: no random effects")
for (i in 1:k) {
abline(lm(y[g==i] ~ x[g==i]),


col=rainbow(k)[i], lwd=2)
}
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Mixed model: random intercept


x


y


# Random intercept
a <- runif(k,-1,1)
b <- rep(runif(1,-1,1), k)
y <- a[g] + b[g] * x + .2 * rnorm(N)
plot(x, y, col=rainbow(k)[g],


main="Mixed model: random intercept")
for (i in 1:k) {
abline(lm(y[g==i] ~ x[g==i]),


col=rainbow(k)[i], lwd=2)
}
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Mixed model: random slope


x


y


# Random slope
a <- rep(runif(1,-1,1), k)
b <- runif(k,-1,1)
y <- a[g] + b[g] * x + .2 * rnorm(N)
plot(x, y, col=rainbow(k)[g],


main="Mixed model: random slope")
for (i in 1:k) {
abline(lm(y[g==i] ~ x[g==i]),


col=rainbow(k)[i], lwd=2)
}
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Mixed model: random intercept and slope


x


y


# Random intercept and slope
a <- runif(k,-1,1)
b <- runif(k,-1,1)
y <- a[g] + b[g] * x + .2 * rnorm(N)
plot(x, y, col=rainbow(k)[g],


main="Mixed model: random intercept and slope")
for (i in 1:k) {
abline(lm(y[g==i] ~ x[g==i]),


col=rainbow(k)[i], lwd=2)
}


14.1.6 Mixed models in R


There are two R packages to deal with mixed models: the old nlme, and its more recent
but incompatible replacement, lme4. Since the syntax used to describe the models changed
from something I never really understood in nlme to something perfectly in sync with the
description of non-mixed models, we shall strive to stick to lme4.
The models look like this (the only potentially troublesome point is the fact that, as always,
the intercept is implicit: when we write “x”, it encompasses the intercept and the effect of
x):
y ~ x No random effects
y ~ (1 | g) + x The intercept is a random effect
y ~ (x | g) Intercept and slope are random effects


y ~ ( 1 | g1 * g2 ) Several groupings (they can be nested)


The lme4 function to fit a mixed model is called “lmer”.


14.1.7 General procedure to choose a mixed model


If you have more variables than that, fewer observations, more groups, if you want actual
tests, you can proceed as follows.
First, look at the data.
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library(lme4)
xyplot(Reaction ~ Days, groups = Subject,


data = sleepstudy,
type = "l")
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372 xyplot(Reaction ~ Days | Subject,
data = sleepstudy,
type = "l")


Then, perform a regression in each group and look whether the regression coefficients are
the same in each
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# A regression in each group
r <- lmList(Reaction ~ Days | Subject, data = sleepstudy)
# The regression coefficients
do.call("rbind", lapply(r, function (x) { x$coef }))
# To check if they are different, let us compute
# their 95% confidence interval.
lmListIntervals <- function (r, level=.95) {
s <- array(numeric(0),


dim=c(length(r),
dim(confint(r[[1]]))))


dimnames(s)[2:3] <- dimnames(confint(r[[1]]))
dimnames(s)[[1]] <- names(r)
names(dimnames(s)) <- c("Group", "Variable", "Interval")
for (i in 1:length(r)) {
s[i,,] <- confint(r[[i]], level=level)


}
s


}


s <- lmListIntervals(r)
aperm(s, c(1,3,2))


lmListIntervalsPlot <- function (s, i=1) {
plot.new()
plot.window( xlim = range(s[,i,]), ylim=c(1,length(r)) )
segments( s[,i,1], 1:length(r),


s[,i,2], 1:length(r) )
axis(1)
axis(2)
box()
level <- diff(as.numeric(gsub(" .*", "", dimnames(s)[[3]])))
title(xlab = dimnames(s)[[2]][i],


ylab = "Subject",
main = paste(level, "% confidence intervals", sep=""))


}
lmListIntervalsPlot(s,1)
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lmListIntervalsPlots <- function (s) {
k <- dim(s)[2]
op <- par(mfrow=c(1,k))
for (i in 1:k) {
lmListIntervalsPlot(s,i)


}
par(op)


}
lmListIntervalsPlots(s)


In this example, things are not that compelling...
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# No random effects
N <- 200
k <- 4
x <- rnorm(N)
g <- sample(1:k, N, replace=TRUE)
a <- rep(runif(1,-1,1), k)
b <- rep(runif(1,-1,1), k)
y <- a[g] + b[g] * x + .2 * rnorm(N)
d <- data.frame(x=x, y=y, g=as.factor(g))
lmListIntervalsPlots(lmListIntervals(
lmList( y ~ x | g, data = d )


))
mtext("No random effects",


side=3, line=3, font=2, cex=1.2)
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Random intercept


# Random intercept
a <- runif(k, -1, 1)
b <- rep(runif(1,-1,1), k)
y <- a[g] + b[g] * x + .2 * rnorm(N)
d <- data.frame(x=x, y=y, g=as.factor(g))
lmListIntervalsPlots(lmListIntervals(
lmList( y ~ x | g, data = d )


))
mtext("Random intercept",


side=3, line=3, font=2, cex=1.2)
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# Random slope
a <- rep(runif(1,-1,1), k)
b <- runif(k, -1, 1)
y <- a[g] + b[g] * x + .2 * rnorm(N)
d <- data.frame(x=x, y=y, g=as.factor(g))
lmListIntervalsPlots(lmListIntervals(
lmList( y ~ x | g, data = d )


))
mtext("Random slope",


side=3, line=3, font=2, cex=1.2)
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Random intercept and slope


# Random intercept and slope
a <- runif(k, -1, 1)
b <- runif(k, -1, 1)
y <- a[g] + b[g] * x + .2 * rnorm(N)
d <- data.frame(x=x, y=y, g=as.factor(g))
lmListIntervalsPlots(lmListIntervals(
lmList( y ~ x | g, data = d )


))
mtext("Random intercept and slope",


side=3, line=3, font=2, cex=1.2)


Then, from those plots, you can choose a model. For the sleep data, there is noting really
compelling: let us try a linear model with random slope and intercept.
# No random effects
lm( Reaction ~ Days,


data = sleepstudy)
# Random intercept
lmer( Reaction ~ Days + (1 | Subject),


data = sleepstudy)
# Random slope
lmer( Reaction ~ Days + (Days - 1 | Subject),


data = sleepstudy)
# Random intercept and slope
r <- lmer(
Reaction ~ Days + (Days | Subject),
data = sleepstudy


)
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Perform a few diagnostic plots
TODO...


Those diagnostic plots may prompt you to change the model.
TODO


14.1.8 Other examples
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Female data(Orthodont, package="nlme")
xyplot( distance ~ age | Sex, group = Subject,


data = Orthodont, type="l" )
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data(BodyWeight, package="nlme")
xyplot(weight ~ Time | Rat,


data = BodyWeight,
type = "l", aspect = 8)
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3 xyplot(weight ~ Time | Diet, group = Rat,
data = BodyWeight,
type = "l", aspect = 3)


14.1.9 Example: nested groupings (Hierarchical Models)


TODO: nested groupings (Hierarchical Models)


14.1.10 Example: crossed groupings


TODO: crossed groupings


14.1.11 About non-linear mixed effects


TODO (motivation but no details)
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5 data(Cefamandole, package="nlme")
xyplot( conc ~ Time | Subject,


data = Cefamandole,
type = "l" )
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300 data(Dialyzer, package="nlme")
xyplot( rate ~ pressure | QB, group = Subject,


data = Dialyzer, type = "l")
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11 data(Earthquake, package="nlme")
xyplot(accel ~ distance | Quake, data=Earthquake )


14.1.12 Mixed models and bayesian statistics


A mixed model of the form
y ij = a + b i + x ij + epsilon ij
b ~ N(0,1)


can be seen as a bayesian model with a gaussian prior on b. (There is a small difference,
though: in a truly bayesian setup, we have a prior on b, such as b ˜ N(0,1), while in a mixed
model, we just have the shape of the distribution, b ˜ N(m,s), and the mean m and the
standard deviation s are parameters to be estimated).
As a result, one can use bayesian software to fit mixed models.
TODO: An example, in Jags...


14.1.13 Penalized splines, mixed models and bayesian statistics


One can try to smooth a cloud of points with a model of the form
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y = b1 (x - a1) + + b2 (x - a2) + + ... + bn (x - an) +


where
x + = x if x >= 0


0 if x < 0


and the knots a i are heurstically chosen (say, the quantiles of x).
In other words, we try to describe y as a broken line.
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Linear splines: basis functions
plus <- function (x) {
ifelse( x >= 0, x, 0 )


}
op <- par(mfrow=c(2,2), mar=c(3,3,2,2), oma=c(0,0,2,0))
plot.basis.function <- function (a) {
curve( plus(x - a),


xlim = c(-1, 1),
ylim = c(-1, 1),
lwd = 3,
col = "blue" )


abline(h=0, v=0, lty=3)
}
plot.basis.function(-1)
plot.basis.function(-.5)
plot.basis.function(0)
plot.basis.function(.5)
par(op)
mtext("Linear splines: basis functions",


font = 2, line = 2, cex = 1.5)


TODO: a cloud on points and the corresponding linear
spline.
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Broken line regression
N <- 100
x <- runif(N, -1, 1)
y <- sin(2*pi*x) + .5*rnorm(N)
plot(x,y)
z <- apply(as.matrix(seq(-1,1,by=.2)), 1, function (a) { plus(x-a) })
z <- z[,-1] # This is already captured by the intercept
y.pred <- predict(lm(y ~ z))
o <- order(x)
lines( x[o], y.pred[o], col="red", lwd=3 )
title(main="Broken line regression")


TODO: turn this into a function
argument: number of knots
choose them either equispaced in range(x), or along the
quantiles of x.
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broken.line.regression <- function (
x, y,
knots = max(2,ceiling(length(x)/10)),
method = c("equispaced", "quantiles")


) {
method <- match.arg(method)
if (length(knots) == 1) {
if (method == "quantiles") {
knots <- quantile(x, knots+2)[ - c(1, knots+2) ]


} else {
knots <- seq(min(x), max(x), length=knots+2) [ - c(1, knots+2) ]


}
}
z <- apply(as.matrix(knots), 1, function (a) { plus(x-a) })
lm( y ~ z )


}
plot.broken.line.regression <- function (x, y, ...) {
o <- order(x)


plot(x, y)
r <- broken.line.regression(x, y, ...)
lines( x[o], predict(r)[o], col="red", lwd=3 )
invisible(r)


}
plot.broken.line.regression(x,y, knots = 3)
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Smoothing with linear splines, 3 knots
plot.broken.line.regression(x,y, knots = 3)
title(main="Smoothing with linear splines, 3 knots")
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Smoothing with linear splines, 3 knots
plot.broken.line.regression(x,y, knots = 10)
title(main="Smoothing with linear splines, 3 knots")
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Smoothing with linear splines, 3 knots
plot.broken.line.regression(x,y, knots = 30)
title(main="Smoothing with linear splines, 3 knots")


If we want a smooth approximation, we tend to increase the number of points, but then,
the approximation becomes too noisy. This is because this method allows for wild changes
in the slope of two neighbouring segments.
In other words, we did not assume anything on those slopes. Instead, we can assume that
they form a random walk.
y = b1 (x - a1) + + b2 (x - a2) + + ... + bn (x - an) +
b ~ N(0,1)


TODO: program this...


14.2 Longitudinal data, Panel data


Usually, your data are stored in (1-dimensional) vectors. But sometimes, it has a slightly
more complicated structure. For instance, when you measure several variables on several
subjects every day, it is natural to represent each variable as an array, one row per subject,
one column per date. Such data are called “panel data”.
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Imagine we want to predict one variable y form several others x1, x2, x3. Usual regression
is not a good idea: we would expect the observations on the same subject to be correlated,
and the observations from one day to the next to be correlated. How can we tackle this?
It will be easier if the data is not presented as a list of arrays, but as a single data frame, the
first column giving the subject number, the second the date, the others the various variables.
First, as always, we should look at the data. For each variable and each subject, look at the
path.
xyplot(y ~ time, groups=subject, data=d, type="l")
xyplot(x1 ~ time, groups=subject, data=d, type="l")
xyplot(x2 ~ time, groups=subject, data=d, type="l")
xyplot(x3 ~ time, groups=subject, data=d, type="l")


Same for two variables at a time (here, we assume that the observations are chronologically
ordered).
xyplot(y ~ x1, groups=subject, data=d, type="l")
xyplot(y ~ x2, groups=subject, data=d, type="l")
xyplot(y ~ x3, groups=subject, data=d, type="l")


xyplot(x1 ~ x2, groups=subject, data=d, type="l")
xyplot(x1 ~ x3, groups=subject, data=d, type="l")
xyplot(x2 ~ x3, groups=subject, data=d, type="l")


If you see something it will help you choose the model: which terms to include? Do they
have a linear effect?
Second, we can perform the regression y ˜ x1 + x2 + x3 + time (or the one suggested by
the previous plots) for each subject and look at the distribution of the coefficients: we want
to know if those coefficients depend on the subject (this is often the case for the intercept)
or not (this is often the case for the other coefficients).
library(nlme)
r <- groupedData( y ~ x1 + x2 + x3 + time | subject, data=d )
plot(intervals(lmList(y ~ x1 + x2 + x3 + time, r)))


Third, we can perform the mixed model regression. For instance, if the previous plot sug-
gested that the intercept and the x1 coefficient depend on the subject, but not the others:
res <- lme( y + x1 + x2 + x3 + x4,


random = ~ x1 | subject,
data = r )


Finally, we can look at the result:
res
summary(res)
plot(res)
plot(res, resid(.) ~ x1)
plot(res, resid(.) ~ x2)
plot(res, resid(.) ~ x3)
plot(res, resid(.) ~ time)


TODO: the residuals ACF


If there are problems with the residuals, such as heteroskedasticity (e.g., the higher x1, the
more dispersed the residuals), correlated residuals, we must go back to the previous step
and specify the structure of the variance-covariance matrix.
Another possible problem is the presence of non-linear effects: there again, we go back to
the previous step, changing the model.
You can also check if the model is unduly complex: you can compare it with models with
fewer variables, with fewer random effects, with the “anova” function – but remember that it
is only valid if the models are nested and have been estimated by Maximum Likelihood (the
default, for “mle”, is Restricted Maximum Likelihood (REML), which maximizes a likelihood
in which the fioxed effects have been integrated out, which gives less biased results, but is
unsuitable for tests).
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anova(
lme( y + x1 + x2 + x3 + x4,


random = ~ x1 | subject,
data = r,
method="ML" ),


lm( y + x1 + x2 + x3 + x4,
data = r) )


anova(
lme( y + x1 + x2 + x3 + x4,


random = ~ x1 | subject,
data = r, method="ML" ),


lme( y + x1 + x2,
random = ~ 1 | subject,
data = r,
method="ML")


)


14.2.1 TODO


An example with splines.


A non-linear example.


An example with a heteroskedasticity problem.


An example with autocorrelations.


An example with "time-series behaviour".


14.3 Bayesian Networks, Graphical Models, etc.


TODO


14.4 Mixed models, hierarchical models


Structure of this section (when it is finally written...)
Introduction
General idea
The observations in a group are often correlated
Example 1: Y ijk = a i + b ij + c ijk i=group, j=subject
Example 2: Y ij = a i + b i X ij + c ij
Concrete examples: amova


First simulation, first plots
Vocabulary
Longitudinal data, repeated measures data, longitudinal
data, split-splot design,


aov, Error
rpsych, break the sum of squares into the pieces defined
by the Error term


Treillis, nlme, groupedData, Comparing the syntax with
that of aov/Error


Mixed models and the variance-covariance matrix
nlme: Non-linear mixed models
Other functions


glmmPQL (MASS)
GLMM (lme4)
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lme (nlme)
nlme
aov
glm ???


Generalizations: graphical models, bayesian networks


14.4.1 TODO: write this part


A few examples:
data(Orthodont)
formula(Orthodont)
attr(Orthodont,"outer")
plot(Orthodont)


plot(Orthodont, outer=T)


data(Machines)
formula(Machines)
plot(Machines)


data(CO2)
formula(CO2)
attr(CO2,"outer")
plot(CO2)
plot(CO2, outer=T)


data(Pixel)
formula(Pixel)
attr(Pixel,"outer")
plot(Pixel)
plot(Pixel, inner=~Side)


But this is not really the setup mentionned above: I had qualitative predictive variables...
y ~ x
y ~ x | sujet
y ~ x | sujet, outer = ~ groupe
y ~ x | sujet, outer = ~ groupe1 * groupe2


m <- groupedData(...)
lmList(m) # Computes a regression for each subject


Using moxed models:
Write the model, on paper
Indicate what are the fixed effects, the random effects
Write the model in R:


lme(fixed = y ~ x, random= ~ x | subject)


Model fixed random
----------------------------------------------------------------------
Y = (a+a i) + (b+b i) x y ~ x ~ x | subject
Y = (a+a i) + b x y ~ x ~ 1 | subject
Y = a + (b+b i) x y ~ x ~ -1 + x | subject


You can also give the shape of the variance-covariance matrix,
but I have not looked into this (yet).


Explain how to read the results
summary(...)
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anova(lme(...,methodd="ML"))


fixed.effects(r)
random.effects(r)


Plots:
plot(r, x ~ fitted(.) | g)
... resid(.)


Forecasts:
predict


Mixed models:
glmmPQL (MASS)
GLMM (lme4)
lme (nlme)
aov
glm ???


Non-linear mixed effects:
nlme
The documentation gives the following example:
Y = A i ( 1 - exp( - B i ( X - C i ) + noise ij
i: plant number
j: observation number


Arguments of the "nlme" function:
Y ~ f(X, A, B, C)
fixed = A + B + C ~ 1 | plant
random = A + B + C ~ 1 | plant


If there are other predictive variables:
fixed = A + B + C ~ x1 * x2 | plante
random = A + B + C ~ 1 | plante


You can also use lists:
fixed = list( A + B ~ x1 * x2, C ~ 1 )


Scatter plot matrix of the random effects:
pairs(r, ranef(.))


Plot the fitted curves:
r <- nlme(...)
plot(augPred(r))


Vocabulary:
Longitudinal data
repeated measures data
longitudinal data
split-splot design
mixed model, hierarchical analysis, multilevel analysis


Other examples:
Theoph
Wafer 3 nested levels of grouping: Wafer, Site within Wafer, Device within


Site


outer factor = it is constant for each level of the grouping factor
= it is entirely determined by the group (or subject)


inner factor = it varies


Often, you cannot put everything into a single formula such as
y ~ x1 + x2 | g1/g2/g3


You can add "inner" or "outer" arguments to the groupedData function.
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y ~ x | subjet, outer = ~ x1 * x2
(here, x is quantitative, subject determines the value of x1 and x2)


In a plot: group=lines, outer=panels
grouping factor: the population from which we sample.
inner factor: can change within groups
In a plot: inner=lines, group=panels


Inner: changes within a group
Outer: does not change within a group


If there are several levels of grouping:
current ~ voltage | Wafer/Site/Device
inner=list( Wafer = ~ Length, Site = ~ Length)


or
current ~ voltage | Wafer/Site/Device
outer=list( Device = ~ Length )


Longitudinal data:
y ~ x | subject
where x is continuous (often, x is the time).


Panel data: idem, but the values of "x" (the time) are the same for
all the subjects.


Displaying and printing groupedData objects.
data(Pixel)
plot(Pixel)


Here, there are two levels of grouping, we can include a single one:
plot(Pixel, display=1)


Compare with:
plot(Pixel, inner=~Side)


Often, you end up with unreadable plots, with many curves on top of
each other. You can ask the computer to "fuse" those curves with a
function of your choice.
Example (this is the default function):
plot(Pixel, display=1, collapse=1, FUN=mean)


If you want to investigate heteroscedasticity:
plot(Pixel, display=1, collapse=1, FUN=sd)


If there are only two (very different) curves in each panel, you
might want to look at their difference:
plot(Pixel, display=1, collapse=1, FUN=diff)


You can display only a few selected panels:
plot(Pixel, subset=list(Dog=c(3,4)))


Mixed Models: The observations on a single subject are correlated.


Example: education.
We measure the performance of pupils according to the
pupil, the class, the year, the teacher, the school, the
methods, the textbooks, the city, the sex, the SES,
etc. Furthermore, the results evolve with time.
Thus, some spot an increase in the marks: what is the
cause? do we give higher marks for the same achievement?
Is the variance higher?


Other example: amova.


Other example: breeding (group = the sire)
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HLM: Hiearchical Linear Modeling


Linear models: the observations are assumed to be independant
Mixed models: they are not


First presentation of hierarchical models:
y ~ x | Subjet, outer = ~ groupe


We first perform a regression y ~ x for each subject.
Then, we take the resulting coefficients (say, the
intercept a and the slope b) and we check if they depend
on the group:
a ~ group
b ~ group


We can do the same thing for a logistic regression.


Mixed and hierarchical models: There are several notions
of residuals. But the more complex the model, the higher
the errors on thes residuals (in linear regression, the
residuals are an estimation of the noise, but here, we
have several noises and our estimations mixes them up a
bit).


Hierarchical models: the observations are "grouped" and we
know those groups. (You could also imagine situations in
which we do not know the groups.)


Other possible introduction to mixed models. We have
performed a couple of observations on a thousand subjects.
Our model would suggest performing a single linear
regression on each subject: this is not possible, because
we have too few observations wrt the number of
parameters. We can get out of this situation by making a
further on assumption the parameters we are looking for:
that they are following a given distribution. (This is a
bayesian point of view.)
We are no longer interested in the parameters of each
subject, but simply in the parameters of this distribution
(e.g., if the intercept of our regressions is assumed to
be gaussian, we would just want the mean intercept and the
variance of the intercepts -- not their individual
values).


HLM = Multilevel Analysis
Multilevel Analysis Lexicon:
http://www.paho.org/English/DD/AIS/be_v24n3-multilevel.htm


http://cran.r-project.org/doc/contrib/rpsych.html


14.5 From hierarchical models to bayesian networks


14.5.1 Hierarchical models


We consider three events, A, B and C. If they are independant, we have
P(A, B, C) = P(A) * P(B) * P(C).


But these events may be linked. For instance:
If A is true then B has a higher probability.
If B is true then C has a higher probability.



http://www.paho.org/English/DD/AIS/be_v24n3-multilevel.htm

http://cran.r-project.org/doc/contrib/rpsych.html
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This can be modelled as:
P(A,B,C) = P(A) * P(B|A) * P(C|A).


In more complex situations it would become unreadable – instead, we can display those
dependencies by a diagram:
A ---> B ---> C


Here is another possible configuration:
If A is true then B has a higher probability.
If C is true then B has a higher probability.


P(A,B,C) = P(A) * P(C) * P(B|A,C)


A ---> B <--- C


14.5.2 Bayesian networks: qualitative variables


You can represent in a graphical way the dependance relations between those variables A,
B, C, D, E as follows.
1. Choose an (arbitrary) order on the variables.
2. Simplify the formula as much as possible.
P(A,B,C,D,E) = P(A) * P(B|A) * P(C|A,B) * P(D|A,B,C) * P(E|A,B,C,D),


For instance, it could be:
P(A,B,C,D,E) = P(A) * P(B|A) * P(C) * P(D|B,C) * P(E|A,C)


3. Draw the graph whose vertices are the variables an with one edge x —> y if P(y—...x...)
appears in the above formula.
In our example, it would be:
E <--- A <--- B
^ |
| |
| V
C ----------> D


The problem, is that the results depends on the order chose at the begining. If you are
lucky, the result will be simple and easy to interpret, otherwise...
In particular, if we know beforehand some causal relations between our variables, we shall
choose an order that respects it – and if we did not forget anything, the resulting graph will
contain nothing else.
This graph is not yet very usable: we still need to add some probabilities – in our example,
the distributions of A, B—A, C, D—BC et E—AC.
Such a graph then allows us to compute all the conditional probabilities involving those
variables.
For instance:


P(A) P(A) P(A)
P(A|EB) = -------- = --------------------- = --------------------


P(ABE) P(B) P(A|B) P(E|AB) P(B) P(A|B) P(E|A)


You can formalize the manipulations we just performed so that they can be done by a
computer; you can also devise algorithms that change the graph so as to simplify the com-
putations – for instance, applying the Bayes formula is equivalent to changing the orientation
of one of the vertices.


14.5.3 Bayesian methods


TODO...
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14.6 The dangers of Anova


14.6.1 The model


As explained briefly in the section about “anova within”, you must be extra careful when
you choose the model and when you write the error terms.


14.6.2 The order of the terms


In a model such as
Y(i,j,k) = mu + A(i) + B(j) + C(k) + Error(i,j,k)


the order in which you write the terms is important. Thus, in the following example,
n <- 100
a <- rnorm(n)
b <- rnorm(n)
y <- 1 -.2*a + .3*b + rnorm(n)
anova(lm(y~a+b))
anova(lm(y~b+a))


The anova tables are
Df Sum Sq Mean Sq F value Pr(>F)


a 1 3.356 3.356 3.0749 0.08267 .
b 1 21.165 21.165 19.3924 2.741e-05 ***
Residuals 97 105.866 1.091


and
Df Sum Sq Mean Sq F value Pr(>F)


b 1 19.753 19.753 18.0991 4.837e-05 ***
a 1 4.767 4.767 4.3682 0.03923 *


In the first case, the influence of a is not significant (at a 5% level), but it is in the second.
I do not know exactly what it implies for the interpretation of the results. It the results
are really significant, you should be safe, they should remain so whatever the order. On
the contrary, if the are slightly significant, you might hope to change this and tweak the
anova results into saying what you want it to say just by changing the order – yet another
deceptive use of statistics.


14.6.3 Non parametric anova


Anova assumes that the variables are gaussian, equivariant and independant (in the examples
above, they wer not always gaussiam...).
If they are just independant, you can replace the analysis of variance by the Kruskal and
Wallis test.
?kruskal.test


14.6.4 Post-hoc tests


The the analysis of variance tells us that the means are not equal, you will want to know
which ones. You could perform Student T tests for each pair of groups in order to find those
that are significantly different – but this would defeat the very purpose of anova: the rate
of type I error would dramatically rise...
There are innumerable methods to perform those tests while controling this risk (Bonferroni,
Tukey’s HSD, Fisher’s LSD, Scheffe), that are just variants Student’s T test. The main
differences are: first, change the confidence level (if you want an overall 95% confidence
level, the confidence level for each of those T tests should be much higher), second, instead
of estimatin the variance of the two groups to compare from just those two groups, use all
the groups.
Actually, I do not really understand the differences between those methods.
TODO:
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1. If you decide to perform some of the tests before
looking at the data (unrealistic, except, of course, if
you decide to performa all the tests).


1a. A single comparison: use Student’s T test.


1b. Few comparisons: use Bonferroni’s adjustment to
Student’st T test.
Just perfrom a Student T test with a critical p-value
equal to alpha/m instead of alpha, where m is the number
of tests.


TODO: analyze and criticize.
On a simulation, look at
min(Student’s T tests p-values) ~ anova p-value


You do not have
Anova p-value = m * Student T test p-value


However, this is the Bonferroni adjustment.
Yet, you will always have:
Anova p-value < m * Student T test p-value


and, for small p-values, it is a good approximation.
If the tests were independant, you would just have to replace


p ---> 1 - (1-p)^m
But the tests are not independant.
However, this is the ******** adjustment.
Yet, you will have
Anova p-value < 1 - (1-p)^m


You can check all this with simulations.
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s)


N <- 1000
n <- 20 # Sample size
k <- 4 # number of samples
res <- matrix(NA, nr=N, nc=2)
for (a in 1:N) {
x <- factor(rep(1:k,1,each=n))
y <- rnorm(k*n)
res[a,1] <- summary(aov(y~x))[[1]][1,5]
p <- 1
for (i in 1:(k-1)) {
for (j in (i+1):k) {
p <- min(c( p, t.test(y[x==i],y[x==j])$p.value ))
}


}
res[a,2] <- p


}
plot(res, xlab="p-value (anova)", ylab="p-value (multiple Student’s T tests)")
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plot(sort(1-(1-res[,2])^(k*(k-1)/2)),
main = "p-values (*********)")


abline(0, 1/N, col = ’red’)


Let us have a look at what happend when there are much
more tests:
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# Very, very long...
N <- 1000
n <- 20 # Sample size
k <- 20 # Number of samples
res <- matrix(NA, nr=N, nc=2)
for (a in 1:N) {
x <- factor(rep(1:k,1,each=n))
y <- rnorm(k*n)
res[a,1] <- summary(aov(y~x))[[1]][1,5]
p <- 1
for (i in 1:(k-1)) {
for (j in (i+1):k) {
p <- min(c( p, t.test(y[x==i],y[x==j])$p.value ))
}


}
res[a,2] <- p


}


op <- par(mfrow=c(2,2))
plot(res,


xlab = "p-value (anova)",
ylab = "p-value (multiple Student tests)")


# plot(sort(res[,1]), main="p-values (anova)")
# abline(0,1/N, col=’red’)


plot(sort(res[,2]),
ylim = c(0,1),
main = "p-values (multiple Student tests)")


abline(0, 1/N, col = ’red’)
abline(h = .05, lty = 3)


plot(sort(k*(k-1)/2*res[,2]),
ylim = c(0,1),
main = "p-values (Bonferronni)")


abline(0, 1/N, col = ’red’)
abline(h = .05, lty = 3)


plot(sort(1-(1-res[,2])^(k*(k-1)/2)),
main = "p-values (********)")


abline(0, 1/N, col = ’red’)
abline(h = .05, lty = 3)
par(op)


You could try to find a better transformation, but you
will not be assured that the resulting p-value is actually
greater that the real p-value.
op <- par(mfrow=c(4,4))
for (i in seq(50,200,length=16)) {
plot(sort(1-(1-res[,2])^i),


main = paste(
"p-value (correction exponent = ",
round(i),
")",
sep = ’’


)
)


abline(0, 1/N, col = ’red’)
abline(h = .05, lty = 3)
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}
par(op)


2. Most of the time, you decide to perform the tests after
looking at the data and performing the analysis of
variance.
If the anova tells you that there are differences between
the groups you will want to check if parameters ai and aj
are significantly different -- you do not do this for all
the pairs (i,j), but just for those with the largest
difference.


2a. Tukey’s LSD: compute confidence intervals for ai-aj:
ai-aj \pm t {n-I} ^{alpha/2} \hat sigma (1/Ji-1/Jj)
where I is the number of levels of the predictive variable


Ji is the number of observations with X=i
The problem is that it is very wrong.


2b. Fisher’s LSD
Idem but before, you perform an F test to see if all the
coefficients are equal.
The problem is that it is still wrong: the distribution of
the differemce between the largest and the smallest
coefficient is not a T distribution.


2c. Tukey’s HSD (Honest Significant Difference)
This time, we use the right distribution.
TukeyHSD(aov(...))


TODO
?qtukey


TODO: re-read the last chapter in Faraday’s book.


The functions "p.adjust", "pairwise.t.test" (and
"pairwise.*") perform that kind of thing.


TODO:
library(help=multcomp)


Correcting p-values:
library(multcomp)
rawp <- 2 * (1 - pnorm(abs(teststat)))
procs <- c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD",


"BH", "BY")
res <- mt.rawp2adjp(rawp, procs)
adjp <- res$adjp[order(res$index), ]
adjp
TODO: plots that compare those corrections.


TODO: give an example of a situation when you really want to do a
lot of tests.
1. Genoma mapping
2. DNA microarrays


TODO: understand


3. Contrasts
A contrast is a linear combination of the effects
("effects" means "coefficients of the regression") the sum
of whose coefficients is zero. For instance
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a1 - a2
or
(a1 + a2)/2 - (a3 + a4)/2


You might have to consider questions more complex than "is
ai=aj?" (to which you can easily answer with Tukey’s
HSD), questions of the form "is this contrast zero?". In
other words, you are comparing more that two effects at
the same time.


Scheffe’s theorem gives confidence intervals for those
contrasts.
TODO: explain
TODO: give a geometric interpretation
(a contrast defines a hyperplane, the confidence interval
is obtaines by cutting the confidence ellipsoid by a line
orhtogonal to this hyperplane)
TODO:
FWER: Family-Wise type-I Error Rate
FDR: False Discovery Rate


14.7 TODO: TO SORT – Anova examples


14.7.1 TODO


?reshape
?aggregate
?stack


14.7.2 Vocabulary


TODO
longitudinal data
repeated measures data,
multilevel data
split-plot designs


14.7.3 1-way anova: example


TODO
Data: one quantitative variable, one qualitative
variable (with more than two values)


Preliminary test: do the data look gaussian?
boxplot, histograms (lattice), qqnorm


Preliminary test: equivariance (test.bartlett)
Analysis of Variance
If needed: post-hoc tests


14.7.4 ???


TODO
REML: Restricted Maximum Likelihood
Examples:
EM algorithm (first derivatives)
Fischer Scoring (2nd derivatives)
Derivative Free
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Average Information algorithm


14.7.5 Mixed models


Design matrix: the matrix X in "Y = X b + e"
Mixed model: Y = X b + Z u + e
Fixed effects: the term "X b"
Random effects: the term "Z u"
Y, X et Z are known
We want b.


We consider u and e as noise (we could of course
estimate them, but in the tests, we shall consider them
as noise).


If you just want b without any information about u, if
you do not want to perform any test, you can simply
perform a regression: Y ~ cbind(X,Z)


When you look at a mixed model, you are also interested
in the variance (actually, the variance-covariance
matrix) of u.


Mixed model: Y ijk = a i + (b j + e ijk)
where the term between brackets is considered
as noise


estimation: find b (the fixed effects)
prediction: find u (the random effects)
BLUE: Best Linear Unbiased Estimator
BLUP: Best Linear Unbiased Prediction


Mixed model:
library(nlme)
nlme(y~x1+x2, fixed=x1~1, random=x2~1)
TODO: some simulations to show that it is actually
different from usual anova.
There are fewer parameters to estimate


Examples of grouped data (y~x|group, where x may be time,
a factor, or a continuous variable) include
longitudinal data,
repeated measures data,
multilevel data,
split-plot designs.


Grouped data: something that looks like
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F11 library(nlme)
library(lattice)
data(Orthodont)
formula(Orthodont)
plot(Orthodont)
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plot(Orthodont, outer=T)
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data(Machines)
bwplot(score~Machine|Worker, data=Machines)
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Mc1 data(CO2)
plot(CO2)
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plot(CO2, outer=T)


The "groupedData" data type attaches a formula to the data.
groupedData(y~x|z1, data=d, outer=~z2)
Here, we have a hierarchical model: the value of z2 is
determined by that of z1.
outer = ~z2*z3
outer = list(~z2, ~z3) (not tested)


Examples of mixed models


1. You perform several observations (x,y) (two variables)
on each subject and you realize, graphically, that y~x is
linear for each subject but with a different slope and a
different intercept.
We want the "average slope" and the "average intercept".


y ij = (a + a i) + (b + b i) * x ij + c ij
i = subject number
j = number of the observation in that subject
a i, b i, c ij: noises
a and b are the quantities to estimate


2. Variant: the subjects fall into two groups. We can
compute the average slope and intercept in the two
groups. Are they significantly different?
y ijk = (a k + a ik) + (b k + b ik) * x ijk + c ijk
i = subject number
j = number of the observation in this subject
k = group of the subject (each subject belongs to a


single group, so once we know i, we know k)
a ik, b ik, c ijk: noises
a k, b k: quantites to estimate


H0: a 1=a 2 and b 1=b 2
H1: a 1 \neq a 2 or b 1 \neq b 2


Likelihood ratio test
r1 <- lme(...)
r1 <- update(r1, method="ML") # Otherwise, it is REML and the
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# test would be meaningless
...
anova(r1,r2)


Plots:
plot(r, resid(.,type="p") ~ fitted(.) | z)


predict
(slightly different becaus of the random effects)


14.7.6 Example


First look at the data (to spot potential errors in the data, etc.)


●


●
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data(InsectSprays)
y <- InsectSprays$count
x <- InsectSprays$spray
boxplot(y~x, col=’pink’)


Let is check if they look gaussian.
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F library(lattice)
histogram(~ y | x)
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F qqmath(~ y | x)
# TODO: qqmathline


You can also perform more formal tests.
n <- length(levels(x))
res <- matrix(NA, nr=n, nc=2)
colnames(res) <- c(’raw p-value’,


’Bonferroni-corrected p-value’)
rownames(res) <- levels(x)
for (i in 1:n) {
p <- shapiro.test(y[ x == levels(x)[i] ])$p.value
res[i,] <- c(p, min(c(1,n*p)))


}
res


This yields
raw p-value Bonferroni-corrected p-value


A 0.749 1.000
B 0.641 1.000
C 0.048 0.286
D 0.003 0.016
E 0.297 1.000
F 0.101 0.605


Sample D is a bit problematic:
> y[ x==’D’ ]
[1] 3 5 12 6 4 3 5 5 5 5 2 4


“12” is much higher than the other values.
> shapiro.test(y[ x==’D’ ][-3])


Shapiro-Wilk normality test
data: y[x == "D"][-3]
W = 0.8978, p-value = 0.1735


Thus, we shall perform the analysis with and without this value.
TODO


i <- which( (x != ’D’) | (y != 12) )
xx <- x[i]
yy <- y[i]


We should also check that the samples have the same variance.
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> bartlett.test(y~x)
Bartlett test for homogeneity of variances


data: y by x
Bartlett’s K-squared = 25.9598, df = 5, p-value = 9.085e-05


> bartlett.test(yy~xx)
Bartlett test for homogeneity of variances


data: yy by xx
Bartlett’s K-squared = 36.8992, df = 5, p-value = 6.275e-07


So we have a BIG problem...
TODO:
Idea 1: correct the data
Idea 2: use a non-parametric analysis of variance
Idea 3: forget about the problem.


The analysis of variance, either with the “lm” function or with “aov”.
r1 <- anova(lm(y~x))
r2 <- summary(aov(y~x))


The results are the same.
> r1
Analysis of Variance Table
Response: y


Df Sum Sq Mean Sq F value Pr(>F)
x 5 2668.83 533.77 34.702 < 2.2e-16 ***
Residuals 66 1015.17 15.38


> r2
Df Sum Sq Mean Sq F value Pr(>F)


x 5 2668.83 533.77 34.702 < 2.2e-16 ***
Residuals 66 1015.17 15.38


This tells us that the means in the various groups are indeed significantly different.
To know where the differences are, we can perform Student T tests. But beware: as there
are a lot of them (15), we must correct their p-values.


0.0 0.2 0.4 0.6 0.8 1.0


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


n <- length(levels(x))
res <- matrix(NA, nr=n, nc=n)
rownames(res) <- levels(x)
colnames(res) <- levels(x)
for (i in 2:n) {
for (j in 1:(i-1)) {
res[i,j] <- t.test( y[ x == levels(x)[i] ], y[ x == levels(x)[j] ] )$p.value


}
}
#res <- res * n*(n-1)/2; res <- ifelse(res>1,1,res)
res <- 1 - (1-res)^n
image(res, col=topo.colors(255)) # TODO: unreadable


# Write a function that plots
# distance matrices, correlation
# matrices (with the corresponding
# p-values).
# With the name of the


# rows/columns, with a legend for
# the colors.


round(res,3)


This yields:
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A B C D E F
A
B 0.998
C 0.000 0.000
D 0.000 0.000 0.034
E 0.000 0.000 0.375 0.545
F 0.923 0.991 0.000 0.000 0


This suggests a partition into two groups: ABF and DCE.
We remark that C and E are not significantly different, nor are E and D, but C and D are
(at 5%).
We can plot this by turning the p-values into distances.
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] A
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F


d <- 1-res
d <- ifelse(is.na(d), t(d), d)
diag(d) <- 0
p <- isoMDS(d)$points
plot(p, pch=16)
text(p, levels(x), pos=c(1,2,1,1,1,3))


There is already a function to perform those computations:
TukeyHSD(aov(y~x))


This yields again the groups ABF and CDE.
> TukeyHSD(aov(y~x))
Tukey multiple comparisons of means
95% family-wise confidence level


Fit: aov(formula = y ~ x)
$x


diff lwr upr
B-A 0.8333333 -3.866075 5.532742
C-A -12.4166667 -17.116075 -7.717258
D-A -9.5833333 -14.282742 -4.883925
E-A -11.0000000 -15.699409 -6.300591
F-A 2.1666667 -2.532742 6.866075
C-B -13.2500000 -17.949409 -8.550591
D-B -10.4166667 -15.116075 -5.717258
E-B -11.8333333 -16.532742 -7.133925
F-B 1.3333333 -3.366075 6.032742
D-C 2.8333333 -1.866075 7.532742
E-C 1.4166667 -3.282742 6.116075
F-C 14.5833333 9.883925 19.282742
E-D -1.4166667 -6.116075 3.282742
F-D 11.7500000 7.050591 16.449409
F-E 13.1666667 8.467258 17.866075


TODO: can’t we plot this?
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TODO: finish this


14.7.7 TODO: TO SORT


Notes talen while reading:
http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.


pdf


The linear model assumes that the observations are independant; but sometimes, the ob-
servations can be grouped: two observations from different groups are independant, but
two observations from the same group are not. For instance, the groups con contain the
successive observations on a given subject, with one group per subject.
TODO: a simulation example


TODO: a real example


The influence of the predictive variables is not the same
on the different groups.


TODO: some plots to explain when to think about mixed
models.


In R:
lme: linear mixed models
nlme: non linear mixed models


For the moment, there is no generalized linear mixed model:
use "glmmPQL" in MASS.


The “panel” argument:
xyplot(mathach ~ ses | school, data=Pub.20, main="Public",


panel=function(x, y){
panel.xyplot(x, y)
panel.loess(x, y, span=1)
panel.lmline(x, y, lty=2)
}


)


First step in the analysis of a mixed model: perform a regression in each group.
TODO: plot
xyplot(y~x|g,...)
r <- lmList(y~x|g)
plot(intervals(r))


You see which “effects” (“effect” means “regression coefficient”) depend on the group and
which do not.
Then, you can use the “lme” function
r <- lme(y ~ constant effects,


random = ~ random effects | group,
)


r
summary(r)
intervals(r)
plot(r)???


TODO: give more details. How is the result printed? (residuals, standard deviation, corre-
lations, etc.)
After performing the regression, you can start interrogating it.
1. (As for a normal regression)
Is this coefficient significantly different from zero?
Give me a 5% confidence interval for it.



http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf

http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf
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2. Is this random effect really random or is it constant
(in other words, does it vary from one group to the next
or is it constant from one group to the next)?
This is actually a test on the variance of the
coefficient: we test if this variance is significantly
different from zero.
You can see this as a model comparison test and use the
"anova" function.


TODO: They used REML and they nonetheless compare the
likelihood?


Comparing two mixed models: Estimate them with Maximum Likelihood (by default, it is
REML, that gives a better result, which is inappropriate for model comparisons) and give
them to the “anova” function.
TODO: various complications of the simplistic model I have just presented.
1. Several random effects.


They may be correlated.
Covariance matrix.


2. Nested groups.


14.7.8 Two-way anova example


TODO


14.7.9 Manova (Multivariate Analysis of Variance)


TODO: in R?
?manova
?summary.manova


There are several quantitative to explain with one (or several) qualitative variable(s). You
can use the Pillai-Bartlett test, or Wilks lamdba (multivariabe F, bad idea, but commonly
used) test, or Hotelling-Lawley’s test or Roy’s test.
It is a bad idea to perform (directly) several analyses of variance, first, because we would
be performing several tests, whose p-values would have to be corrected, second, because we
would not take into account correlation between the variables to explain – but they should
not be too correlated: then, you had better discard the redundant variables.
A multiple analysis of variance would proceed as:
1. Chech the assumptions
2. Perform an amova to check if there is any difference.
3. If so, look at the variables to explain, one at a time,


with a classical anova.
4. Perform the post hoc tests, to quantify the effects.


TODO: find/build an example
TODO: several predictiva variables
TODO: several predictiva variables, some of which are


quantitative


Hypotheses of amova: gaussian variables, homogeneous variances, homogeneous covariances.


14.7.10 TODO


library(car)
?Anova


options(contrasts=c("contr.sum", "contr.sum")) ????
r <- lme(y ~ x2, random = ~ 1 | x1 )
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summary(r)
fixed.effects(r)
random.effects(r)







Chapter 15


Time series


This chapter contrasts with the topics we have seen up to now: we were interested in the
study of several independant realizations of a simple statistical process (e.g., a gaussian
random variable, or a mixture of gaussians, or a linear model); we shall now focus on a
single realization of a more complex process.
Here is the structure of this chapter.
After an introduction, motivating the notion of a time series and giving several examples,
simulated or real, we shall present the classical models of time series (AR, MA, ARMA,
ARIMA, SARIMA), that provide recipes to build time series with desired properties. We
shall then present spectral methods, that focus on the discovery of periodic elements in
time series. The simplicity of those models makes them amenable, but they cannot describe
the properties of some real-world time series: non-linear methods, built upon the classical
models (GARCH) are called for. State-Space Models and the Kalman filter follow the same
vein: they assume that the data is build from linear algebra, but that we do not observe
everything – there are “hidden” (unobserved, latent) variables.
Some of those methods readily generalize to higher dimensions, i.e., to the study of vector-
valued time-series, i.e., to the study of several related time series at the same time – but
some new phenomena appear (e.g., cointegration). Furthermore, if the number of time series
to study becomes too large, the vector models have too many parameters to be useful: we
enter the realm of panel data.
We shall then present some less mainstream ideas: instead of linear algebra, time series can
be produced by analytical (read: differential equations) or procedural (read: chaos, fractals)
means.
We finally present generalizations of time series: stochastic processes, in which time is
continuous; irregular time series, in which time is discrete but irregular; and discrete-valued
time series (with Markov chains and Hidden Markov Models instead of AR and state-space
models).


15.1 Introduction


15.1.1 Examples


In probability theory, a time series (you will also hear mention of “stochastic process”: in a
time series, time is discrete, in a stochastic process, it is continuous) is a sequence of random
variables. In statistics, it is a variable that depends on time: for instance, the price of a
stock, that changes every day; the air temperature, measured every month; the heart rate
of a patient, minute after minute, etc.


977
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Level of Lake Huron
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2 plot(LakeHuron,


ylab = "",
main = "Level of Lake Huron")


Sometimes, it is so noisy that you do not see much,


Sunspot numbers
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x <- window(sunspots, start=1750, end=1800)
plot(x,


ylab = "",
main = "Sunspot numbers")


You can then smooth the curve.


●●


●●●


●


●


●


●


●●


●
●


●●


●
●


●


●
●


●●
●


●


●


●


●


●●


●


●


●●


●


●●
●


●


●
●●
●


●


●


●●
●


●
●●●


●
●
●


●
●
●


●


●


●
●●
●●
●●


●
●


●
●


●


●
●
●●
●●
●


●●
●●
●
●
●
●
●
●


●


●


●


●


●
●


●


●
●


●●


●


●●●
●


●


●
●●
●
●●●
●●●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●
●●


●


●●


●●


●


●


●


●


●


●


●●●


●●


●


●●●●
●


●


●


●


●


●●●●


●
●


●


●●●●●●●●●●●●●
●●


●●●●●●


●


●


●


●●●●●●


●


●●


●


●●
●


●


●●
●


●●●


●


●
●


●●


●


●


●●


●


●


●


●●


●


●


●


●●


●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●


●●


●


●


●


●


●


●


●


●
●
●


●


●


●


●


●


●


●
●


●


●●


●


●


●


●


●


●●


●


●●


●●
●


●


●


●
●


●


●


●●
●
●
●


●
●


●●
●


●


●
●
●●


●
●


●


●
●


●


●


●


●


●


●


●
●
●
●


●●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●
●


●


●


●●


●


●
●


●


●●●


●


●●●
●


●


●●


●


●


●


●


●
●


●
●


●


●


●


●


●


●●
●


●


●●
●


●


●


●●●


●


●●
●●
●


●●


●
●
●●●●●●●●


●●●


●●
●●●
●
●
●


●


●


●


●
●


●


●


●●


●
●


●


●
●


●●
●
●


●


●


●


●
●


●


●


●


●●


●


●


●


●


●


●
●


●


●
●
●●


●


●


●


●
●
●●
●●


●


●


●


●●


●


●


●●●●


●


●


●
●●


●●


●


●
●
●


●
●


●


●
●
●●


●
●●


●


●●


●


●●●●●●●●●●●●


●
●


●●●●●
●


●


●


●●●


●


●


●


●


●


●


●
●


●


●
●


●


●
●
●
●
●●


●


●


●


●


●


●


●
●●
●


●


●●●
●
●
●●●●●●●●


●


●●●●●●●


●●


●


●


●


●●●


●●●
●●
●●


Sunspot numbers


Time
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plot(x,
type = ’p’,
ylab = "",
main = "Sunspot numbers")


k <- 20
lines( filter(x, rep(1/k,k)),


col = ’red’,
lwd = 3 )


You can underline the periodicity, graphically, with vertical bars.
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UK gas consumption


Time


1960 1965 1970 1975 1980 1985
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0
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0


UK gas consumption


Time


1960 1965 1970 1975 1980 1985


10
0


50
0


data(UKgas)
plot.band <- function (x, ...) {
plot(x, ...)
a <- time(x)
i1 <- floor(min(a))
i2 <- ceiling(max(a))
y1 <- par(’usr’)[3]
y2 <- par(’usr’)[4]
if( par("ylog") ){


y1 <- 10^y1
y2 <- 10^y2


}
for (i in seq(from=i1, to=i2-1, by=2)) {
polygon( c(i,i+1,i+1,i),


c(y1,y1,y2,y2),
col = ’grey’,
border = NA )


}
par(new=T)
plot(x, ...)


}
plot.band(UKgas,


log = ’y’,
ylab = "",
main = "UK gas consumption")


As always, before analysing the series, we have a look at it (evolution with time, pattern
changes, misordered values (sometimes, you have both the value and the time: you should
then check that the order is the correct one), distribution (histogram or, better, density
estimation), y[i+1] ˜ y[i], outliers – the more data you have, the dirtier: someone may have
forgotten the decimal dot while entering the data, someone may have decided to replace
missing values by 0 or -999, etc.)
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Lake Huron levels


x <- LakeHuron
op <- par(mfrow = c(1,2),


mar = c(5,4,1,2)+.1,
oma = c(0,0,2,0))


hist(x,
col = "light blue",
xlab = "",
main = "")


qqnorm(x,


main = "")
qqline(x,


col = ’red’)
par(op)
mtext("Lake Huron levels",


line = 2.5,
font = 2,
cex = 1.2)
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Lake Huron level increments


x <- diff(LakeHuron)
op <- par(mfrow = c(1,2),


mar = c(5,4,1,2)+.1,
oma = c(0,0,2,0))


hist(x,
col = "light blue",
xlab = "",
main = "")


qqnorm(x,


main = "")
qqline(x,


col = ’red’)
par(op)
mtext("Lake Huron level increments",


line = 2.5,
font = 2,
cex = 1.2)


−2 −1 0 1 2


Lake Huron levels
boxplot(x,


horizontal = TRUE,
col = "pink",
main = "Lake Huron levels")


Lake Huron levels


Time


1880 1900 1920 1940 1960


−
2


0
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2


plot(x,
ylab = "",
main = "Lake Huron levels")
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Lake Huron levels: autocorrelations


n <- length(x)
k <- 5
m <- matrix(nr=n+k-1, nc=k)
colnames(m) <- c("x[i]", "x[i-1]", "x[i-2]",


"x[i-3]", "x[i-4]")
for (i in 1:k) {
m[,i] <- c(rep(NA,i-1), x, rep(NA, k-i))


}
pairs(m,


gap = 0,
lower.panel = panel.smooth,
upper.panel = function (x,y) {
panel.smooth(x,y)
par(usr = c(0, 1, 0, 1))
a <- cor(x,y, use=’pairwise.complete.obs’)
text(.1,.9,


adj=c(0,1),
round(a, digits=2),


col=’blue’,
cex=2*a)


})
title("Lake Huron levels: autocorrelations",


line = 3)


We shall also see other plots, more specific to time series. The first one, the AutoCorrelation
Function (ACF) gives the correlation between x[i] and x[i-k], for increasing values of k (these
are the numbers that already appeared in the previous pair plot). The second one, the PACF
(Partial AutoCorrelation Function), contains the same information, but gives the correlation
between x[i] and x[i-k] that is not explained by the correlations with a shorter lag (more
about this later, when we speak of AR models). The last one, the spectrogram, tries to find
periodic components, of various frequencies, in the signal and displays the importance of
the various frequencies (more about this later).
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op <- par(mfrow = c(3,1),
mar = c(2,4,1,2)+.1)


acf(x, xlab = "")
pacf(x, xlab = "")
spectrum(x, xlab = "", main = "")
par(op)


15.1.2 Simulations


One aim (or one step) of time series analysis is to find the “structure” of a time series, i.e.,
to find how it was build, i.e., to find a simple algorithm that could produce similar-looking
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data. Here are, in no particular order, a few simulated time series.
The first is just gaussian noise; the second is an integrated noise (a “random walk”). We
can then build on those, integrating several times, adding noise to the result, adding a linear
or periodic trend, etc.


op <- par(mfrow = c(3,3),
mar = .1 + c(0,0,0,0))


n <- 100
k <- 5
N <- k*n
x <- (1:N)/n
y1 <- rnorm(N)
plot(ts(y1),


xlab="", ylab="", main="", axes=F)
box()


y2 <- cumsum(rnorm(N))
plot(ts(y2),


xlab="", ylab="", main="", axes=F)
box()


y3 <- cumsum(rnorm(N))+rnorm(N)


plot(ts(y3),
xlab="", ylab="", main="", axes=F)


box()


y4 <- cumsum(cumsum(rnorm(N)))
plot(ts(y4),


xlab="", ylab="", main="", axes=F)
box()


y5 <- cumsum(cumsum(rnorm(N))+rnorm(N))+rnorm(N)
plot(ts(y5),


xlab="", ylab="", main="", axes=F)
box()


# With a trend
y6 <- 1 - x + cumsum(rnorm(N)) + .2 * rnorm(N)
plot(ts(y6),


xlab="", ylab="", main="", axes=F)
box()


y7 <- 1 - x - .2*x^2 + cumsum(rnorm(N)) +
.2 * rnorm(N)


plot(ts(y7),
xlab="", ylab="", main="", axes=F)


box()


# With a seasonnal component
y8 <- .3 + .5*cos(2*pi*x) - 1.2*sin(2*pi*x) +


.6*cos(2*2*pi*x) + .2*sin(2*2*pi*x) +
-.5*cos(3*2*pi*x) + .8*sin(3*2*pi*x)


plot(ts(y8+ .2*rnorm(N)),
xlab="", ylab="", main="", axes=F)


box()
lines(y8, type=’l’, lty=3, lwd=3, col=’red’)
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y9 <- y8 + cumsum(rnorm(N)) + .2*rnorm(N)
plot(ts(y9),


xlab="", ylab="", main="", axes=F)
box()


par(op)


15.1.3 The main problem of time series analysis


In statistics, we like independent data – the problem is that time series contain dependent
data. The aim of a time series analysis will thus be to extract this structure and transform
the initial time series into a series of independant values often called “innovations”, usually
by going in the other direction: by providing a recipe (a “model”) to build a series similar
to the one we have with noise as only ingredient.
We can present this problem from another point of view: when you study a statistical
phenomenon, you usually have several realizations of it. With time series, you have a single
one. Therefore, we replace the study of several realizations at a given point in time by
the study of a single realization at several points in time. Depending on the statistical
phenomenon, these two points of view may be equivalent or not – this problem is called
ergodicity – more about this later.


15.1.4 Autocorrelation


As the observations in a time series are generally not independant, we can first have a look at
their correlation: the AutoCorrelation Function (ACF) (strictly speaking, one can consider
the Sample ACF, if it is computed from a sample, or the theoretical autocorrelation function,
if it is not computed from actual data but from a model) at lag k is the correlation between
observation number n and observation number n - k. In order to compute it from a sample,
you have to assume that it does not depend on n but only on the lag, k.
We could do it by hand
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my.acf <- function (
x,
lag.max = ceiling(5*log(length(x)))


) {
m <- matrix(
c( NA,


rep( c(rep(NA, lag.max-1), x),
lag.max ),


rep(NA,, lag.max-1)
),
byrow=T,
nr=lag.max)


x0 <- m[1,]
apply(m,1,cor, x0, use="complete")


}
n <- 200
x <- rnorm(n)
plot(my.acf(x),


xlab = "Lag",
type = ’h’)


abline(h=0)


but there is already such a function.
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ACF of a time series (Lake Huron)


op <- par(mfrow=c(2,1))
acf(x, main="ACF of white noise")
x <- LakeHuron
acf(x, main="ACF of a time series (Lake Huron)")
par(op)


The y=0 line traditionnally added to those plots can be misleading: it can suggest that the
sign of a coefficient is known, while this coefficient is not significantly different from zero.
The boundaries of the confidence interval are sufficient
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op <- par(mfrow=c(2,1))
set.seed(1)
x <- rnorm(100)
# Default plot
acf(x, main = "ACF with a distracting horizontal line")
# Without the axis, with larger bars
r <- acf(x, plot = FALSE)
plot(r$lag, r$acf,


type = "h", lwd = 20, col = "grey",
xlab = "lag", ylab = "autocorrelation",
main = "Autocorrelation without the y=0 line")


ci <- .95
clim <- qnorm( (1+ci) / 2 ) / sqrt(r$n.used)
abline(h = c(-1,1) * clim,


lty = 2, col = "blue", lwd = 2)


Here are the autocorrelation functions of the simulated examples from the introduction, but
the plots have been shuffled: can you put them back in the correct order? Alternatively,
can you see several groups among those time series?
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op <- par(mfrow=c(3,3), mar=c(0,0,0,0))
for (y in sample(list(y1,y2,y3,y4,y5,y6,y7,y8,y9))) {
acf(y,


xlab="", ylab="", main="", axes=F)
box(lwd=2)


}
par(op)


Personnally, I can see three groups: when the ACF is almost zero, the data are not correlated;
when the ACF is sometimes positive sometimes negative, the data might be periodic; in the
other cases, the data are correlated – but the speed at which the autocorrelation decreases
can vary.


15.1.5 White noise


A white noise is a series of uncorrelated random variables, whose expectation is zero, whose
variance is constant.
In other words, these are iid (independant, identically distributed) random variables, to the
second order. (They may be dependent, but in non-linear ways, that cannot be seen from
the correlation; they may have different distributions, as long as the mean and variance
remain the same; their distribution need not be symetric.)
Quite often, we shall try to decompose our time series into a “trend” (or anything inter-
pretable) plus a noise term, that should be white noise.
For instance, a series of iid random variables is a white noise.
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my.plot.ts <- function (x, main="") {
op <- par(mar=c(2,2,4,2)+.1)
layout( matrix(c(1,2),nr=1,nc=2), widths=c(3,1) )
plot(x, xlab="", ylab="")
abline(h=0, lty=3)
title(main=main)
hist(x, col="light blue", main=’’, ylab="", xlab="")
par(op)


}


n <- 100
x <- ts(rnorm(n))
my.plot.ts(x, "Gaussian iid noise")


A series of iid random variables of mean zero is also a white noise.
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n <- 100
x <- ts(runif(n,-1,1))
my.plot.ts(x, "Non gaussian iid noise")
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x <- ts(rnorm(100)^3)
my.plot.ts(x, "Non gaussian iid noise")


But you can also have a series of uncorrelated random variables that are not independant:
the definition just asks that they be “independant to the second order”.
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n <- 100
x <- rep(0,n)
z <- rnorm(n)
for (i in 2:n) {
x[i] <- z[i] * sqrt( 1 + .5 * x[i-1]^2 )


}
my.plot.ts(x, "Non iid noise")


Some deterministic sequences look like white noise.
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n <- 100
x <- rep(.7, n)
for (i in 2:n) {
x[i] <- 4 * x[i-1] * ( 1 - x[i-1] )


}
my.plot.ts(x, "A deterministic time series")
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n <- 1000
tn <- cumsum(rexp(n))
# A C^infinity function defined as a sum
# of gaussian densities
f <- function (x) {
# If x is a single number: sum(dnorm(x-tn))
apply( dnorm( outer(x,rep(1,length(tn))) -


outer(rep(1,length(x)),tn) ),
1,
sum )


}
op <- par(mfrow=c(2,1))
curve(
f(x),
xlim = c(1,500),
n = 1000,
main = "From far away, it looks random..."


)


curve(
f(x),
xlim = c(1,10),
n = 1000,
main="...but it is not: it is a C^infinity function"


)
par(op)


We have a few tests to check if a given time series actually is white noise.


15.1.6 Diagnostics: is this white noise?


The analysis of a time series mainly consists in finding out a recipe to build it (or to build
a similar-looking series) from white noise, as we said in the introduction. But to find this
recipe, we proceed in the other direction: we start with our time series and we try to
transform it into something that looks like white noise. To check if our analysis is correct,
we have to check that the residuals are indeed white noise (exactly as we did with regression).
To this end, we can start to have a look at the ACF (on average, 5% of the values should
be beyond the dashed lines – if there are much more, there might be a problem).


Time


ts
(z


)


0 50 100 150 200


−
2


0
1


2
3


0 5 10 15 20


0.
0


0.
4


0.
8


Lag


A
C


F


z <- rnorm(200)
op <- par(mfrow=c(2,1), mar=c(5,4,2,2)+.1)
plot(ts(z))
acf(z, main = "")
par(op)
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x <- diff(co2)
y <- diff(x,lag=12)
op <- par(mfrow=c(2,1), mar=c(5,4,2,2)+.1)
plot(ts(y))
acf(y, main="")
par(op)


To have a numerical result (a p-value), we can perform a Box–Pierce or Ljung–Box test (these
are also called “portmanteau statistics”): the idea is to consider the (weighted) sum of the
first autocorrelation coefficients – those sums (asymptotically) follow a chiˆ2 distribution
(the Ljung-Box is a variant of the Box-Pierce one that gives a better Chiˆ2 approximation
for small samples).
> Box.test(z) # Box-Pierce


Box-Pierce test
X-squared = 0.014, df = 1, p-value = 0.9059
> Box.test(z, type="Ljung-Box")


Box-Ljung test
X-squared = 0.0142, df = 1, p-value = 0.9051


> Box.test(y)
Box-Pierce test


X-squared = 41.5007, df = 1, p-value = 1.178e-10
> Box.test(y, type=’Ljung’)


Box-Ljung test
X-squared = 41.7749, df = 1, p-value = 1.024e-10
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op <- par(mfrow=c(2,1))
plot.box.ljung <- function (


z,
k = 15,
main = "p-value of the Ljung-Box test",
ylab = "p-value"


) {
p <- rep(NA, k)
for (i in 1:k) {
p[i] <- Box.test(z, i,


type = "Ljung-Box")$p.value
}
plot(p,


type = ’h’,
ylim = c(0,1),
lwd = 3,
main = main,
ylab = ylab)
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abline(h = c(0,.05),
lty = 3)


}
plot.box.ljung(z, main="Random data")
plot.box.ljung(y, main="diff(diff(co2),lag=12)")
par(op)


There are other such tests: McLeod-Li, Turning-point, difference-sign, rank test, etc.
We can also use the Durbin–Watson we have already mentionned when we tackled regression.
TODO: check that I actually mention it.


library(car)
?durbin.watson


library(lmtest)
?dwtest


Here (it is the same test, but it is not implemented in the same way: the results may differ):
> dwtest(LakeHuron ~ 1)


Durbin-Watson test
data: LakeHuron ~ 1
DW = 0.3195, p-value = < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0


> durbin.watson(lm(LakeHuron ~ 1))
lag Autocorrelation D-W Statistic p-value
1 0.8319112 0.3195269 0


Alternative hypothesis: rho != 0
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Durbin−Watson: p = 2.2e−28


op <- par(mfrow=c(2,1))
library(lmtest)
plot(LakeHuron,


main = "Lake Huron")
acf(
LakeHuron,
main = paste(
"Durbin-Watson: p =",
signif( dwtest( LakeHuron ~ 1 ) $ p.value, 3 )


)
)
par(op)
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White noise
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Durbin−Watson: p = 0.711


n <- 200
x <- rnorm(n)
op <- par(mfrow=c(2,1))
x <- ts(x)
plot(x, main="White noise", ylab="")
acf(
x,
main = paste(
"Durbin-Watson: p =",
signif( dwtest( x ~ 1 ) $ p.value, 3)


)
)
par(op)


AR(1)
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p = 2.25e−27


n <- 200
x <- rnorm(n)
op <- par(mfrow=c(2,1))
y <- filter(x,.8,method="recursive")
plot(y, main="AR(1)", ylab="")
acf(
y,
main = paste(
"p =",
signif( dwtest( y ~ 1 ) $ p.value, 3 )


)
)
par(op)


But beware: the default options tests wether the autocorrelation is positive or zero – if it is
significantly negative, the result will be misleading...
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one−sided DW test: p = 1
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set.seed(1)
n <- 200
x <- rnorm(n)
y <- filter(x, c(0,1), method="recursive")
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(
y,
main = paste(
"one-sided DW test: p =",
signif( dwtest ( y ~ 1 ) $ p.value, 3 )


)
)
acf( y, main="")
pacf(y, main="")
par(op)


two−sided p = 6.08e−06
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op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
res <- dwtest( y ~ 1, alternative="two.sided")
plot(
y,
main = paste(
"two-sided p =",
signif( res$p.value, 3 )


)
)
acf(y, main="")
pacf(y, main="")
par(op)


There are other tests, such as the runs test (that looks at the number of runs, a run being
consecutive observations of the same sign; that kind of test is mainly used for qualitative
time series or for time series that leave you completely clueless).
library(tseries)
?runs.test


or the Cowles-Jones test
TODO


A sequence is a pair of consecutive returns of the same sign; a
reversal is a pair of consecutive returns of opposite signs.
Their ratio, the Cowles-Jones ratio,


number of sequences
CJ = ---------------------


number of reversals
should be around one IF the drift is zero.
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15.1.7 tsdiag


Actually, there is already a function, “tsdiag”, that performs some tests on a time series
(plot, ACF and Ljung-Box test).
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data(co2)
r <- arima(
co2,
order = c(0, 1, 1),
seasonal = list(order = c(0, 1, 1), period = 12)


)
tsdiag(r)


15.2 Simple time series models


15.2.1 The classical model


Classically, one tries to decompose a time series into a sum of three terms: a trend (often,
an affine function), a seasonal component (a perdiodic function) and white noise.
In this section, we shall try to model time series from this idea, using classical statistical
methods (mainly regression). Some of the procedures we shall present will be relevant,
useful, but others will not work – they are just ideas that one might think could work but
turn out not to. Keep your eyes open!
TODO: give the structure of this section
We shall first start to model the time series to be studied with regression, as a polynomial
plus a sine wave or, more generally, as a polynomial plus a periodic signal.
We shall then present modelling techniques based on the (exponential) moving average, that
assume that the series locally looks like a constant plus noise or a linear function plus noise
– this is the Holt-Winters filter.


15.2.2 First attempt: regression
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data(co2)
plot(co2)


Here, we consider time as a predictive variable, as when we were playing with regressions.
Let us first try to write the data as the sum of an affine function and a sine function.
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y <- as.vector(co2)
x <- as.vector(time(co2))
r <- lm( y ~ poly(x,1) + cos(2*pi*x) + sin(2*pi*x) )
plot(y~x, type=’l’, xlab="time", ylab="co2")
lines(predict(r)~x, lty=3, col=’red’, lwd=3)


This is actually insufficient. It might not be that clear on this plot, but if you look at the
residuals, it becomes obvious.
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The residuals are not random yet
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plot( y-predict(r),
main = "The residuals are not random yet",
xlab = "Time",
ylab = "Residuals" )


Let us complicate the model: a degree 2 polynomial plus a sine function (if it were not
sufficient, we would replace the polynomial by splines) (we could also transform the time
series, e.g., with a logarithm – here, it does not work).


1960 1970 1980 1990


32
0


35
0


Time


co
2


r <- lm( y ~ poly(x,2) + cos(2*pi*x) + sin(2*pi*x) )
plot(y~x, type=’l’, xlab="Time", ylab="co2")
lines(predict(r)~x, lty=3, col=’red’, lwd=3)


That is better.
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Better residuals −− but still not random


Time


R
es


id
ua


ls


plot( y-predict(r),
main = "Better residuals -- but still not random",
xlab = "Time",
ylab = "Residuals" )


We could try to refine the periodic component, but it would not really improve things.


1960 1970 1980 1990


32
0


35
0


Time


co
2


r <- lm( y ~ poly(x,2) + cos(2*pi*x) + sin(2*pi*x)
+ cos(4*pi*x) + sin(4*pi*x) )


plot(y~x, type=’l’, xlab="Time", ylab="co2")
lines(predict(r)~x, lty=3, col=’red’, lwd=3)
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Are those residuals any better?


Time
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plot( y-predict(r),
type = ’l’,
xlab = "Time",
ylab = "Residuals",
main = "Are those residuals any better?" )


However, the ACF suggests that those models are not as good as they seemed: if the residuals
were really white noise, we would have very few values beyond the dashed lines...
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Series  y − predict(r2)


r1 <- lm( y ~ poly(x,2) +
cos(2*pi*x) +
sin(2*pi*x) )


r2 <- lm( y ~ poly(x,2) +
cos(2*pi*x) +
sin(2*pi*x) +
cos(4*pi*x) +
sin(4*pi*x) )


op <- par(mfrow=c(2,1))
acf(y - predict(r1))
acf(y - predict(r2))
par(op)


Those plots tell us two things: first, after all, it was useful to refine the periodic component;
second, we still have autocorrelation problems.


15.2.3 Other attempt (apparently a bad idea)


To estimate the periodic component, we could average the january values, then the february
values, etc.
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m <- tapply(co2, gl(12,1,length(co2)), mean)
m <- rep(m, ceiling(length(co2)/12)) [1:length(co2)]
m <- ts(m, start=start(co2), frequency=frequency(co2))
op <- par(mfrow=c(3,1), mar=c(2,4,2,2))
plot(co2)
plot(m, ylab = "Periodic component")
plot(co2-m, ylab = "Withou the periodic component")
r <- lm(co2-m ~ poly(as.vector(time(m)),2))
lines(predict(r) ~ as.vector(time(m)), col=’red’)
par(op)


However, a look at the residuals tell us that the periodic component is still there...
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op <- par(mfrow=c(4,1), mar=c(2,4,2,2)+.1)
plot(r$res, type = "l")
acf(r$res, main="")
pacf(r$res, main="")
spectrum(r$res, col=par(’fg’), main="")
abline(v=1:6, lty=3)
par(op)


15.2.4 Other attempt (better than the previous)


Using the mean as above to estimate the periodic component would only work if the model
were of the form


y ~ a + b x + periodic component.


But here, we have a quadratic term: averaging for each month will nt work. However, we can
reuse the same idea with a single regression, to find both the periodic component and the
trend. Here, the periodic component can be anything: we have 12 coefficients to estimate
on top of those of the trend.
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k <- 12
m <- matrix( as.vector(diag(k)),


nr = length(co2),
nc = k,
byrow = TRUE )


m <- cbind(m, poly(as.vector(time(co2)),2))
r <- lm(co2~m-1)
summary(r)
b <- r$coef
y1 <- m[,1:k] %*% b[1:k]
y1 <- ts(y1,


start=start(co2),
frequency=frequency(co2))


y2 <- m[,k+1:2] %*% b[k+1:2]
y2 <- ts(y2,


start=start(co2),
frequency=frequency(co2))


res <- co2 - y1 - y2


op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(co2)
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lines(y2+mean(b[1:k]) ~ as.vector(time(co2)),
col=’red’)


plot(y1)
plot(res)
par(op)


Here, the analysis is not finished: we still have to study the resulting noise – but we did get
rid of the periodic component.
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op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
acf(res, main="")
pacf(res, main="")
spectrum(res, col=par(’fg’), main="")
abline(v=1:10, lty=3)
par(op)


To pursue the example to its end, one is tempted to fit an AR(2) (an ARMA(1,1) would do,
as well) to the residuals.
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innovations <- arima(res, c(2,0,0))$residuals
op <- par(mfrow=c(4,1), mar=c(3,4,2,2))
plot(innovations)
acf(innovations)
pacf(innovations)
spectrum(innovations)
par(op)
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15.2.5 Same idea, with splines


In the last example, if the period was longer, we would use splines to find a smoother periodic
component – and also to have fewer parameters: 15 was really a lot.
Exercise left to the reader...


15.2.6 Finding the trend (or removing the seasonal component):
Moving Average


To find the trend of a time series, you can simply “smooth” it, e.g., with a Moving Average
(MA).


Time
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x <- co2
n <- length(x)
k <- 12
m <- matrix( c(x, rep(NA,k)), nr=n+k-1, nc=k )
y <- apply(m, 1, mean, na.rm=T)
y <- y[1:n + round(k/2)]
y <- ts(y, start=start(x), frequency=frequency(x))
y <- y[round(k/4):(n-round(k/4))]
yt <- time(x)[ round(k/4):(n-round(k/4)) ]


plot(x, ylab="co2")
lines(y~yt, col=’red’)


The Moving average will leave invariant some functions (e.g., polynomials of degree up to
three – choose the coefficients accordingly).
The “filter” function already does this. Do not forget the “side” argument: otherwise, it
will use values from the past and the future – for time series this is rarely desirable: it would
introduce a look-ahead bias.


Time
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x <- co2
plot(x, ylab="co2")
k <- 12
lines( filter(x, rep(1/k,k), side=1), col=’red’)


15.2.7 MA: Filtering and smoothing


Actually, one should distinguish between “smoothing” with a Moving Average (to find the
value at a point, one uses the whole sample, including what happend after that point) and
“filtering” with a Moving Average (to find the smoothed value at a point, one only uses the
information up to that point).
When we perform a usual regression, we are interested in the shape of our data in the whole
interval. On the contrary, quite often, when we study time series, we are interested in what
happens at the end of the interval – and try to forecast beyond.
In the first case, we use smoothing: to compute the Moving Average at time t, we average
over an interval centered on t. The drawback is that we cannot do that at the two ends of
the interval: there will be missing values at the begining and the end.
In the second case, as we do want values at the end of the interval, we do not average on an
interval centered on t, but on the values up to time t. The drawback is that this introduces
a lag: we have the same values as before, but t/2 units later.
The “side” argument of the filter() function lest you choose between smoothing and filtering.
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Time
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36
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smoother
filter


x <- co2
plot(window(x, 1990, max(time(x))), ylab="co2")
k <- 12
lines( filter(x, rep(1/k,k)),


col=’red’, lwd=3)
lines( filter(x, rep(1/k,k), sides=1),


col=’blue’, lwd=3)
legend(par(’usr’)[1], par(’usr’)[4], xjust=0,


c(’smoother’, ’filter’),


lwd=3, lty=1,
col=c(’red’,’blue’))


Filters are especially used in real-time systems: we want the best estimation of some quantity
using all the data collected so far, and we want to update this estimate when new data comes
in.


15.2.8 Applications of the Moving Average


Here is a classical investment strategy (I do not claim it works): take a price time series,
compute a 20-day moving average and a 50-day one; when the two curves intersect, buy or
sell (finance people call the difference between those two moving averages an “oscillator” –
it is a time series that should wander around zero, that should revert to zero – you can try
to design you own oscillator: the strategy will be “buy when the oscillator is low, sell when
it is high”).
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library(fBasics) # RMetrics
x <- yahooImport("s=IBM&a=11&b=1&c=1999&d=0&q=31&f=2000&z=IBM&x=.csv")
x <- as.numeric(as.character(x@data$Close))
x20 <- filter(x, rep(1/20,20), sides=1)
x50 <- filter(x, rep(1/50,50), sides=1)
matplot(cbind(x,x20,x50), type="l", lty=1, ylab="price", log="y")
segments(1:length(x), x[-length(x)], 1:length(x), x[-1], lwd=ifelse(x20>x50,1,5)[-1], col=ifelse(x20>x50,"black","blue")[-1])


Exercise: do the same with an exponential moving average.


15.2.9 Exponential Moving average


The moving average has a slight problem: it uses a window with sharp edges; an observation
is either in the window or not. As a result, when large observations enter or leave the window,
there is large jump in the moving average.
This is another moving average: instead of taking the N latest values, equally-weighted, we
take all the preceding values and give a higher weight to the latest values.
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exponential.moving.average <-
function (x, a) {
m <- x
for (i in 2:n) {
# Definition
# Exercise: use the "filter" function instead,
# with its "recursive" argument (that should be
# much, much faster)
m[i] <- a * x[i] + (1-a)*m[i-1]


}
m <- ts(m, start=start(x), frequency=frequency(x))
m


}
plot.exponential.moving.average <-
function (x, a=.9, ...) {
plot(exponential.moving.average(x,a), ...)
par(usr=c(0,1,0,1))
text(.02,.9, a, adj=c(0,1), cex=3)


}
op <- par(mfrow=c(4,1), mar=c(2,2,2,2)+.1)
plot(x, main="Exponential Moving Averages")
plot.exponential.moving.average(x, main="", ylab="")
plot.exponential.moving.average(x,.1, main="", ylab="")
plot.exponential.moving.average(x,.02, main="", ylab="")


par(op)


Residuals of an exponential moving average


Time


r


0 500 1000 1500


−
20


−
10


0
10


20


0 5 10 15 20 25 30


0.
0


0.
4


0.
8


Lag


A
C


F


0 5 10 15 20 25 30


0.
0


0.
2


0.
4


0.
6


0.
8


Lag


P
ar


tia
l A


C
F


0.0 0.1 0.2 0.3 0.4 0.5


1e
−


03
1e


−
01


1e
+


01
1e


+
03


sp
ec


tr
um


r <- x - exponential.moving.average(x,.02)
op <- par(mfrow=c(4,1), mar=c(2,4,2,2)+.1)
plot(r, main="Residuals of an exponential moving average")
acf(r, main="")
pacf(r, main="")
spectrum(r, main="")
abline(v=1:10,lty=3)
par(op)


As with all moving average filters, there is a lag.
Actually, there is already a function to do this (it is a special case of the Holt-Winters filter
– we shall present the general case in a few moments):
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Holt−Winters filtering
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x <- co2
m <- HoltWinters(x, alpha=.1, beta=0, gamma=0)
p <- predict(m, n.ahead=240, prediction.interval=T)
plot(m, predicted.values=p)


Time


Time


Time


Time


y <- x20 > x50
op <- par(mfrow=c(5,1), mar=c(0,0,0,0), oma=.1+c(0,0,0,0))
plot(y, type="l", axes=FALSE); box()
plot(filter(y, 50/100, "recursive", sides=1), axes=FALSE); box()
plot(filter(y, 90/100, "recursive", sides=1), axes=FALSE); box()
plot(filter(y, 95/100, "recursive", sides=1), axes=FALSE); box()
plot(filter(y, 99/100, "recursive", sides=1), axes=FALSE); box()
par(op)


15.2.10 Other moving quantities


The “runing” function in the “gtools” package, the “rollFun” function in the “rollFun” in
the “fMultivar” package (in RMetrics) and the “rollapply” function in the “zoo” package
compute a statistic (mean, standard deviation, median, quantiles, etc.) on a moving window.
library(zoo)
op <- par(mfrow=c(3,1), mar=c(0,4,0,0), oma=.1+c(0,0,0,0))
plot(rollapply(zoo(x), 10, median, align="left"),


axes = FALSE, ylab = "median")
lines(zoo(x), col="grey")
box()
plot(rollapply(zoo(x), 50, sd, align="left"),


axes = FALSE, ylab = "sd")
box()
library(robustbase)
plot(sqrt(rollapply(zoo(x), 50, Sn, align="left")),
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axes = FALSE, ylab = "Sn")
box()
par(op)


15.2.11 Finding the trend: Fourrier Transform


One can also find the trend of a time series by performing a Fourier transform and removing
the high frequencies – indeed, the moving averages we considered earlier are low-pass filters.
Exercise left to the reader


15.2.12 Finding the trend: differentiation


If a time series has a trend, if this trend is a polynomial of degree n, then you can transform
this series into a trend-less one by differentiating it (using the discrete derivative) n times.
TODO: an example


To go back to the initial time series, you just have to integrate n times (“discrete integration”
is just a complicated word for “cumulated sums” – but, of course, you have to worry about
the integration constants).
TODO: Explain the relations/confusions between trend, stationarity,
integration, derivation.


TODO: Take a couple of (real-world) time series and apply them all the methods above, in
order to compare them


15.2.13 Local regression: loess


The “stl” function performs a “Seasonal Decomposition of a Time Series by Loess”.
In case you have forgotten, the “loess” function performs a local regression, i.e., for each
value of the predictive variable, we take the neighbouring observations and perform a linear
regression with them; the loess curve is the “envelope” of those regression lines.
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STL(co2)


op <- par(mfrow=c(3,1), mar=c(3,4,0,1), oma=c(0,0,2,0))
r <- stl(co2, s.window="periodic")$time.series
plot(co2)
lines(r[,2], col=’blue’)
lines(r[,2]+r[,1], col=’red’)
plot(r[,3])
acf(r[,3], main="residuals")
par(op)
mtext("STL(co2)", line=3, font=2, cex=1.2)


The “decompose” function has a similar purpose.
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r <- decompose(co2)
plot(r)
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stl(co2): residuals


op <- par(mfrow=c(2,1), mar=c(0,2,0,2), oma=c(2,0,2,0))
acf(r$random, na.action=na.pass, axes=F, ylab="")
box(lwd=3)
mtext("PACF", side=2, line=.5)
pacf(r$random, na.action=na.pass, axes=F, ylab="")
box(lwd=3)
axis(1)
mtext("PACF", side=2, line=.5)
par(op)
mtext("stl(co2): residuals", line=2.5, font=2, cex=1.2)


15.2.14 Holt-Winters filtering


This is a generalization of exponential filtering (which assumes there is no seasonal compo-
nent). It has the same advantages: it is not very sensible to (not too drastic) structural
changes.
For exponential filtering, we had used
a(t) = alpha * Y(t) + (1-alpha) * a(t-1).


This is a good estimator of the future values of the time series if it is of the form Y(t) = Y 0
+ noise, i.e., if the series is “a constant plus noise” (or even if it is just “locally constant”).
This assumed that the series was locallly constant. Here is an example.
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Holt−Winters filtering: constant model
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data(LakeHuron)
x <- LakeHuron
before <- window(x, end=1935)
after <- window(x, start=1935)
a <- .2
b <- 0
g <- 0
model <- HoltWinters(
before,
alpha=a, beta=b, gamma=g)


forecast <- predict(
model,
n.ahead=37,
prediction.interval=T)


plot(model, predicted.values=forecast,
main="Holt-Winters filtering: constant model")


lines(after)


We can add a trend: we model the data as a line, from the preceding values, giving more
weight to the most recent values.


Holt−Winters filtering: trend model
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data(LakeHuron)
x <- LakeHuron
before <- window(x, end=1935)
after <- window(x, start=1935)
a <- .2
b <- .2
g <- 0
model <- HoltWinters(
before,
alpha=a, beta=b, gamma=g)


forecast <- predict(
model,
n.ahead=37,
prediction.interval=T)


plot(model, predicted.values=forecast,
main="Holt-Winters filtering: trend model")


lines(after)


Depending on the choice of beta, the forecasts can be very different...
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beta = 0.02 beta = 0.04


beta = 0.1 beta = 0.5


Holt−Winters filtering: different values for beta


data(LakeHuron)
x <- LakeHuron
op <- par(mfrow=c(2,2),


mar=c(0,0,0,0),
oma=c(1,1,3,1))


before <- window(x, end=1935)
after <- window(x, start=1935)
a <- .2
b <- .5
g <- 0
for (b in c(.02, .04, .1, .5)) {
model <- HoltWinters(
before,
alpha=a, beta=b, gamma=g)


forecast <- predict(
model,
n.ahead=37,
prediction.interval=T)


plot(model,
predicted.values=forecast,
axes=F, xlab=’’, ylab=’’, main=’’)


box()
text( (4*par(’usr’)[1]+par(’usr’)[2])/5,


(par(’usr’)[3]+5*par(’usr’)[4])/6,
paste("beta =",b),
cex=2, col=’blue’ )


lines(after)
}
par(op)
mtext("Holt-Winters filtering: different values for beta",


line=-1.5, font=2, cex=1.2)


You can also add a seosonal component (and additive or a multiplicative one).
TODO: Example


TODO: A multiplicative example


15.2.15 Structural models


Before presenting general models whose interpretation may not be that straightforward
(ARIMA, SARIMA), let us stop a moment to consider structural models, that are special
cases of AR, MA, ARMA, ARIMA, SARIMA.
A random walk, with noise (a special case of ARIMA(0,1,1)):
X(t) = mu(t) + noise1
mu(t+1) = mu(t) + noise2


Noisy random walk
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n <- 200
plot(ts(cumsum(rnorm(n)) + rnorm(n)),


main="Noisy random walk",
ylab="")
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A random walk is simply “integrated noise” (as this is a discrete integration, we use the
“cumsum” function). One can add some noise to a random walk: this is called a local level
model.
We can also change the variance of those noises.
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Noisy random walk


op <- par(mfrow=c(2,1),
mar=c(3,4,0,2)+.1,
oma=c(0,0,3,0))


plot(ts(cumsum(rnorm(n, sd=1))+rnorm(n,sd=.1)),
ylab="")


plot(ts(cumsum(rnorm(n, sd=.1))+rnorm(n,sd=1)),
ylab="")


par(op)
mtext("Noisy random walk", line=2, font=2, cex=1.2)


A noisy random walk, integrated, with added noise (ARIMA(0,2,2), aka local trend model):
X(t) = mu(t) + noise1
mu(t+1) = mu(t) + nu(t) + noise2 (level)
nu(t+1) = nu(t) + noise3 (slope)


Local trend model
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n <- 200
plot(ts( cumsum( cumsum(rnorm(n))+rnorm(n) ) +


rnorm(n) ),
main = "Local trend model",
ylab="")


Here again, we can play and change the noise variances.
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Local level models


n <- 200
op <- par(mfrow=c(3,1),


mar=c(3,4,2,2)+.1,
oma=c(0,0,2,0))


plot(ts( cumsum( cumsum(rnorm(n,sd=1))+rnorm(n,sd=1) )
+ rnorm(n,sd=.1) ),
ylab="")


plot(ts( cumsum( cumsum(rnorm(n,sd=1))+rnorm(n,sd=.1) )
+ rnorm(n,sd=1) ),
ylab="")


plot(ts( cumsum( cumsum(rnorm(n,sd=.1))+rnorm(n,sd=1) )
+ rnorm(n,sd=1) ),
ylab="")


par(op)
mtext("Local level models", line=2, font=2, cex=1.2)


A noisy random walk, integrated, with added noise, to which we add a variable seasonal
component.
X(t) = mu(t) + gamma(t) + noise1
mu(t+1) = mu(t) + nu(t) + noise2 (level)
nu(t+1) = nu(t) + noise2 (slope)
gamma(t+1) = -(gamma(t) + gamma(t-1) + gamma(t-2)) + noise4 (seasonal component)
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Structural models


structural.model <- function (
n=200,
sd1=1, sd2=1, sd3=1, sd4=1, sd5=200


) {
sd1 <- 1
sd2 <- 2
sd3 <- 3
sd4 <- 4
mu <- rep(rnorm(1),n)
nu <- rep(rnorm(1),n)
g <- rep(rnorm(1,sd=sd5),n)
x <- mu + g + rnorm(1,sd=sd1)
for (i in 2:n) {
if (i>3) {
g[i] <- -(g[i-1]+g[i-2]+g[i-3]) + rnorm(1,sd=sd4)


} else {
g[i] <- rnorm(1,sd=sd5)


}


nu[i] <- nu[i-1] + rnorm(1,sd=sd3)
mu[i] <- mu[i-1] + nu[i-1] + rnorm(1,sd=sd2)
x[i] <- mu[i] + g[i] + rnorm(1,sd=sd1)


}
ts(x)


}
n <- 200
op <- par(mfrow=c(3,1),


mar=c(2,2,2,2)+.1,
oma=c(0,0,2,0))


plot(structural.model(n))
plot(structural.model(n))
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plot(structural.model(n))
par(op)
mtext("Structural models", line=2.5, font=2, cex=1.2)


Here again, we can change the noise variance. If the seasonal component is not noisy, it is
constant (but arbitrary).
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n <- 200
op <- par(mfrow=c(3,1),


mar=c(2,2,2,2)+.1,
oma=c(0,0,2,0))


plot(structural.model(n,sd4=0))
plot(structural.model(n,sd4=0))
plot(structural.model(n,sd4=0))
par(op)
mtext("Structural models", line=2.5, font=2, cex=1.2)


You can model a time series along those models with the “StructTS” function.
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data(AirPassengers)
plot(AirPassengers)
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AirPassengers
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r <- StructTS(x)
plot(x, main="AirPassengers", ylab="")
f <- apply(fitted(r), 1, sum)
f <- ts(f, frequency=frequency(x), start=start(x))
lines(f, col=’red’, lty=3, lwd=3)


Here, the slope seems constant.
> r
Call:
StructTS(x = x)
Variances:


level slope seas epsilon
0.0007718 0.0000000 0.0013969 0.0000000


> summary(r$fitted[,"slope"])
Min. 1st Qu. Median Mean 3rd Qu. Max.


0.000000 0.009101 0.010210 0.009420 0.010560 0.011040


0 20 40 60 80 100 120 140
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0
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5
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5


Structural model decomposition of a time series
matplot(
(StructTS(x-min(x)))$fitted,
type = ’l’,
ylab = "",
main = "Structural model decomposition of a time series"


)


You can also try to forecast future values (but it might not be that reliable).
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Forecasting with a structural model (StructTS)
l <- 1956
x <- log(AirPassengers)
x1 <- window(x, end=l)
x2 <- window(x, start=l)
r <- StructTS(x1)
plot(x)
f <- apply(fitted(r), 1, sum)
f <- ts(f, frequency=frequency(x), start=start(x))
lines(f, col=’red’)
p <- predict(r, n.ahead=100)
lines(p$pred, col=’red’)
lines(p$pred + qnorm(.025) * p$se,


col=’red’, lty=2)
lines(p$pred + qnorm(.975) * p$se,


col=’red’, lty=2)
title(main="Forecasting with a structural model (StructTS)")


15.2.16 Examples


TODO: put this at the end of the introduction?
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# A function to look at a time series
eda.ts <- function (x, bands=FALSE) {
op <- par(no.readonly = TRUE)
par(mar=c(0,0,0,0), oma=c(1,4,2,1))
# Compute the Ljung-Box p-values
# (we only display them if needed, i.e.,
# if we have any reason of
# thinking it is white noise).
p.min <- .05
k <- 15
p <- rep(NA, k)
for (i in 1:k) {
p[i] <- Box.test(
x, i, type = "Ljung-Box"


)$p.value
}
if( max(p)>p.min ) {
par(mfrow=c(5,1))


} else {
par(mfrow=c(4,1))


}
if(!is.ts(x))
x <- ts(x)


plot(x, axes=FALSE);
axis(2); axis(3); box(lwd=2)
if(bands) {
a <- time(x)
i1 <- floor(min(a))
i2 <- ceiling(max(a))
y1 <- par(’usr’)[3]
y2 <- par(’usr’)[4]
if( par("ylog") ){
y1 <- 10^y1
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y2 <- 10^y2
}
for (i in seq(from=i1, to=i2-1, by=2)) {
polygon( c(i,i+1,i+1,i), c(y1,y1,y2,y2),


col=’grey’, border=NA )
}
lines(x)


}
acf(x, axes=FALSE)
axis(2, las=2)
box(lwd=2)
mtext("ACF", side=2, line=2.5)
pacf(x, axes=FALSE)
axis(2, las=2)
box(lwd=2)
mtext("ACF", side=2, line=2.5)
spectrum(x, col=par(’fg’), log="dB",


main="", axes=FALSE )
axis(2, las=2)
box(lwd=2)
mtext("Spectrum", side=2, line=2.5)
abline(v=1, lty=2, lwd=2)
abline(v=2:10, lty=3)
abline(v=1/2:5, lty=3)
if( max(p)>p.min ) {
main <-
plot(p, type=’h’, ylim=c(0,1),


lwd=3, main="", axes=F)
axis(2, las=2)
box(lwd=2)
mtext("Ljung-Box p-value", side=2, line=2.5)
abline(h=c(0,.05),lty=3)


}
par(op)


}


data(co2)
eda.ts(co2, bands=T)


15.2.17 Transformations


TODO: Put this section somewhere above


As for the regression, we first transform the data so that ot looks “nicer” (as usual, plot the
histogram, density estimation, qqplot, etc., try a Box-Cox transformation). For instance, if
you remark that the larger the value, the larger the variations, and if it is reasonable to think
that the model could be “something deterministic plus noise”, you can take the logarithm.
More generally, the aim of time series analysis is actually to transform the data so that it
looks gaussian; the inverse of that transformation is then a model describing how the time
series may have been produced from white noise.
Examples
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data(AirPassengers)
x <- AirPassengers
plot(x)
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plot(x)
abline(lm(x~time(x)), col=’red’)


The residuals or the first derivative suggest that the amplitude of the variations increase.
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plot(lm(x~time(x))$res)
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Let us try with the logarithm.
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5 x <- log(x)


plot(x)
abline(lm(x~time(x)),col=’red’)
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plot(lm(x~time(x))$res)
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plot(diff(x))


We could also have a look at the next derivatives.


Time


di
ff(


x,
 1


, 2
)


1950 1952 1954 1956 1958 1960


−
0.


2
0.


1


Time


di
ff(


x,
 1


, 3
)


1950 1952 1954 1956 1958 1960


−
0.


6
0.


0
0.


4


Time


di
ff(


x,
 1


, 4
)


1950 1952 1954 1956 1958 1960


−
1.


0
0.


0


op <- par(mfrow=c(3,1))
plot(diff(x,1,2))
plot(diff(x,1,3))
plot(diff(x,1,4))
par(op)


There seems to be a 12-month seasonal component.
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op <- par(mfrow=c(3,1))
plot(x)
abline(h=0, v=1950:1962, lty=3)
y <- diff(x)
plot(y)
abline(h=0, v=1950:1962, lty=3)
plot(diff(y, 12,1))
abline(h=0, v=1950:1962, lty=3)
par(op)


You can also use a regression to get rid of the up-trend.
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op <- par(mfrow=c(3,1))
plot(x)
abline(lm(x~time(x)), col=’red’, lty=2)
abline(h=0, v=1950:1962, lty=3)
y <- x - predict(lm(x~time(x)))
plot(y)
abline(h=0, v=1950:1962, lty=3)
plot(diff(y, 12,1))
abline(h=0, v=1950:1962, lty=3)
par(op)


Let us look at the residuals and differentiate.
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z <- diff(y,12,1)
op <- par(mfrow=c(3,1))
plot(z)
abline(h=0,lty=3)
plot(diff(z))
abline(h=0,lty=3)
plot(diff(z,1,2))
abline(h=0,lty=3)
par(op)


How many times should we differentiate?
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k <- 3
op <- par(mfrow=c(k,2))
zz <- z
for(i in 1:k) {
acf(zz, main=i-1)
pacf(zz, main=i-1)
zz <- diff(zz)


}
par(op)


TODO: What is this?
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data(sunspots)
op <- par(mfrow=c(5,1))
for (i in 10+1:5) {
plot(diff(sunspots,i))


}
par(op)


15.3 ARIMA


15.3.1 ACF


The main difference between time series and the series of iid random variables we have been
playing with up to now is the lack of independance. Correlation is one means of measuring
that lack of independance (if the variables are gaussian, it is even an accurate means).
The AutoCorrelation Function (ACF) is the correlation between a term and the i-th pre-
ceding term
ACF(i) = Cor( X(t), X(t-i) )


If indeed this does not depend on the position t, the time series is said to be weakly
stationary – it is said to be strongly stationary if for all t, h, the joint distributions of
(X(t),X(t+1),...,X(t+n)) and (X(t+h),X(t+h+1),...,X(t+h+n)) are the same.
In the following plot, most (1/20) of the values of the ACT should be between the dashed
lines – otherwise, there might be something else than gaussian noise in your data.
Strictly speaking, one should distinguish between the theoretical ACF, computed from a
model, without any data and the Sample ACF (SACF), computed from a sample. Here, we
compute the SACF of a realization of a model.
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op <- par(mfrow=c(2,1), mar=c(2,4,3,2)+.1)
x <- ts(rnorm(200))
plot(x, main="gaussian iidrv",


xlab="", ylab="")
acf(x, main="")
par(op)


A real example:
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op <- par(mfrow=c(2,1), mar=c(2,4,3,2)+.1)
data(BJsales)
plot(BJsales, xlab="", ylab="", main="BJsales")
acf(BJsales, main="")
par(op)
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f <- 24
x <- seq(0,10, by=1/f)
y <- sin(2*pi*x)
y <- ts(y, start=0, frequency=f)
op <- par(mfrow=c(4,1), mar=c(2,4,2,2)+.1)
plot(y, xlab="", ylab="")
acf(y, main="")
pacf(y, main="")
spectrum(y, main="", xlab="")
par(op)
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f <- 24
x <- seq(0,10, by=1/f)
y <- x + sin(2*pi*x) + rnorm(10*f)
y <- ts(y, start=0, frequency=f)
op <- par(mfrow=c(4,1), mar=c(2,4,2,2)+.1)
plot(y, xlab="", ylab="")
acf(y, main="")
pacf(y, main="")
spectrum(y, main="", xlab="")
par(op)


15.3.2 Correlogram, variogram


The ACF plot is called an “autocorrelogram”. In the case where the observations are not
evenly spaced, one can plot a variogram instead: (y(t i)-y(t j))ˆ2 as a function of t i-t j.
TODO: plot with irregularly-spaced data
TODO: smooth this plot.


Often, these are (regular) time series with missing values, In this case, for a given value of
k=t i-t j (on the horizontal axis), we have several values. You can replace them by their
mean.
TODO: example
Take a time series, remove some of its values, compare the
correlogram and the variogram.


(There is also an analogue of the variogram for discrete-valued time series: the lorelogram,
based on the LOR – Logarithm of Odds Ratio.)
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15.3.3 MA (Moving Average models)


Here is a simple way of building a time series from a white noise: just perform a Moving
Average (MA) of this noise.
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n <- 200
x <- rnorm(n)
y <- ( x[2:n] + x[2:n-1] ) / 2
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="white noise")
plot(ts(y), xlab="", ylab="MA(1)")
acf(y, main="")
par(op)
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n <- 200
x <- rnorm(n)
y <- ( x[1:(n-3)] + x[2:(n-2)] + x[3:(n-1)] + x[4:n] )/4
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="white noise")
plot(ts(y), xlab="", ylab="MA(3)")
acf(y, main="")
par(op)


You can also compute the moving average with different coefficients.
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n <- 200
x <- rnorm(n)
y <- x[2:n] - x[1:(n-1)]
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="white noise")
plot(ts(y), xlab="", ylab="momentum(1)")
acf(y, main="")
par(op)
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n <- 200
x <- rnorm(n)
y <- x[3:n] - 2 * x[2:(n-1)] + x[1:(n-2)]
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="white noise")
plot(ts(y), xlab="", ylab="Momentum(2)")
acf(y, main="")
par(op)


Instead of computing the moving average by hand, you can use the “filter” function.
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n <- 200
x <- rnorm(n)
y <- filter(x, c(1,-2,1))
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="White noise")
plot(ts(y), xlab="", ylab="Momentum(2)")
acf(y, na.action=na.pass, main="")
par(op)


TODO: the "side=1" argument.


15.3.4 AR (Auto-Regressive models)


Another means of building a time series is to compute each term by adding noise to the
preceding term: this is called a random walk.
For instance,
n <- 200
x <- rep(0,n)
for (i in 2:n) {
x[i] <- x[i-1] + rnorm(1)


}


This can be written, more simply, with the “cumsum” function.
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n <- 200
x <- rnorm(n)
y <- cumsum(x)
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="")
plot(ts(y), xlab="", ylab="AR(1)")
acf(y, main="")
par(op)


More generally, one can consider
X(n+1) = a X(n) + noise.
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This is called an auto-regressive model, or AR(1), because one can estimate the coefficients
by performing a regression of x against lag(x,1).
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n <- 200
a <- .7
x <- rep(0,n)
for (i in 2:n) {
x[i] <- a*x[i-1] + rnorm(1)


}
y <- x[-1]
x <- x[-n]
r <- lm( y ~ x -1)
plot(y~x)
abline(r, col=’red’)
abline(0, .7, lty=2)


More generally, an AR(q) process is a process in which each term is a linear combination of
the q preceding terms and a white noise (with fixed coefficients).
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n <- 200
x <- rep(0,n)
for (i in 4:n) {
x[i] <- .3*x[i-1] -.7*x[i-2] + .5*x[i-3] + rnorm(1)


}
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="AR(3)")
acf(x, main="", xlab="")
pacf(x, main="", xlab="")
par(op)


You can also simulate those models with the “arima.sim” function.
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n <- 200
x <- arima.sim(list(ar=c(.3,-.7,.5)), n)
op <- par(mfrow=c(3,1), mar=c(2,4,2,2)+.1)
plot(ts(x), xlab="", ylab="AR(3)")
acf(x, xlab="", main="")
pacf(x, xlab="", main="")
par(op)


15.3.5 PACF


The partial AutoCorrelation Function (PACF) provides an estimation of the coefficients of
an AR(infinity) model: we have already seen it on the previous examples. It can be easily
computed from the autocorrelation function with the “Yule-Walker” equations.


15.3.6 Yule-Walker Equations


To compute the auto-correlation function of an AR(p) process whose coefficients are known,
(1 - a1 B - a2 B^2 - ... - ap B^p) Y = Z


we just have to compute the first autocorrelations r1, r2, ..., rp, and then use the Yule-Walker
equations:
r(j) = a1 r(j-1) + a2 r(j-2) + ... + ap r(j-p).


You can also use them in the other direction to compute the coefficients of an AR process
from its autocorrelations.


15.3.7 Stationarity


A time series is said to be weakly stationary if the expectation of X(t) does not depend on
t and if the covariance of X(t) and X(s) only depends on abs(t-s).
A time series is said to be stationary if all the X(t) have the same distribution and all the
joint distribution of (X(t),X(s)) (for a given value of abs(s-t)) are the same. Thus, “weakly
stationary” means “stationary up to the second order.
For instance, if your time series has a trend, i.e., if the expectation of X(t) is not constant,
the series is not stationary.
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n <- 200
x <- seq(0,2,length=n)
trend <- ts(sin(x))
plot(trend,


ylim=c(-.5,1.5),
lty=2, lwd=3, col=’red’,
ylab=’’)


r <- arima.sim(
list(ar = c(0.5,-.3), ma = c(.7,.1)),
n,
sd=.1


)
lines(trend+r)


Other example: a random walk is not stationary, because the variance of X(t) increases with
t – but the expectation of X(t) remains zero.
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n <- 200
k <- 10
x <- 1:n
r <- matrix(nr=n,nc=k)
for (i in 1:k) {
r[,i] <- cumsum(rnorm(n))


}
matplot(x, r,


type = ’l’,
lty = 1,
col = par(’fg’),
main = "A random walk is not stationnary")


abline(h=0,lty=3)


15.3.8 Ergodicity


Ergodicity and stationarity are two close but different notions.
Given a stochastic process X(n), (n integer), to compute the mean of X(1), we can use one
of the following methods: either take several realizations of this process, each providing a
value for X(1), and average those values; or take a single realization of this process and
average X(1), X(2), X(3), etc.. The result we want is the first, but if we are lucky (if the
process is ergodic), both will coincide.
Intuitively, a process is ergodic if, to get information that would require several realizations
of the process, you can instead consider a single longer realization.
The practical interest of ergodic processes is that usually, when we study time series, we have
a single realization of this time series. With an ergodic hypothesis, we can say something
about it – without it, we are helpless.
TODO: understand and explain the differences.
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For instance, a stationnary process need not be ergodic.


15.3.9 AR and stationarity


In an autoregressive (AR) process, it is reasonable to ask that past observations have less
influence than more recent ones. That is why we ask, in the AR(1) model,
Y(t+1) = a * Y(t) + Z(t) (where Z is a white noise)


that abs(a)<1. This can also be written:
Y(t+1) - a Y(t) = Z(t)


or
phi(B) Y = Z (where phi(u) = 1 - a u


and B is the Backwards, operator,
aka shift, delay or lag operator)


and we ask that all the roots of phi have a modulus greater than 1.
More generally, an AR process
phi(B) Y = Z
where phi(u) = 1 - a 1 u - a 2 u^2 - ... - a p u^p


is stationary if the modulus of all the roots of phi are greater that 1.
You can check that these stationary AR process are MA(infinity) processes (this is another
meaning of the Yule–Walker equations).


15.3.10 MA and invertibility


TODO: understand and correct this.


Symetrically, for a Moving Average (MA) process, defined by
Y = psi(B) Z
where psi(u) = 1 + b 1 u + b 2 u^3 + ... + b q u^q


We shall also ask that modulus of the roots of psi be greater than 1. The process is then said
to be invertible. Without this hypothesis, the autocorrelation function does not uniquely
define the coefficients of the Moving Average.
For instance, for an MA(1) process,
Y(t+1) = Z(t+1) + a Z(t),


you can replace a by 1/a without changing the autocorrelation function.
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n <- 200
ma <- 2
mai <- 1/ma
op <- par(mfrow=c(4,1), mar=c(2,4,1,2)+.1)
x <- arima.sim(list(ma=ma),n)
plot(x, xlab="", ylab="")
acf(x, xlab="", main="")
lines(0:n,


ARMAacf(ma=ma, lag.max=n),
lty=2, lwd=3, col=’red’)


x <- arima.sim(list(ma=mai),n)
plot(x, xlab="", ylab="")
acf(x, main="", xlab="")
lines(0:n,


ARMAacf(ma=mai, lag.max=n),
lty=2, lwd=3, col=’red’)


par(op)


TODO: an example with a higher degree polynomial (I naively thought I would just have
to invert the roots of the polynomial, but apparently it is more complicated...)
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sym.poly <- function (z,k) {
# Sum of the products of k
# distinct elements of the vector z
if (k==0) {
r <- 1


} else if (k==1) {
r <- sum(z)


} else {
r <- 0
for (i in 1:length(z)) {
r <- r + z[i]*sym.poly(z[-i],k-1)


}
r <- r/k # Each term appeared k times


}
r


}
sym.poly( c(1,2,3), 1 ) # 6
sym.poly( c(1,2,3), 2 ) # 11


sym.poly( c(1,2,3), 3 ) # 6


roots.to.poly <- function (z) {
n <- length(z)
p <- rep(1,n)
for (k in 1:n) {
p[n-k+1] <- (-1)^k * sym.poly(z,k)


}
p <- c(p,1)
p


}
roots.to.poly(c(1,2)) # 2 -3 1
round(
Re(polyroot( roots.to.poly(c(1,2,3)) )),
digits=1


)
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# After this interlude, we can finally
# construct an MA process and one of
# its inverses
n <- 200
k <- 3
ma <- runif(k,-1,1)
# The roots
z <- polyroot(c(1,-ma))
# The inverse of the roots
zi <- 1/z
# The polynomial
p <- roots.to.poly(zi)
# The result should be real, but because
# of rounding errors, it is not.
p <- Re(p)
# We want the constant term to be 1.
p <- p/p[1]
mai <- -p[-1]


op <- par(mfrow=c(4,1), mar=c(2,4,1,2)+.1)
x <- arima.sim(list(ma=ma),n)
plot(x, xlab="")
acf(x, main="", xlab="")
lines(0:n, ARMAacf(ma=ma, lag.max=n),


lty=2, lwd=3, col=’red’)
x <- arima.sim(list(ma=mai),n)
plot(x, xlab="")
acf(x, main="", xlab="")
lines(0:n, ARMAacf(ma=mai, lag.max=n),


lty=2, lwd=3, col=’red’)
par(op)


The MA(p) processes have another interesting feature: they are AR(infinity) processes.
TODO: on an example, plot the roots of those polynomials.


15.3.11 Unit root tests


TODO: To check if the series we are studying has unit roots.
library(tseries)
?adf.test
?pp.tests


15.3.12 ARMA


Of course, one can mix up MA and AR models, to get the so-called ARMA models. In the
following formulas, z is a white noise and x the series we are interested in.
MA(p): x(i) = a1 z(i-1) + a2 z(i-2) + ... + ap z(i-p)
AR(q): x(i) - b1 x(i-1) - b2 x(i-2) - ... - bq x(i-q) = z(i)
ARMA(p,q): x(i) - b1 x(i-1) - ... - bq x(i-q) = a1 z(i-1) + ... + ap z(i-p)


Remark: AR(q) processes are also MA(infinity) processes, we could replace ARMA processes
by MA(infinity) processes, but we prefer having fewer coefficients to estimate.
Remark: Wold’s theorem states that any stationary process can be written as the sum of
an MA(infinity) process and a deterministic one.
TODO: I have not defined what a deterministic process was.


Remark: if we let B be the shift operator, so that the derivation operator be 1-B, an ARMA
process can be written as
phi(B) X(t) = theta(B) Z(t)
where theta(B) = 1 + a1 B + a2 B^2 + ... + ap B^p
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phi(B) = 1 - b1 B - b2 B^2 - ... - bq B^q
Z is a white noise


ARMA processes give a good approximation to most stationary processes. As a result, you
can use the estimated ARMA coefficients as a statistical summary of a stationary process,
exactly as the mean and the quantiles for univariate statistical series. They might be useful to
forecast future values, but they provide little information as the the underlying mechanisms
that produced the time series.


15.3.13 Overfitting an ARMA process


An ARMA(p,q) process
phi(B) Y = theta(B) Z


in which phi and theta have a root in common can be written, more simply, as an ARMA(p-
1,q-1).


15.3.14 How to get to a stationary process


To model a time series as an ARMA model, it has to be stationnary. To get a stationary
series (in short, to get rid of the trend), you can try to differentiate it.
The fact that the series is not stationary is usually obvious on the plot. You can also see
it on the ACF: if the series is stationary, the ACF should rapidly (usually exponentially)
decay to zero.


There is no trend
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data(Nile)
op <- par(mfrow=c(2,1), mar=c(2,4,3,2)+.1)
plot(Nile, main="There is no trend", xlab="")
acf(Nile, main="", xlab="")
par(op)
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The trend disappears if we differentiate
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data(BJsales)
op <- par(mfrow=c(3,1), mar=c(2,4,3,2)+.1)
plot(BJsales, xlab="",


main="The trend disappears if we differentiate")
acf(BJsales, xlab="", main="")
acf(diff(BJsales), xlab="", main="",


ylab="ACF(diff(BJsales)")
par(op)


It suffices to differentiate once
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n <- 2000
x <- arima.sim(
model = list(
ar = c(.3,.6),
ma = c(.8,-.5,.2),
order = c(2,1,3)),


n
)
x <- ts(x)
op <- par(mfrow=c(3,1), mar=c(2,4,3,2)+.1)
plot(x, main="It suffices to differentiate once",


xlab="", ylab="")
acf(x, xlab="", main="")
acf(diff(x), xlab="", main="",


ylab="ACF(diff(x))")
par(op)
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One has to differentiate twice
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n <- 10000
x <- arima.sim(
model = list(
ar = c(.3,.6),
ma = c(.8,-.5,.2),
order = c(2,2,3)


),
n


)
x <- ts(x)
op <- par(mfrow=c(4,1), mar=c(2,4,3,2)+.1)
plot(x, main="One has to differentiate twice",


xlab="", ylab="")
acf(x, main="", xlab="")
acf(diff(x), main="", xlab="",


ylab="ACF(diff(x))")
acf(diff(x,differences=2), main="", xlab="",


ylab="ACF(diff(diff(x)))")
par(op)


To check more precisely if the ACF decreases exponentially, one could perform a regression
(but it might be overkill).
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Exponential decay of the ACF


acf.exp <- function (x, lag.max=NULL, lag.max.reg=lag.max, ...) {
a <- acf(x, lag.max=lag.max.reg, plot=F)
b <- acf(x, lag.max=lag.max, ...)
r <- lm( log(a$acf) ~ a$lag -1)
lines( exp( b$lag * r$coef[1] ) ~ b$lag, lty=2 )


}
data(BJsales)
acf.exp(BJsales,


main="Exponential decay of the ACF")
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acf.exp(BJsales,
lag.max=40,
main="Exponential decay of the ACF")
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data(Nile)
acf.exp(Nile, lag.max.reg=10, main="Nile")


Differentiating can also help you get rid of the seasonal component, if you differentiate with
a lag: e.g., take the difference between the value today and the same value one year ago.
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x <- diff(co2, lag=12)
op <- par(mfrow=c(4,1), mar=c(2,4,3,2)+.1)
plot(x, ylab="", xlab="")
acf(x, xlab="", main="")
pacf(x, xlab="", main="")
spectrum(x, xlab="", main="",


col=par(’fg’))
par(op)
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y <- diff(x)
op <- par(mfrow=c(4,1), mar=c(2,4,3,2)+.1)
plot(y, xlab="", ylab="")
acf(y, xlab="", main="")
pacf(y, xlab="", main="")
spectrum(y, col=par(’fg’),


xlab="", main="")
par(op)


15.3.15 ARIMA


ARIMA processes are just integrated ARMA processes. In other words, a process is ARIMA
of order d if its d-th derivative is ARMA. The model can be written
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phi(B) (1-B)^d X(t) = theta(B) Z(t)


where B is the shift operator, Z a white noise, phi the polynomial defining the AR part,
theta the polynomial defining the MA part of the process.
ARIMA processes are not stationary processes. We have already seen it with the random
walk, which is an integrated ARMA(0,0) process, i.e., an ARIMA process of order 1: the
variance of X(t) increases with t. This is the very reason why we differentiate: to get a
stationary process.
TODO: Give an example of ARIMA(0,1,0) process, show that
it is not stationary.
Recall the tests to check if it is stationary.
Quick and dirty stationarity test: cut the data into two
parts, compute Cor(X(t),X(t-1)) on each, compare.


To infer the order of an ARIMA process, you can differentiate it until its ACF rapidly
decreases.
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You will have to defferentiate once
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Second derivative


n <- 200
x <- arima.sim(
list(
order=c(2,1,2),
ar=c(.5,-.8),
ma=c(.9,.6)


),
n


)
op <- par(mfrow=c(3,1), mar=c(2,4,4,2)+.1)
acf(x, main="You will have to defferentiate once")
acf(diff(x), main="First derivative")
acf(diff(x, differences=2), main="Second derivative")
par(op)
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You will have to differentiate twice
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n <- 200
x <- arima.sim(
list(
order=c(2,2,2),
ar=c(.5,-.8),
ma=c(.9,.6)


),
n


)
op <- par(mfrow=c(3,1), mar=c(2,4,4,2)+.1)
acf(x, main="You will have to differentiate twice")
acf(diff(x), main="First derivative")
acf(diff(x, differences=2), main="Second derivative")
par(op)


Here is a concrete example.
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data(sunspot)
op <- par(mfrow=c(4,1), mar=c(2,4,3,2)+.1)
plot(sunspot.month, xlab="", ylab="sunspot")
acf(sunspot.month, xlab="", main="")
plot(diff(sunspot.month),


xlab="", ylab="diff(sunspot)")
acf(diff(sunspot.month), xlab="", main="")
par(op)


Same here (but actually, the differentiation discards the affine trend).


JJ


1960 1965 1970 1975 1980


0
1


2


0 1 2 3 4


−
0.


2
0.


4
0.


8


Lag


A
C


F


Time


di
ff(


JJ
)


1960 1965 1970 1975 1980


−
0.


6
0.


0
0.


4


0 1 2 3 4


−
0.


5
0.


5
1.


0


A
C


F


data(JohnsonJohnson)
x <- log(JohnsonJohnson)
op <- par(mfrow=c(4,1), mar=c(2,4,3,2)+.1)
plot(x, xlab="", ylab="JJ")
acf(x, main="")
plot(diff(x), ylab="diff(JJ)")
acf(diff(x), main="")
par(op)


In the following examples, you might want to differentiate twice. But beware, it might not
always be a good idea: if the ACF decreases exponentially, you can stop differentiating.
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data(BJsales)
x <- BJsales
op <- par(mfrow=c(6,1), mar=c(2,4,0,2)+.1)
plot(x)
acf(x)
plot(diff(x))
acf(diff(x))
plot(diff(x, difference=2))
acf(diff(x, difference=2))
par(op)
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data(austres)
x <- austres
op <- par(mfrow=c(6,1), mar=c(2,4,0,2)+.1)
plot(x)
acf(x)
plot(diff(x))
acf(diff(x))
plot(diff(x, difference=2))
acf(diff(x, difference=2))
par(op)
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# In the preceding example, there was a linear trend:
# let ut remove it.
data(austres)
x <- lm(austres ~ time(austres))$res
op <- par(mfrow=c(6,1), mar=c(2,4,0,2)+.1)
plot(x)
acf(x)
plot(diff(x))
acf(diff(x))
plot(diff(x, difference=2))
acf(diff(x, difference=2))
par(op)


15.3.16 SARIMA


These are Seasonnal ARIMA processes (the integration, the MA or the AR parts can be
seasonal). They are often denoted:
(p,d,q) \times (P,D,Q) s


and they are described by the model:
phi(B) Phi(B^s) (1-B)^d (1-B^s)^D X(t) = theta(B) Theta(B^s) Z(t)


where s is the period
theta(B) = 1 + a1 B + a2 B^2 + ... + ap B^p is the MA polynomial
phi(B) = 1 - b1 B - b2 B^2 - ... - bq B^q is the AR polynomial
Theta(B^s) = 1 + A1 B^s + A2 B^2s + ... + AP B^(P*s) is the seasonal


MA polynomial
Phi(B^s) = 1 - B1 B^s - B2 B^2s - ... - BQ B^(Q*s) is the seasonal


AR polynomial
Z is a white noise


There is no function to simulate SARIMA processes – but we can model them.
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my.sarima.sim <- function (
n = 20,
period = 12,
model,
seasonal


) {
x <- arima.sim( model, n*period )
x <- x[1:(n*period)]
for (i in 1:period) {
xx <- arima.sim( seasonal, n )
xx <- xx[1:n]
x[i + period * 0:(n-1)] <-
x[i + period * 0:(n-1)] + xx


}
x <- ts(x, frequency=period)
x


}
op <- par(mfrow=c(3,1))


x <- my.sarima.sim(
20,
12,
list(ar=.6, ma=.3, order=c(1,0,1)),
list(ar=c(.5), ma=c(1,2), order=c(1,0,2))


)
eda.ts(x, bands=T)
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x <- my.sarima.sim(
20,
12,
list(ar=c(.5,-.3), ma=c(-.8,.5,-.3), order=c(2,1,3)),
list(ar=c(.5), ma=c(1,2), order=c(1,0,2))


)
eda.ts(x, bands=T)
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x <- my.sarima.sim(
20,
12,
list(ar=c(.5,-.3), ma=c(-.8,.5,-.3), order=c(2,1,3)),
list(ar=c(.5), ma=c(1,2), order=c(1,1,2))


)
eda.ts(x, bands=T)


15.3.17 The Box and Jenkins method


TODO


The co2 example (somewhere above) could well be modeled as an SARIMA model.
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x <- co2
eda.ts(x)


First, we see that there is a trend: we differentiate once to get rid of it.
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There is also a periodic component: we differentiate, with a 12-month lag, to get rid of it.
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But wait! We have differentiated twice. Couldn’t we get rid of both the periodic component
and the trend by differentiating just once, with the 12-month lag?







CHAPTER 15. TIME SERIES 1042


Time


x


0.
0


1.
0


2.
0


3.
0


1960 1970 1980 1990


Lag


A
C


F


Series  x


0.0


0.2


0.4


0.6


0.8


1.0


A
C


F


Lag


P
ar


tia
l A


C
F


Series  x


−0.2


0.0


0.2


0.4


0.6


0.8


A
C


F
sp


ec
tr


um
 (


dB
)


−50


−40


−30


−20


−10


0


S
pe


ct
ru


m


eda.ts(diff(x,lag=12))


Well, perhaps. We hesitate between
SARIMA(?,1,?)(?,1,?)


and
SARIMA(?,0,?)(?,1,?).


If we look at the ACF and the PACF:
SARIMA(1,1,1)(2,1,1)
SARIMA(1,1,2)(2,1,1)
SARIMA(2,0,0)(1,1,0)
SARIMA(2,0,0)(1,1,1)


Let us compute the coefficients of those models:
r1 <- arima(co2,


order=c(1,1,1),
list(order=c(2,1,1), period=12)


)
r2 <- arima(co2,


order=c(1,1,2),
list(order=c(2,1,1), period=12)
)


r3 <- arima(co2,
order=c(2,0,0),
list(order=c(1,1,0), period=12)
)


r4 <- arima(co2,
order=c(2,0,0),
list(order=c(1,1,1), period=12)
)


This yields:
> r1
Call:
arima(x = co2, order = c(1, 1, 1), seasonal = list(order = c(2, 1, 1), period


= 12))
Coefficients:


ar1 ma1 sar1 sar2 sma1
0.2595 -0.5902 0.0113 -0.0869 -0.8369


s.e. 0.1390 0.1186 0.0558 0.0539 0.0332
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sigma^2 estimated as 0.08163: log likelihood = -83.6, aic = 179.2


> r2
Call:
arima(x = co2, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 1), period


= 12))
Coefficients:


ar1 ma1 ma2 sar1 sar2 sma1
0.5935 -0.929 0.1412 0.0141 -0.0870 -0.8398


s.e. 0.2325 0.237 0.1084 0.0557 0.0538 0.0328
sigma^2 estimated as 0.08132: log likelihood = -82.85, aic = 179.7


> r3


Call:
arima(x = co2, order = c(2, 0, 0), seasonal = list(order = c(1, 1, 0), period


= 12))


Coefficients:
ar1 ar2 sar1


0.6801 0.3087 -0.4469
s.e. 0.0446 0.0446 0.0432


sigma^2 estimated as 0.1120: log likelihood = -150.65, aic = 309.3


For r4, it was even:
Error in arima(co2, order = c(2, 0, 1), list(order = c(1, 1, 1), period = 12))


:
non-stationary AR part from CSS


The AIC of a3 is appallingly high (we want as low a value as possible): we really need to
differentiate twice.
Let us look at the p-values:
> round(pnorm(-abs(r1$coef), sd=sqrt(diag(r1$var.coef))),5)


ar1 ma1 sar1 sar2 sma1
0.03094 0.00000 0.42007 0.05341 0.00000
> round(pnorm(-abs(r1$coef), sd=sqrt(diag(r1$var.coef))),5)


ar1 ma1 ma2 sar1 sar2 sma1
0.00535 0.00004 0.09635 0.39989 0.05275 0.00000


This suggests an SARIMA(1,1,1)(0,1,1) model.
r3 <- arima( co2,


order=c(1,1,1),
list(order=c(0,1,1), period=12)


)


This yields:
> r3
Call:
arima(x = co2, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 1), period


= 12))
Coefficients:


ar1 ma1 sma1
0.2399 -0.5710 -0.8516


s.e. 0.1430 0.1237 0.0256
sigma^2 estimated as 0.0822: log likelihood = -85.03, aic = 178.07


> round(pnorm(-abs(r3$coef), sd=sqrt(diag(r3$var.coef))),5)
ar1 ma1 sma1


0.04676 0.00000 0.00000
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We now look at the residuals:
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r3 <- arima(
co2,
order = c(1, 1, 1),
seasonal = list(
order = c(0, 1, 1),
period = 12


)
)
eda.ts(r3$res)


Good, we can now try to use this mode to predict future values. To get an idea of the quality
of those forecasts, we can use the first part of the data to estimate the model coefficients
and compute the predictions and the second part to assess the quality of the predictions –
but beware, this is biased, because we chose the model by using all the data, including the
data from the test sample.
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x1 <- window(co2, end = 1990)
r <- arima(
x1,
order = c(1, 1, 1),
seasonal = list(
order = c(0, 1, 1),
period = 12


)
)
plot(co2)
p <- predict(r, n.ahead=100)
lines(p$pred, col=’red’)
lines(p$pred+qnorm(.025)*p$se, col=’red’, lty=3)
lines(p$pred+qnorm(.975)*p$se, col=’red’, lty=3)
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# On the contrary, I do not know what to do with
# this plots (it looks like integrated noise).
eda.ts(co2-p$pred)


It is not that bad. Here are our forecasts.
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r <- arima(
co2,
order = c(1, 1, 1),
seasonal = list(
order = c(0, 1, 1),
period = 12


)
)
p <- predict(r, n.ahead=150)
plot(co2,


xlim=c(1959,2010),
ylim=range(c(co2,p$pred)))


lines(p$pred, col=’red’)
lines(p$pred+qnorm(.025)*p$se, col=’red’, lty=3)
lines(p$pred+qnorm(.975)*p$se, col=’red’, lty=3)


What we have done is called the Box and Jenkins method. The general case can be a little
more complicated: if the residuals do not look like white noise, we have to get back to find
another model.
0. Differentiate to get a stationary process.


If there is a trend, the process is not stationary.
If the ACF decreases slowly, try to differentiate once more.


1. Identify the model:
ARMA(1,0): ACF: exponential decrease; PACF: one peak
ARMA(2,0): ACF: exponential decrease or waves; PACF: two peaks
ARMA(0,1): ACF: one peak; PACF: exponential decrease
ARMA(0,2): ACF: two peaks; PACF: exponential decrease or waves
ARMA(1,1): ACF&PACF: exponential decrease


2. Compute the coefficients
3. Diagnostics (go to 1 if they do not look like white noise)


Computhe the p-values, remove unneeded coefficients (check on the
residuals that they are indeed unneeded).


4. Forecasts
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15.3.18 Sample ARMA processes and their ACF and PACF


Here are a few examples of ARMA processes (in red: the theoretic ACF and PACF).
The ARMA(1,0) is characterized by the exponential decrease of the ACF and the single
peak in the PACF.
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op <- par(mfrow=c(4,2), mar=c(2,4,4,2))
n <- 200
for (i in 1:4) {
x <- NULL
while(is.null(x)) {
model <- list(ar=rnorm(1))
try( x <- arima.sim(model, n) )


}
acf(x,


main = paste(
"ARMA(1,0)",
"AR:",
round(model$ar, digits = 1)


))
points(0:50,


ARMAacf(ar=model$ar, lag.max=50),
col=’red’)


pacf(x, main="")


points(1:50,
ARMAacf(ar=model$ar, lag.max=50, pacf=T),
col=’red’)


}
par(op)


You can recognize an ARMA(2,0) from the two peaks in the PACF and the exponential
decrease (or the waves) in the ACF.
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op <- par(mfrow=c(4,2), mar=c(2,4,4,2))
n <- 200
for (i in 1:4) {
x <- NULL
while(is.null(x)) {
model <- list(ar=rnorm(2))
try( x <- arima.sim(model, n) )


}
acf(x,


main=paste("ARMA(2,0)","AR:",
round(model$ar[1],digits=1),
round(model$ar[2],digits=1)
))


points(0:50,
ARMAacf(ar=model$ar, lag.max=50),
col=’red’)


pacf(x, main="")
points(1:50,


ARMAacf(ar=model$ar, lag.max=50, pacf=T),
col=’red’)


}
par(op)
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You can recognize an ARMA(0,1) process from its unique peak in the ACF and the expo-
nential decrease of the PACF.
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op <- par(mfrow=c(4,2), mar=c(2,4,4,2))
n <- 200
for (i in 1:4) {
x <- NULL
while(is.null(x)) {
model <- list(ma=rnorm(1))
try( x <- arima.sim(model, n) )


}
acf(x,


main = paste(
"ARMA(0,1)",
"MA:",
round(model$ma, digits=1)


))
points(0:50,


ARMAacf(ma=model$ma, lag.max=50),
col=’red’)


pacf(x, main="")


points(1:50,
ARMAacf(ma=model$ma, lag.max=50, pacf=T),
col=’red’)


}
par(op)


The ARMA(0,2) model has two peaks in the ACF and if PACF exponentially decreases or
exhibits a pattern of waves.


0 5 10 15 20


−
0.


2
0.


4
1.


0


Lag


A
C


F


ARMA(0,2) MA: 0.9 −0.4


●


●


●


● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●


5 10 15 20


−
0.


2
0.


1


Lag


P
ar


tia
l A


C
F ●


●


●


●


●


●


●


●


●


●


●
●


●
●


●
● ● ● ● ● ● ● ● ● ● ●


0 5 10 15 20


0.
0


0.
6


Lag


A
C


F


ARMA(0,2) MA: 0.8 −0.2


●


●


●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●


5 10 15 20


−
0.


3
0.


0
0.


3


Lag


P
ar


tia
l A


C
F


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●


●
●


●


0 5 10 15 20


−
0.


2
0.


4
1.


0


Lag


A
C


F


ARMA(0,2) MA: 0.9 −0.6


●


●


●


● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●


5 10 15 20


−
0.


3
0.


0
0.


2


Lag


P
ar


tia
l A


C
F ●


●


●


●


●


●


●


●
●


●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●


0 5 10 15 20


−
0.


2
0.


4
1.


0


A
C


F


ARMA(0,2) MA: 1.3 −1.4


●


●


●


● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●


5 10 15 20


−
0.


3
0.


0


P
ar


tia
l A


C
F


●


●


●
●


● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●


op <- par(mfrow=c(4,2), mar=c(2,4,4,2))
n <- 200
for (i in 1:4) {
x <- NULL
while(is.null(x)) {
model <- list(ma=rnorm(2))
try( x <- arima.sim(model, n) )


}
acf(x, main=paste("ARMA(0,2)","MA:",


round(model$ma[1],digits=1),
round(model$ma[2],digits=1)
))


points(0:50,
ARMAacf(ma=model$ma, lag.max=50),
col=’red’)


pacf(x, main="")
points(1:50,


ARMAacf(ma=model$ma, lag.max=50, pacf=T),


col=’red’)
}
par(op)


For the ARMA(1,1), both the ACF and the PACF exponentially decrease.
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op <- par(mfrow=c(4,2), mar=c(2,4,4,2))
n <- 200
for (i in 1:4) {
x <- NULL
while(is.null(x)) {
model <- list(ma=rnorm(1),ar=rnorm(1))
try( x <- arima.sim(model, n) )


}
acf(x, main=paste("ARMA(1,1)",


"AR:", round(model$ar,digits=1),
"AR:", round(model$ma,digits=1)
))


points(0:50,
ARMAacf(ar=model$ar, ma=model$ma, lag.max=50),
col=’red’)


pacf(x, main="")
points(1:50,


ARMAacf(ar=model$ar, ma=model$ma, lag.max=50, pacf=T),


col=’red’)
}
par(op)


15.3.19 Brute force


Instead of the stepwise procedure presented, we can proceed in a more violent way, by
looking at the AIC of all thereasonably complex models and retaining those whose AIC is
the lowest. As this amounts to performing innumarable tests, we do not only take the single
model with the lowest AIC, but several – we shall prefer a simple model whose residuals
look like white noise. You can remorselessly discard models whose AIC (or BIC: the AIC
may be meaningful for nested model, but the BIC has a more general validity) is 100 units
more that the lowest one, you should have remorse if you discard those 6 to 20 units from
the lowest, and you should not discard those less than 6 units away.
a <- array(NA, dim=c(2,2,2,2,2,2))
for (p in 0:2) {
for (d in 0:2) {
for (q in 0:2) {
for (P in 0:2) {
for (D in 0:2) {
for (Q in 0:2) {
r <- list(aic=NA)
try(
r <- arima( co2,


order=c(p,d,q),
list(order=c(P,D,Q), period=12)


)
)
a[p,d,q,P,D,Q] <- r$aic
cat(r$aic); cat("\n")


}
}


}
}


}
}


# When I wrote this, I dod not know the "which.min" function.
argmin.vector <- function (v) {
(1:length(v)) [ v == min(v) ]
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}
x <- sample(1:10)
x
argmin.vector(x)
x <- sample(1:5, 20, replace=T)
x
argmin.vector(x)
x <- array(x, dim=c(5,2,2))


index.from.vector <- function (i,d) {
res <- NULL
n <- prod(d)
i <- i-1
for (k in length(d):1) {
n <- n/d[k]
res <- c( i %/% n, res )
i <- i %% n


}
res+1


}
index.from.vector(7, c(2,2,2))
index.from.vector(29, c(5,3,2))


argmin <- function (a) {
a <- as.array(a)
d <- dim(a)
a <- as.vector(a)
res <- matrix(nr=0, nc=length(d))
for (i in (1:length(a))[ a == min(a) ]) {
j <- index.from.vector(i,d)
res <- rbind(res, j)


}
res


}
x <- array( sample(1:10,30, replace=T), dim=c(5,3,2) )
argmin(x)


After a couple of hours (I am starting to worry: the computer produces a strange whistling
sound when I run those computations...), this yields:
1 1 1 2 1 2


This is a rather complicated model. Let us look at models whose AIC is close to this one.
x <- as.vector(a)
d <- dim(a)
o <- order(x)
res <- matrix(nr=0, nc=6+2)
for (i in 1:30) {
p <- index.from.vector(o[i],d)
res <- rbind( res, c(p, sum(p), x[o[i]]))


}
colnames(res) <- c("p","d","q", "P","D","Q", "n", "AIC")
res


This yields:
p d q P D Q n AIC


[1,] 1 1 1 2 1 2 8 172.7083
[2,] 1 1 2 2 1 2 9 173.3215
[3,] 0 1 1 2 1 2 7 173.5009
[4,] 2 1 2 2 1 2 10 173.8748
[5,] 0 1 2 2 1 2 8 174.0323
[6,] 2 1 1 0 1 1 6 177.8278
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[7,] 1 1 1 0 1 1 5 178.0672
[8,] 0 1 1 0 1 1 4 178.1557
[9,] 2 1 1 2 1 1 8 178.9373
[10,] 2 1 2 0 1 1 7 179.0768
[11,] 2 1 0 2 1 2 8 179.0776
[12,] 0 1 2 0 1 1 5 179.0924
[13,] 1 1 1 2 1 1 7 179.2043
[14,] 2 1 1 0 1 2 7 179.3557
[15,] 2 1 1 1 1 1 7 179.4335
[16,] 1 1 2 2 1 1 8 179.6950
[17,] 1 1 1 0 1 2 6 179.6995
[18,] 0 1 1 2 1 1 6 179.7224
[19,] 1 1 1 1 1 1 6 179.7612
[20,] 0 1 1 0 1 2 5 179.8808
[21,] 0 1 1 1 1 1 5 179.9235
[22,] 1 1 2 0 1 1 6 180.1146
[23,] 1 1 0 2 1 2 7 180.1713
[24,] 2 1 2 2 1 1 9 180.2019
[25,] 1 1 2 1 1 1 7 180.2686
[26,] 0 1 2 2 1 1 7 180.4483
[27,] 2 1 2 0 1 2 8 180.4797
[28,] 2 1 2 1 1 1 8 180.5757
[29,] 1 1 1 1 1 2 7 180.7777
[30,] 0 1 2 0 1 2 6 180.8024
[31,] 0 1 2 1 1 1 6 180.8495
[32,] 0 1 1 1 1 2 6 181.1830
[33,] 1 1 2 1 1 2 8 181.3127
[34,] 2 1 2 1 1 2 9 181.6425
[35,] 1 1 2 0 1 2 7 181.7322
[36,] 0 1 2 1 1 2 7 181.9859
[37,] 2 1 0 0 1 1 5 183.4687
[38,] 1 1 0 0 1 1 4 184.1817
[39,] 2 1 0 2 1 1 7 185.1404
[40,] 2 1 0 0 1 2 6 185.1918
[41,] 2 1 0 1 1 1 6 185.2337
[42,] 1 1 0 0 1 2 5 185.7290
[43,] 1 1 0 1 1 1 5 185.7909
[44,] 1 1 0 2 1 1 6 186.0117
[45,] 2 1 0 1 1 2 7 186.5521
[46,] 1 1 0 1 1 2 6 187.1703


If we look at the distribution of the AICs,
plot(sort(as.vector(a))[1:100])


we see that the first bunch of values is under 200: among those, we select the simplest ones:
p d q P D Q n AIC
0 1 1 0 1 1 4 178.1557
1 1 0 0 1 1 4 184.1817
1 1 1 0 1 1 5 178.0672
0 1 2 0 1 1 5 179.0924
0 1 1 0 1 2 5 179.8808
0 1 1 1 1 1 5 179.9235
2 1 0 0 1 1 5 183.4687
1 1 0 0 1 2 5 185.7290
1 1 0 1 1 1 5 185.7909


I would be tempted to choose the first
0 1 1 0 1 1


or the third (the one we had obtained from the Box and Jenkins method).
1 1 1 0 1 1
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Let us perform the computations.
> r <- arima(co2, order=c(0,1,1), list(order=c(0,1,1), period=12 ) )


> r
Call:
arima(x = co2, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period


= T))
Coefficients:


ma1 sma1
0.1436 0.1436


s.e. 0.1068 0.1068
sigma^2 estimated as 0.7821: log likelihood = -604.01, aic = 1214.02


> r$var.coef
ma1 sma1


ma1 0.01140545 -0.01048563
sma1 -0.01048563 0.01140545


> pnorm(-abs(r$coef), sd=sqrt(diag(r$var.coef)))
ma1 sma1


0.08940721 0.08940721


Let us look at the residuals.
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r <- arima(co2, order=c(0,1,1), list(order=c(0,1,1), period=12 ) )
eda.ts(r$res)


That looks fine, we can keep the model (of the residuals had not looked like a white noise,
we would have investigated another model, until the residuals look fine).
As before, we can validate the model and forecast future values.
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x1 <- window(co2,end=1990)
r <- arima(x1, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
plot(co2)
p <- predict(r, n.ahead=100)
lines(p$pred, col=’red’)
lines(p$pred+qnorm(.025)*p$se, col=’red’, lty=3)
lines(p$pred+qnorm(.975)*p$se, col=’red’, lty=3)
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r <- arima(co2, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
p <- predict(r, n.ahead=150)
plot(co2, xlim=c(1959,2010), ylim=range(c(co2,p$pred)))
lines(p$pred, col=’red’)
lines(p$pred+qnorm(.025)*p$se, col=’red’, lty=3)
lines(p$pred+qnorm(.975)*p$se, col=’red’, lty=3)


The forecasts are similar to those of the preceding model,
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r1 <- arima(co2, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
r2 <- arima(co2, order = c(1, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
p1 <- predict(r1, n.ahead=150)
p2 <- predict(r2, n.ahead=150)
plot(co2, xlim=c(1959,2010), ylim=range(c(co2,p$pred)))
lines(p1$pred, col=’red’)
lines(p2$pred, col=’green’, lty=3, lwd=4)


TODO: put all this, including the study of the residuals, in a function.


15.3.20 Long-term memory, fractional integration


TODO


15.4 Validating a model


TODO: put this section somewhere above


TODO: cross-validation. It is a bit limoted because, a priori, we can only do one cross-
validation: we select the model with all the data, we compute the coefficients with the first
half (or 90%) of the data and we check on the second half (or the remaining 10%).
TODO: bootstrap and time series (we can build a new time series by splicing pieces of the
initial one: cut anywhere and splice in any order).
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library(help=boot)


http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf


15.5 Spectral Analysis


15.5.1 Periodogram


Some time series have a seasonal component difficult to spot, especially if you do not know
the period in advance: a periodogram, also known as “sample spectrum” (simply a discrete
Fourrier transform) can help you find the period.
In the following example, you get the period, 1 year, together with its harmonics (1/2 year,
1/3 year, 1/4 year, etc. – recall that the frequency is the inverse of the period); the harmonics
will always be there if the periodic function is not exactly a sine wave.
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Series: x
Raw Periodogram


bandwidth = 0.00722


spectrum(co2)
abline(v=1:10, lty=3)


15.5.2 Harmonics


Here are a few examples of harmonics: when the signal has a given frequency f, its spectral
decomposition also displays significant components at frequencies 2f, 3f, 4f, etc. – unless the
signal is a perfect sine wave.
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Sine wave, period=10
signal.and.spectrum <- function (x, main="") {
op <- par(mfrow=c(2,1),


mar=c(2,4,2,2)+.1,
oma=c(0,0,2,0))


plot(x, type="l", main="", ylab="Signal")
spectrum(x, main="", xlab="")
abline(v=.1*1:10, lty=3)
par(op)
mtext(main, line=1.5, font=2, cex=1.2)
}
N <- 100
x <- 10 * (1:N / N)
signal.and.spectrum(sin(2*pi*x),


"Sine wave, period=10")



http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
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sawtooth, period=10
signal.and.spectrum(x - floor(x),


"sawtooth, period=10")
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triangle, period=10
signal.and.spectrum(abs(x - floor(x)-.5),


"triangle, period=10")
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square, period=10
signal.and.spectrum(x-floor(x)>.5,


"square, period=10")


15.5.3 Periodogram (continued)


Here is a more complicated example in which we do not know the period in advance.


Time


su
ns


po
ts


1750 1800 1850 1900 1950


0
10


0
20


0


data(sunspots)
plot(sunspots)


You could find the period without the periodogram:
a <- locator() # click on the local maxima
b <- a$x - a$x[1]
bb <- outer(b, 9:13, ’/’)
apply(abs(bb - round(bb)), 2, mean)


This yields:
[1] 0.2278710 0.1606527 0.1545937 0.1979566 0.2106840


i.e., the most probable period is 11.
However, it will be easier with a periodogram.
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1e
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Series: x
Raw Periodogram


bandwidth = 0.00120


spectrum(sunspots)


For the moment, we cannot see anything, so we ask R to smooth the periodogram.


0 1 2 3 4 5 6


5
50


50
00


frequency


sp
ec


tr
um


Series: x
Smoothed Periodogram


bandwidth = 0.0122


spectrum(sunspots, spans=10)


Now, we can see a peak close to zero. We can estimate its value with the “locator” function,
as before, then zoom in on the plot.


0.0 0.2 0.4 0.6 0.8 1.0


5
50


50
00


frequency


sp
ec


tr
um


Series: x
Smoothed Periodogram


bandwidth = 0.0122


spectrum(sunspots, spans=10, xlim=c(0,1))
abline(v=1/1:12, lty=3)


0.0 0.2 0.4 0.6 0.8 1.0


5
50


50
00


frequency


sp
ec


tr
um


10: Not quite


bandwidth = 0.0122


spectrum(sunspots, spans=10, xlim=c(0,1),
main="10: Not quite")


abline(v=1:3/10, lty=3)







CHAPTER 15. TIME SERIES 1058
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11: Better


bandwidth = 0.0122


spectrum(sunspots, spans=10, xlim=c(0,1),
main="11: Better")


abline(v=1:3/11, lty=3)


0.0 0.2 0.4 0.6 0.8 1.0


5
50


50
00


frequency


sp
ec


tr
um


12: Not quite


bandwidth = 0.0122


spectrum(sunspots, spans=10, xlim=c(0,1),
main="12: Not quite")


abline(v=1:3/12, lty=3)


To decompose this series, you can try to transform it (it is sometimes useful, sometime not
– here, it might not be needed).


0.0 0.2 0.4 0.6 0.8 1.0


0.
2


5.
0


20
0.


0


frequency


sp
ec


tr
um


Series: x
Smoothed Periodogram


bandwidth = 0.00102


library(car)
box.cox.powers(3+sunspots)
y <- box.cox(sunspots,.3)
spectrum(y, spans=10, xlim=c(0,1))
abline(v=1:3/11, lty=3) # A single harmonic


Once we know the period and which harmonics are important, we can try to model the time
series as a sum of sine waves.


0 500 1000 1500 2000 2500


2
6


10
14


x


y


x <- as.vector(time(y))
y <- as.vector(y)
r1 <- lm( y ~ sin(2*pi*x/11) + cos(2*pi*x/11) )
r2 <- lm( y ~ sin(2*pi*x/11) + cos(2*pi*x/11)


+ sin(2* 2*pi*x/11) + cos(2* 2*pi*x/11)
+ sin(3* 2*pi*x/11) + cos(3* 2*pi*x/11)
+ sin(4* 2*pi*x/11) + cos(4* 2*pi*x/11)


)
plot(y~x, type=’l’)


lines(predict(r1)~x, col=’red’)
lines(predict(r2)~x, col=’green’, lty=3, lwd=3)


More terms do not add much.
> summary(r2)
...


Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.854723 0.045404 150.973 < 2e-16 ***
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sin(2 * pi * x/11) 1.696287 0.064100 26.463 < 2e-16 ***
cos(2 * pi * x/11) 1.213098 0.064319 18.860 < 2e-16 ***
sin(2 * 2 * pi * x/11) 0.056443 0.064238 0.879 0.380
cos(2 * 2 * pi * x/11) 0.343087 0.064182 5.346 9.74e-08 ***
sin(3 * 2 * pi * x/11) 0.025019 0.064249 0.389 0.697
cos(3 * 2 * pi * x/11) 0.003333 0.064169 0.052 0.959
sin(4 * 2 * pi * x/11) 0.039955 0.064191 0.622 0.534
cos(4 * 2 * pi * x/11) -0.046268 0.064216 -0.721 0.471


However, the analysis is far from over: the residuals do not look like white noise – we could
try an ARMA model.


Histogram of z
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z <- y - predict(r1)
op <- par(mfrow=c(2,2), mar=c(2,4,3,2)+.1)
hist(z, probability=T, col="light blue")
lines(density(z), lwd=3, col="red")
qqnorm(z)
acf(z, main="")
pacf(z, main="")
par(op)


15.5.4 Spectrum and Autocorrelation


They are linked: if rho(k) is the lag-k autocorrelation, then the value of the spectrum at
frequency omega is


+infinity
f(omega) = Sum( rho(k) * exp(- i k omega ) )


k=-infinity


15.5.5 Linear filters


TODO:
A linear filter acts linearly on the spectrum.
(This is linked to why the Fourrier transform is that widely used:
it turns derivations into multiplications.)


15.5.6 Smoothing the raw periodogram


The raw periodogram contains a lot of noise: you have to smooth it, as we saw in the subspot
example above.


15.5.7 Fourier transform


Let us come back in more details on the notion of periodogram. So far, we have only seen
how to interpret it (what frequencies were “important” in the signal we are studying): we
shall now see how to actually compute it.
The idea of a Fourier series is to write a (periodic) function as a sum of sines and cosines.
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f(t) = a0 + a1 cos(t) + b1 sin(t) + a2 cos(2t) + b2 sin(2t) + ...


It is a bit unwieldy, because we have two sequences (a and b, for cosines and sines) that do
not even start at the same index (0 for cosines, 1 for sines). It is simpler if we replace the
sines and cosines by their definition in terms of complex exponentials:
f(t) = ... + c(-2) e^(-2it) + c(-1) e^-it + c(0) + c1 e^it + c2 e^2it + ...


This is not exactly what we want, because we do not start with a function, but a discrete
signal, a sequence. There are actually several flavours of Fourier “transforms”, according to
the nature (function or discrete signal) of the input and desired output:
Fourier series decomposition: function --> sequence
Fourier transform: function --> function
Discrete Fourier Transform (DFT): discrete signal --> sequence


If you want formulas (I am probably forgetting some “normalizing constants”):
f(x) = Sum( c(n) exp( 2 pi i n x ) )


n in Z


f(x) = Integral \hat f ( omega ) exp( 2 pi i x omega ) d omega


x m = Sum( c(n) exp( 2 pi i / N * n m ) )
0 <= n < N


These are not the useful formulas, because we know the left-hand side and we want c(n) of
\hat f in the right hand-side. Luckily, the inversion formulas are very similar (here, I am
definitely forgetting normalizing constants): the only change is the sign in the exponential.
c(n) = Integral f ( x ) exp( - 2 pi i n x ) d x


\hat f(omega) = Integral f ( x ) exp( - 2 pi i x omega ) d x


c(n) = Sum( x(m) exp( - 2 pi i / N * n m ) )
0 <= m < N


Those formulas would be sufficient to compute the Discrete Fourier Transform (DFT) we
are interested in, but they are not very efficient: their complexity is O(nˆ2), where n is the
signal length – the FFT (Fast Fourier Transform) is a way of computing this DFT in O(n
log(n)).
Before presenting this algorithm, let us just play with the results.


15.5.8 Time domain, frequency domain


A signal can be seen as an element of a vector space. To describe it, we can choose a basis
of this vector space. If we choose the basis of “impulse signals” (i.e., the basis elements are
zero everywhere except at one point), the coordinates of the signal are simply its values for
each point in time. The signal is said to be described in the “time domain”.
But you can choose another basis: the coordinates in the basis of sines and cosine functions
are said to describe the signal in the “frequency domain”.
You can choose other bases and describe the signal, say, in the “wavelet domain” – more
about this later.


15.5.9 Reading the results of a DFT


Let us consider the DFT of a few signals (we take real signals: it will be easier to interpret).
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Real part of the FFT
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n <- 8
x <- 1:n/n*2*pi
k <- 0
y <- cbind(rep(1,n),


1 + cos(x),
1 + cos(x) + sin(x),
1 + cos(x) + sin(x) + cos(2*x),
1 + cos(x) + sin(x) + cos(2*x) + sin(2*x)
)


z <- mvfft(y)
op <- par(mfrow=c(2,1))
barplot(Re(t(z)),


beside = TRUE,
col = rainbow(dim(y)[2]),
main = "Real part of the FFT")


barplot(Im(t(z)),
beside = TRUE,
col = rainbow(dim(y)[2]),


main = "Imaginary part of the FFT")
par(op)


The first coefficient is the constant term, the second and last coefficients (they are conjugate)
are the coefficients of cos(t) and sin(t), the third and the second from the end correspond
to cos(2t) and sin(2t), etc.
As the signal we are studying is real, the last coefficients are conjugate of the first ones: we
need not plot them. Besides, if we are not interested in the phase, we just have to plot the
modulus of the FFT.
Here are a few examples.
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x <- rep(0,256)
x[129:256] <- 1
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal",
xlab="", ylab="")


plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),
type=’l’, lwd=3, col="blue",
xlab="", ylab="Mod(fft(x))",
main="DFT (Discrete Fourrier Transform)")


par(op)
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x <- rep(0,256)
x[33:64] <- 1
x[64+33:64] <- 1
x[128+33:64] <- 1
x[128+64+33:64] <- 1
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)
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x <- rep( 1:32/32, 8 )
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)
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x <- 1:256/256
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)
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x <- abs(1:256-128)
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)
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x <- 1:256/256
x <- sin(2*pi*x) + cos(3*pi*x) + sin(4*pi*x+pi/3)
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)
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x <- 1:256/256
x <- sin(16*pi*x)
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)
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x <- 1:256/256
x <- sin(16*pi*x) + .3*cos(56*pi*x)
op <- par(mfrow=c(2,1), mar=c(3,4,4,2)+.1)
plot(x, type=’l’, lwd=3,


main="Signal", xlab="", ylab="")
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, col="blue", lwd=3,
ylab="Mof(fft(x))", xlab="",
main="DTF (Discrete Fourrier Transform)")


par(op)


15.5.10 FFT: Details of the algorithm


TODO
http://en.wikipedia.org/wiki/Fast_Fourier_transform


15.5.11 Applications of the FFT


Multiplying large integers
Multiplying polynomials
Others? PDE? DSP?


TODO


15.5.12 Applications of the FFT: detailed examples


We can use the FFT to filter a signal by removing the high (or the low) frequencies.



http://en.wikipedia.org/wiki/Fast_Fourier_transform





CHAPTER 15. TIME SERIES 1066


0 200 400 600 800 1000


−
10


0
10


20
30


FFT: Removing the high frequencies from a signal


Index


x


0 100 200 300 400 500


0
40


00
80


00


Index


F
F


T


0 100 200 300 400 500


0
40


00
80


00


T
ru


nc
at


ed
 F


F
T


n <- 1000
x <- cumsum(rnorm(n))+rnorm(n)
y <- fft(x)
y[20:(length(y)-19)] <- 0
y <- Re(fft(y, inverse=T)/length(y))
op <- par(mfrow=c(3,1), mar=c(3,4,2,2)+.1)
plot(x, type=’l’,


main="FFT: Removing the high frequencies from a signal")
lines(y, col=’red’, lwd=3)
plot(Mod(fft(x)[1: ceiling((length(x)+1)/2) ]),


type=’l’, ylab="FFT")
plot(Mod(fft(y)[1: ceiling((length(y)+1)/2) ]),


type=’l’, ylab="Truncated FFT")
par(op)
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FFT: Removing more and more high frequencies


Index


n <- 1000
x <- cumsum(rnorm(n))+rnorm(n)
plot(x, type=’l’, ylab="",


main="FFT: Removing more and more high frequencies")
for (i in 1:10) {
y <- fft(x)
y[(1+i):(length(y)-i)] <- 0
y <- Re(fft(y, inverse=T)/length(y))
lines(y, col=rainbow(10)[i])


}


On those examples, you should notice that, if the transform looks fine in the middle of the
interval, it looks awful at both ends of the interval. This is due to the fact that we artificially
build an infinite periodic signal by joining the end of the interval with the begining. This
introduces a singularity in the signal: what we see at the begining or the end is a desperate
attempt to equate the final level of the signal with its begining. That would be bad in its
own right, but it is amplified by the “Gibbs phenomenon”: the Fourier decomposition of a
discontinuous function amplifies the amplifies those singularities.
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Gibbs phenomenon
n <- 1000
x <- c(129:256,1:128)/256
y <- fft(x)
y[20:(length(y)-19)] <- 0
y <- Re(fft(y, inverse=T)/length(y))
plot(x, type=’l’,


ylim=c(-.2,1.2),
xlab="", ylab="",
main="Gibbs phenomenon")


lines(y, col=’red’, lwd=3)


Here are a few ideas to overcome this effect.
Idea 1: remove the "trend" of the signal, so that the


start and the end of the signal coincide.
Idea 2: perform the DFT in a moving window and only retain


the middle of the window (yes, this sounds like
local regression)


TODO: Do this on a real-life time series.


15.5.13 FFT and time series


TODO: Example. Get the trend.
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x <- co2
y <- fft(x)
y[20:(length(y)-19)] <- 0
y <- Re(fft(y, inverse=T)/length(y))
plot(x, type=’l’)
lines(y, col=’red’, lwd=3)


TODO:
Problem: the result is a continuous periodic function, not
at all what we want...
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TODO: We can first transform the data so that the first
and last value be close, via a linear regression.
(This is a bad idea: the trend need not be linear --
indeed, if it was, we could simply get it from a linear
regression.)
Why not simply remove a linear trend and
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p <- predict(lm(co2~time(co2)))
x <- co2 - p
y <- fft(x)
y[20:(length(y)-19)] <- 0
y <- Re(fft(y, inverse=T)/length(y))
plot(x+p, type=’l’)
lines(y+p, col=’red’, lwd=3)
lines(x-y+mean(x+p), col=’green’, lwd=3)


TODO:
Same problem if we try to do the opposite and get the
periodic component without the trend.
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x <- co2
y <- fft(x)
k <- 20
n <- length(y)
y[1:(k+1)] <- 0
y[(n-k):n] <- 0
y <- Re(fft(y, inverse=T)/length(y))
plot(x, type=’l’)
lines(y+mean(x), col=’red’, lwd=3)


And here, we have another problem with the period: it is
not the right one -- 40 years instead of 1 year.
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15.5.14 FFT and sounds
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library(sound)
x <- loadSample("sample.wav")
plot(x)
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n <- length(x$sound)
n <- round(n/3)
y <- x$sound[ n:(n+2000) ]
n <- length(y)
op <- par(mfrow=c(2,1), mar=c(2,4,2,2)+.1)
plot(y, type=’l’)
#plot(Mod(fft(y)[1: ceiling((length(y)+1)/2) ]), type=’l’)
plot(Mod(fft(y)[1:100]), type=’l’)


TODO:
Give an example of a Fourier transform on a sound signal.
(2D plot, time on the horizontal axis, FFT in a moving
window along the vertical axis)


TODO: give examples on sound files, with the initial *.wav (or
*.ogg) file and the result.


TODO: put those sound examples in a separate part.
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15.6 Wavelets


15.6.1 General idea


The wavelet transform is very similar to the Fourrier transform: in both cases, we replace a
function by its coordinates is some basis – the difference is only the choice of the basis.
Fourrier analysis might be fine to study periodic phenomena, but it breaks down (Gibbs
phenomenon, etc.) for non-periodic ones. This is because it expresses the characteristics of
the signal only in terms of frequencies: “the signal contains this and that frequencies”. On
the contrary, the wavelet transforms expresses the characteristics of the signal in terms of
frequencies and location, e.g., “the signal contains this frequency at the begining and that
other at the end”.
The basis used in the Fourrier transform was made of sine signals. You can hope to find a
“wavelet” basis by cutting them into pieces: a wavelet would be a single sine wave, located at
a precise location – this is the basic idea, but it will has to be modified slightly for the basis
to have good theoretical and practical properties (it has to actually be a basis; it has to be
able to express most signals of interest with a few coefficients, i.e., the series decomposition
of the signals we shall study should converge quickly).
The following figure represents a wavelet transform: the curve in the first plot is the signal
to be described; the rectangles (or vertical segments) represent the coefficients; the lower
left part tells us that in the left part of the interval, high frequencies dominate; the top right
part tells us that in the right part of the interval, low frequencies dominate.
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N <- 1024
k <- 6
x <- ( (1:N) - N/2 ) * 2 * pi * k / N
y <- ifelse( x>0, sin(x), sin(3*x) )
plot(y, type=’l’,


xlab="", ylab="")
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# With the "wd" function in the "wavethresh" package
library(wavethresh)
y <- ifelse( x>0, sin(x), sin(10*x) )
plot(wd(y), main="")


This is very similar to the decomposition of periodic functions into Fourier series, but we
have one more dimension: the frequency spectrum is replaced by a frequency-location plot
(an other advantage is that there is almost no Gibbs effect – very convenient when the
signals are not periodic or stationnary...)


15.6.2 Introduction


Fourier analysis decomposes periodic functions as sums of sine functions, each indicating
what happens at a given scale.
The problem is that this assumes the signal is stationnary.
Instead, we would like to decompose the signal along two scales: first, the frequency, second,
the location.
A first idea would be to cut the signal into small chunks, assume that the signal is stationnary
on each chunk, and perform a Fourier decomposition.
Wavelets provide another solution.
The idea of Fourier analysis was to start with a function (the sine function), scale it (sin(x),
sin(2x), sin(3x), etc.), remark that we get an orthonormal basis of some space of functions,
and decompose the signals we wanto to study along this basis.
Similarly, we can start with a function, change its scale and localization (by applying both
homotheties and translations), check if we get an orthonormal basis of some sufficiently large
space of function (this is not always the case) and, if we are lucky, decompose our signals
along this basis.
More precisely, we are looking for a function psi so that


( psi(2^j x - k), j, k \in Z )


be an orthonormal basis of Lˆ2(R).
Here is an example:


The Haar wavelet:
H(x) = 1 if x is in [0,.5]


-1 if x is in [.5,1]
0 otherwise


TODO: Daubechies wavelets (there is a whole family of them)


There is a recipe to build such wavelets: start with a “self-similar” function, i.e., satisfying
an equation of the form
phi(x) = Sum( a k phi(2x-k) ),


then consider







CHAPTER 15. TIME SERIES 1072


psi(x) = Sum( \bar a {1-k} phi(2x-k) )


For some values of a k, psi fulfils our needs (convergence, orthogonality, etc.)
The irregular appearance of wavelets comes from this self-similarity condition.
Phi is called the father wavelet and psi the mother wavelet. (If you find your wavelets by
other means, you can have a mother wavelet and no father wavelet.)
DWT: Discrete Wavelet Transform


MRA: Multi-Resolution Analysis


We do not always work in Lˆ2(R), but in smaller spaces. In particular, given a father wavelet
phi, one can build a filtration of Lˆ2(R) (i.e., an increasing sequence of subspaces of Lˆ2(R))
... V(-2) \subset V(-1) \subset V(0) \subset V(1) \subset V(2) ...


such that
f(x) \in V(n) \ssi f(2x) \in V(n+1)


by defining V(0) as the subspace generated by the
phi(x-k), k \in Z.


In terms of mother wavelets, V(1) is generated by the
psi(2^j x - k), j <= 1, k \in Z.


One also often considers the W(n) spaces, generated by the
psi(2^n x - k), k \in Z.


One has
V(1) = V(0) \oplus W(1)


= \bigoplus { j \leq 1 } W(j).


Example: decomposition in Haar wavelets of the function (7 5 1 9) with the “pyramidal
algorithm”.
Resolution Approximations Detail coefficients
----------------------------------------------


4 7 5 1 9
2 6 5 -1 4
1 5.5 -0.5


Haar(7 5 1 9) = (5.5, -.5, -1, 4)


Complexity:
O(n log n) for the FFT
O(n) for the wavelet decomposition


15.6.3 Gory technical details


The general idea is the following: find an orthonormal basis of Lˆ2 whose elements can be
interpreted in terms of “location” and “frequency”. For example (this is called the Haar
basis):
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father <- function (x) {
ifelse( x<0 | x>1, 0, 1 )


}
mother <- function (x) {
ifelse( x<0 | x>1,


0,
ifelse(x<.5, 1, -1))


}
jk <- function (f,x,j,k) {
f(2^j * x - k)


}


op <- par(mfrow=c(4,3), mar=c(0,0,0,0))
for (j in 1:3) {
curve(jk(father,x,0,j),


xlim=c(-.2,3.2), ylim=c(-1,1),
xlab="", ylab="",
axes=F,


lwd=3, col="blue"
)
abline(h=0,lty=3)
abline(v=0:4,lty=3)


}
for (i in 1:3) {
for (j in 1:3) {
curve(jk(mother,x,i,j),


xlim=c(-.2,3.2), ylim=c(-1,1),
xlab="", ylab="",
axes=F,
lwd=3, col="blue"


)
abline(h=0,lty=3)
abline(v=0:4,lty=3)
box()


}
}


This gives a decomposition
L^2 = V 0 \oplus \bigoplus j W j


where V 0 is generated by the father wavelet phi and its translations and the W j are
generated by the mother wavelet psi, its translations and rescalings.


phi, father wavelet


op <- par(mar=c(0,0,3,0))
curve(jk(father,x,0,1),


xlim=c(-.2,3.2),
ylim=c(-1,1),
xlab="", ylab="", axes=F,
lwd=3, col="blue",
main="phi, father wavelet")


abline(h=0,lty=3)
#abline(v=0:4,lty=3)
par(op)
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psi, mother wavelet


op <- par(mar=c(0,0,3,0))
curve(jk(mother,x,0,1),


xlim=c(-.2,3.2),
ylim=c(-1,1),
xlab="", ylab="", axes=F, lwd=3, col="blue",
main="psi, mother wavelet")


abline(h=0,lty=3)
#abline(v=0:4,lty=3)
par(op)


The choice of the basis depends on the applications: will you be dealing with smooth
($\mathscr{C}ˆ\infty$) functions? continuous but non-differentiable functions, with a frac-
tal nature? functions with jumps? The convergence speed and the parsimony of the wavelet
decomposition will depend on the adequacy of the basis and the data studied.
More technically, the construction of a basis goes as follows.
1. Choose a father wavelet phi.
2. Set phi jk(x) = 2ˆ{j/2} phi(2ˆj x - k ), for all non-negative integers j and all integers k
– this is f translated by k and shrinked j times.
3. Set V j = Vect { phi {jk}, k in Z } and check that
4. the phi {0k}, k in Z, form an orthonormal system (a Hilbert basis of V 0);
5. For all j in Z, V j is included in V {j+1};
6. The closure of the union of the V j is Lˆ2;
7. Then, set W j = V {j+1} minus V j so that Lˆ2 be the sum of V 0 and the W j.
We then want to find a mother wavelet psi in W 0 such that if we set
8. psi {jk}(x) = 2ˆ{j/2} psi( 2ˆj x - k),
9. then the psi {jk}, k in Z, for a basis of $W j$.
10. Then (finally), we have a basis of $Lˆ2$:
... phi {0,-2} phi {0,-1} phi {0,0} phi {0,1} phi {0,2} ...
... phi {1,-2} phi {1,-1} phi {1,0} phi {1,1} phi {1,2} ...
... phi {2,-2} phi {2,-1} phi {2,0} phi {2,1} phi {2,2} ...


... ... ... ... ...


When conditions 4, 5 and 6 are satisfied, we say that we have found a MultiResolution
Analysis (MRA).
You can devise many recipes to construct wavelet bases, with various properties. For in-
stance, with the Daubechies wavelets, father and mother wavelets have a compact support;
the first moment of the father wavelet are vanishing.
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((x


))


N <- 1024
k <- 6
x <- ( (1:N) - N/2 ) * 2 * pi * k / N
y <- ifelse( x>0, sin(x), sin(3*x) )
r <- wd(y)
draw(r, col="blue", lwd=3, main="")
abline(h=0, lty=3)


There are many other (families of) wavelets: Haar, Battle–Lemari\’e, Daubechies, Coiflets
(the father wavelet has vanishing moments), Symlets (more symetric than the Daubechies
wavelets), etc.


15.6.4 Statistical applications of wavelets


Approximation of possibly irregular functions and surfaces (there is a reduced Gibbs phe-
nomenon, but you can circumvent it by using translation-invariant wavelets).
Smoothing.
Density estimation: just try to estimate the density as a linear combination of wavelets,
then remove/threshold the wavelets whose coefficients are too small (usually, the threshold
is chosen as 0.4 to 0.8 times the maximum coefficient; we also use block thresholding: we
do not remove simgle coefficients but whole blocks of coefficients). For instance, density
estimation of financial returns: we can clearly see the fat tails. Kernel methods do not
perform that well, unless they use adaptive bandwidth.
Regression: this is very similar, we try to find a function f (linear combination of wavelets,
we threshold the smaller coefficients) such that
For all i, y i = f(x i) + noise
If x i = i/n
with n=2^k for some k in Z, it works out of the box
otherwise, you have to scale and bin the data.


Gaussian White Noise Estimation: find a function f such that
dY(t) = f(t) dt + epsilon dW(t) t in [0,1]


Applications:
Jump detection.
Time series.
Diffusion Models (?).
Image compression, indexing, reconstruction, etc.


Data management, with the help of the tree-like structure of the wavelet transforms, in
particular to speed up the search for a trend change in time series, without having to
retrieve the whole series (TSA, Trend and Surprise Abstraction)
You can use the same idea to index images or sound files.
More simply, you can choose to keep the first k coefficients and use them to index the data.
You can also apply a Principal Component Analysis (PCA) to the coefficients of medium res-
olution of a set of images (we discard the other coefficients: this speeds up the computations)
in order to sort them.
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One can also use wavelets to clean data (noise removal, dimension reduction) by only keeping
the highest coefficients – this is the basic idea of image compression (JPEG works like that,
with a cosine transform instead of wavelets).
WaveShrink: compute the wavelet transform, reduce the coefficients (by applying a threshold
(whose choice is troublesome) or something smoother) and compute the inverse transform.
One also uses wavelets to reduce the dimension of the data: after a wavelet transform (it
is just a base change, like the Principal Component Analysis (PCA)), only keep the most
important coefficients.
Alternatively, you can separate the coefficients in several bands (say, depending on the
frequency), perform a Principal Component Analysis (PCA) in each band (you can choose
to retain a different number of dimensions in each band, or even to discard some bands).
TODO: applications to regression.


Other applications, unsorted:
clustering (WaveCluster),
classification (e.g.: classifying the pixels in an image)


Wavelets are also well-suited for distributed computations – very trendy with the spread of
clusters.
http://www.acm.org/sigs/sigkdd/explorations/issue4-2/li.pdf
TODO
(read pages 13sqq)


15.6.5 Wavelets in R


The main packages are
wavethresh
waveslim


but you might also want to have a look at
Rwave (1-dimensional wavelets, non-free)
fields
ebayesthresh.wavelet in EbayesThresh (to select which coefficients
to zero out when smoothing a signal with wavelets)


LongMemoryModelling in fSeries
rwt (not free?)


15.6.6 More about wavelets


Survey on Wavelet Applications in Data Mining, SIGKDD Explorations
http://www.acm.org/sigs/sigkdd/explorations/issue4-2/li.pdf


Wavelets, Approximation and Statistical Applications
W. Hardle et al., 1997
http://www.quantlet.com/mdstat/scripts/wav/pdf/wavpdf.pdf


Pattern Recognition of Time Series Using Wavelets
E. A. Mahara j
http://www.quantlet.de/scripts/compstat2002_wh/paper/full/P_03_maharaj.pdf


15.7 Digital Signal Processing (DSP)


TODO


15.7.1 Sound


TODO



http://www.acm.org/sigs/sigkdd/explorations/issue4-2/li.pdf

http://www.acm.org/sigs/sigkdd/explorations/issue4-2/li.pdf

http://www.quantlet.com/mdstat/scripts/wav/pdf/wavpdf.pdf

http://www.quantlet.de/scripts/compstat2002_wh/paper/full/P_03_maharaj.pdf
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15.7.2 Hilbert transform


TODO


15.8 Modeling volatility: GARCH models (Generalized
AutoRegressive Conditionnal Heteroscedasticity)


15.8.1 Motivation


AR(I)MA models were studying time series by modeling their autocorrelation function.
(G)ARCH models do the same by modeling their variance.
The problem GARCH models tackle is the following: even if the variance is constant over
time, you can only see it if you have several realizations of the process. Usually, you only
have one: to estimate the variance, you can only take several continuous values. In the
case of ARMA models, it gives a good approximation of the variance, in GARCH models, it
does not. What happens, it that for a given realization, the apparent value of the variance
will depend on time; if you had several realizations, you could consider the variance of
each realization and take the mean (at a given time, across all the realizations): this mean
variance could well be constant.
This is the basic problem of time series: we only have one realization of a process.


15.8.2 Volatility clustering


(G)ARCH models are often used in finance, where they can model the volatility.
TODO: Somewhere in this document, present the vocabulary of finance.


Volatility is a tricky notion, never defined properly. Let us have a go at it. We consider a
time series (if you work in finance, think “log-returns”) generated by the following process
X(n) is taken from a gaussian distribution of mean 0 and


variance v(n)


where we do not know anything about v(n). This v(n) (or rather, its square root) is called
the volatility. That is all. As we do not know anything about it, we cannot say much about
it, let alone estimate it. So we have either to heuristically estimate it (there are many ways
of doing so, yielding different results) or to make a few hypotheses about it, to assume it
evolves according to a certain model.
Thus, speaking of volatility without stating which model you use, without cheking if this
model fits the data, is completely meaningless.
(G)ARCH models are such models. The basic idea leading to them is that “volatility
clusters”: if there is a large value, the next values are likely to be large; conversely, if
there is a small value, the next values are likely to be small. In other words, the volatility
v(n) varies slowly.


15.8.3 Volatility clustering and runs test


Let us consider an example
data(EuStockMarkets)
x <- EuStockMarkets[,1]
x <- diff(log(x))
i <- abs(x)>median(abs(x))


and look if high values tend to cluster.
> library(tseries)
> runs.test(factor(i))


Runs Test
data: factor(i)
Standard Normal = -2.2039, p-value = 0.02753
alternative hypothesis: two.sided
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In this runs test, we look at the number of runs of sequential high values, the number of runs
of sequential low values and we transform them so that it follows a gaussian distribution.
Here, we get a negative value, which means that we have fewer runs that expected, i.e.,
longer runs than expected. As the p-value is under 5%, we shall say that the difference is
statistically significant.
Here is another implementation of this test:


Runs test


Runs, p = 0.032


F
re


qu
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cy
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number.of.runs <- function (x) {
1+sum(abs(diff(as.numeric(x))))


}
my.runs.test <- function (x, R=999) {
if( is.numeric(x) )
x <- factor(sign(x), levels=c(-1,1))


if( is.logical(x) )
x <- factor(x, levels=c(FALSE,TRUE))


if(!is.factor(x))
stop("x should be a factor")


# Non-parametric (permutation) test
n <- length(x)
res <- rep(NA, R)
for (i in 1:R) {
res[i] <- number.of.runs(
x[sample(1:n,n,replace=F)]


)


}
t0 <- number.of.runs(x)
n1 <- 1+sum(t0<=res)
n2 <- 1+sum(t0>=res)
p <- min( n1/R, n2/R )*2
p <- min(1,p) # If more than half the values are identical


# Parametric test, based on a formula found on the
# internet...
# People believe that Z follows a gaussian distribution
# (this is completely wrong if the events are rare -- I
# had first used it with mutations on a DNA sequence...)
n1 <- sum(x==levels(x)[1])
n2 <- sum(x==levels(x)[2])
r <- number.of.runs(x)
mr <- 2*n1*n2/(n1+n2) + 1
sr <- sqrt( 2*n1*n2*(2*n1*n2-n1-n2)/


(n1+n2)^2/(n1+n2-1) )
z <- (r-mr)/sr
pp <- 2*min(pnorm(z), 1-pnorm(z))


r <- list(t0=t0, t=res, R=R,
p.value.boot=p,
n1=n1, n2=n2, r=r, mr=mr, sr=sr, z=z,
p.value.formula=pp)


class(r) <- "nstest"
r


}


print.nstest <- function (d) {
cat("Runs test\n");
cat(" NS = ")
cat(d$t0)
cat("\n p-value (")







CHAPTER 15. TIME SERIES 1079


cat(d$R)
cat(" samples) = ")
cat(round(d$p.value.boot,digits=3))
cat("\n")
cat(" theoretical p-value = ")
cat(d$p.value.formula)
cat("\n")


}


plot.statistic <- function (t0, t, ...) {
xlim <- range(c(t,t0))
hist(t, col=’light blue’, xlim=xlim, ...)
points(t0, par("usr")[4]*.8,


type=’h’, col=’red’, lwd=5)
text(t0, par("usr")[4]*.85, signif(t0,3))


}


plot.nstest <- function (
d, main="Runs test",
ylab="effectif", ...


) {
plot.statistic(d$t0, d$t, main=main,


xlab=paste("Runs, p =",signif(d$p.value.boot,3)),
...)


}


# Example
data(EuStockMarkets)
x <- EuStockMarkets[,1]
x <- diff(log(x))
i <- abs(x)>median(abs(x))
plot(my.runs.test(i))


Here, we get the same p-value:
> my.runs.test(i)
Runs test
NS = 883
p-value (999 resamplings) = 0.024
p-value ("theoretical") = 0.02752902


We can repeat this experiment with other financial time series.
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op <- par(mfrow=c(2,2))
for (k in 1:4) {
x <- EuStockMarkets[,k]
x <- diff(log(x))
i <- abs(x)>median(abs(x))
plot(my.runs.test(i))


}
par(op)


TODO: do this with many more series...


15.8.4 Other examples, in finance (Stochastic Differential Equa-
tions)


Here are a few models of time series.
First, a few notations (these correspond to “stochastic processes” and “stochastic differential
equations”, i.e., the continuous-time analogue of time series – but as far as intuition is
concerned, you can stay with a discrete time).
S The quantity we want to model ("S" stands for "spot price")
dS The first derivative of S: think "dS = S(n) - S(n-1)"
t Time
dX Gaussian noise, with variance dt


s volatility
m trend
n a constant


A random walk:
dS = s dX


A random walk with a trend:
dS = m dt + s dX


A logarithmic random walk:
dS = m S dt + s S dX


A mean-reverting random walk (used to model a value that will not wander too far away
from zero, e.g., an interest rate):
dS = (n - m S) dt + s dX


Another mean-reverting random walk:
dS = (n - m S) dt + s S^.5 dX


We can simulate them as follows:
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Series  diff(log(x))


sde.sim <- function (t, f, ...) {
n <- length(t)
S <- rep(NA,n)
S[1] <- 1
for (i in 2:n) {
S[i] <- S[i-1] + f(S[i-1], t[i]-t[i-1], sqrt(t[i]-t[i-1])*rnorm(1), ...)


}
S


}
a <- 0
b <- 10
N <- 1000
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=1,s=1) { m * S * dt + s * S * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
op <- par(mfrow=c(4,1), mar=c(2,4,2,2))
plot(x)
plot(log(x))


plot(diff(log(x)))
acf(diff(log(x)))
par(op)


Here are similations for the previous examples:
TODO: give several examples for each model


Random walk
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N <- 1000
a <- 0
b <- 3


op <- par(mfrow=c(3,1))
for (i in 1:3) {
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=1,s=1) { s * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
plot(x, main="Random walk")


}
par(op)







CHAPTER 15. TIME SERIES 1082


Random walk with a trend
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op <- par(mfrow=c(3,1))
for (i in 1:3) {
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=1,s=1) { m * dt + s * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
plot(x, main="Random walk with a trend")


}
par(op)


Lognormal random walk
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op <- par(mfrow=c(3,1))
for (i in 1:3) {
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=1,s=1) { m * S * dt + s * S * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
plot(x, main="Lognormal random walk")


}
par(op)
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Mean−reverting random walk
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b <- 10
op <- par(mfrow=c(3,1))
for (i in 1:3) {
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=3,s=1,n=3) { (n - m*S) * dt + s * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
plot(x, main="Mean-reverting random walk")
abline(h=1,lty=3)


}
par(op)


Mean−reverting random walk
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op <- par(mfrow=c(3,1))
for (i in 1:3) {
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=3,s=1,n=3) { (n - m*S) * dt + s * sqrt(S) * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
plot(x, main="Mean-reverting random walk")
abline(h=1,lty=3)


}
par(op)


TODO:
Look at the volatility of the examples above.
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Lognormal random walk
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op <- par(mfrow=c(2,1))
x <- sde.sim(seq(a,b,length=N),


function (S,dt,dX,m=1,s=1) { m * S * dt + s * S * dX })
x <- ts(x, start=a, end=b, freq=(N-1)/(b-a))
plot(x, main="Lognormal random walk")
return <- diff(x) / x[ -length(x) ]
y <- return^2
plot(y)
lines(predict(loess(y~time(y))) ~ as.vector(time(y)), col=’red’, lwd=3)


par(op)


Err... This has nothing to do in the chapter about GARCH models...
TODO: put this section somewhere else...


15.8.5 ARCH model


An ARCH series is a series of gaussian random variables, centered, independant, but with
different variances:
u(n) ~ N(0, var=h(n))


h(n) = a0 + a1 u(n-1)^2 + a2 u(n-2)^2 + ... + aq u(n-q)^2


Example:
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n <- 200
a <- c(1,.2,.8,.5)


a0 <- a[1]
a <- a[-1]
k <- length(a)
u <- rep(NA,n)
u[1:k] <- a0 * rnorm(k)
for (i in (k+1):n) {
u[i] <- sqrt( a0 + sum(a * u[(i-1):(i-k) ]^2 )) * rnorm(1)


}
u <- ts(u)
eda.ts(u)


The plots we are drawing do not allow us to spot heteroscedasticity problems; even in the
most extreme casesm it really looks like iid noise.
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h <- rnorm(1000)^2
x <- filter(h, rep(1,50))
x <- x[!is.na(x)]
eda.ts(x)
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y <- rnorm(length(x),0,sqrt(x))
eda.ts(y)
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h <- c(rep(1,100), rep(2,100))
y <- ts(rnorm(length(h), 0, sd=h))
eda.ts(y)


How can we spot heteroscedasticity?
When it is obvious, as in the last example, we can perform a non-linear regression (splines
or local regression, as you fancy) on the absolute value of the series.
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plot(abs(y))
lines(predict(loess(abs(y)~time(y))), col=’red’, lwd=3)
k <- 20
lines(filter(abs(y), rep(1/k,k)), col=’blue’, lwd=3, lty=2)


With our initial ARCH model:
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plot.ma <- function (x, k=20, ...) {
plot(abs(x), ...)
a <- time(x)
b <- predict(loess(abs(x) ~ a))
lines(b ~ as.vector(a), col=’red’, lwd=3)
k <- 20
lines(filter(abs(x), rep(1/k,k)), col=’blue’, lwd=3)


}
plot.ma(u)


The ARIMA series we have seen were indeed different.
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n <- 1000
op <- par(mfrow=c(4,1), mar=c(2,4,2,2))
plot.ma(ts(rnorm(n)))
plot.ma(arima.sim(list(ar = c(.8,.1)), n))
plot.ma(arima.sim(list(ma = c(.8,.1)), n))
plot.ma(arima.sim(list(ma = c(.8,.4,.1), ar = c(.8,.1)), n))
par(op)


15.8.6 Generalizations


In all these models, we model the variance of a series (a series that looks like noise and whose
sole problem is a heteroskedasticity one: e.g., a residuals of a regression or of an ARIMA
model).
Our series is
u(n) ~ N(0, var=h(n))


and the variance, h(n) is a function if the previous u(k).
ARCH:
h(n) = a0 + a1 u(n-1)^2 + a2 u(n-2)^2 + ... + aq u(n-q)^2


For the GARCH model, we also use the previous variances:
h(n) = a0 + a1 u(n-1)^2 + a2 u(n-2)^2 + ... + aq u(n-q)^2


+ b1 h(n-1) + ... + bq h(n-q)
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In those models, the sign of u is not used: GARCH models are symetric. However, for some
data sets (typicall, financial data), one can see that this sign is important; this is called the
“leverage effect”, and it calls for extensions of the GARCH model.
TODO: Find an example of this leverage effect (it is not visible here...)
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op <- par(mfrow=c(1,4))
data(EuStockMarkets)
for (a in 1:4) {
x <- EuStockMarkets[,a]
x <- diff(log(x))


n <- length(x)
s <- rep(NA, n+1)
s[ which(x>0) + 1 ] <- "+"
s[ which(x<0) + 1 ] <- "-"
i <- which( !is.na(s) )
s <- factor(s[i])
x <- x[i]
boxplot(log(abs(x))~s, col=’pink’)


}
par(op)


Some models account for this asymetry (you will find many others in the literature and you
can roll up your own):
AGARCH1 (The effects are symetric around A, not around 0):
h(n) = a0 + a1 (A + u(n-1))^2 + ... + aq (A + u(n-q))^2


+ b1 h(n-1) + ... + bq h(n-q)


AGARCH2 (Larger coefficients when u>0):
h(n) = a0 + a1 (abs(u(n-1)) + A*u(n-1))^2 + ... + aq (abs(u(n-q)) + A*u(n-q))^2


+ b1 h(n-1) + ... + bq h(n-q)


GJR-GARCH (idem):
h(n) = a0 + (a1 + A * (u(n-1)>0)) * u(n-1))^2 + ... + (aq + A*(u(n-q)>0)) *


u(n-q))^2
+ b1 h(n-1) + ... + bq h(n-q)


EGARCH:
TODO


15.8.7 Regression with GARCH residuals


You can use a (G)ARCH model for the noise in a regression, when you seen that the residuals
have a heteroskedasticity problem.
TODO: An example that show the effects of
heteroskedasticity (bias? wrong confidence intervals? Far
from optimal estimators?)


15.8.8 TODO


TODO
BEWARE: I have not (yet) understood what follows.
It is probably not entirely correct.
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x(t+1) = x(t) * noise
log(noise) ~ N(0, var=v(t))
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data(EuStockMarkets)
x <- EuStockMarkets[,1]
op <- par(mfrow=c(3,1))
plot(x, main="An index")
y <- diff(log(x))
plot(abs(y), main="Volatility")
k <- 30
z <- filter(abs(y),rep(1,k)/k)
plot(z, ylim=c(0,max(z,na.rm=T)), col=’red’, type=’l’,


main="smoothed volatility (30 days)")
par(op)


A simulation:
A simulation
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n <- 200
v <- function (t) { .1*(.5 + sin(t/50)^2) }
x <- 1:n
y <- rnorm(n) * v(x)
y <- ts(y)
op <- par(mfrow=c(3,1))
plot(ts(cumsum(y)), main="A simulation")
plot(abs(y), main="volatility")
plot(v(x)~x,


ylim=c(0,.3),
type=’l’, lty=2, main="smoothed volatility")


k <- c(5,10,20,50)
col <- rainbow(length(k))
for (i in 1:length(k)) {
z <- filter(abs(y),rep(1,k[i])/k[i])
lines(z, col=col[i])


}
par(op)


TODO: simple variant, EWMA (exponentially weighted moving average)
v[i] <- lambda * v[i-1] + (1-lambda) * u[i-1]^2


Easy, there is a simgle parameter...
You can choose it empirically, lambda=0.094


TODO: Simulation, model.


TODO:
My likelihood is wrong.
There should only be gausians, no chi^2.


you can try to estimate this variance v(t+1) as a weighted mean of: the mean variance
V (e.g., obtained by an exponential moving standard deviation or an exponential moving
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averege of v); yesterday’s forecast v(t); the square of the stock price returns u(t) = (x(t)-
x(t-1))/x(t-1).
v(t+1) = gamma V + alpha v(t) + beta u(t)^2.


Rather than estimating the alpha, beta, gamma coefficients yourself, you can estimate them
with the Maximum Likelihood method.
TODO: Example


ll <- function (u, gammaV, alpha, beta) {
n <- length(u)
v <- rep(NA,n)
v[1] <- u[1]^2
for (i in 2:n) {
v[i] <- gammaV + alpha * v[i-1] + beta*u[i-1]^2


}
sum(log(dchisq(u^2 / v, df=1)))


}
lll <- function (p) {
ll(y,p[1],p[2],p[3])


}
r <- nlm(lll, c(.4*mean(diff(y)^2),.3,.3))
r$estimate
res <- NULL
for (i in 1:20) {
p <- diff(c(0,sort(runif(2)),1)) *


c( mean((diff(y)/y)^2), 1, 1 )
r <- NULL
try( r <- nlm(lll, p) )
if(!is.null(r)){
res <- rbind(res, c(r$minimum, r$estimate))
print(res)


}
}
colnames(res) = c("minimum", "gammaV", "alpha", "beta")
res


TODO: I never get the same result.
gammaV is always negative: I do not like that...


minimum gammaV alpha beta
[1,] -473.3557 -2.489084e-05 0.31610437 0.23202868
[2,] -280.1692 -4.024827e-05 0.09674672 0.73230780
[3,] -266.3034 -5.859300e-05 0.23999115 0.59694235
[4,] -506.3229 -5.244953e-05 0.51160110 0.16128155
[5,] -228.9716 6.530461e-06 0.97200115 0.02253152
[6,] -516.4043 -5.520438e-05 0.85418375 0.06408601
[7,] -415.7290 -2.314525e-05 0.14884342 0.37617978
[8,] -291.3665 -1.223586e-04 0.50715120 0.36927627
[9,] -278.2773 -7.733857e-05 0.35255591 0.45927997
[10,] -310.3256 -5.888580e-05 0.17611217 0.69979118
[11,] -288.9966 -3.312234e-05 0.07831422 0.72978797
[12,] -259.3784 -1.318697e-04 0.43313467 0.46553856
[13,] -314.1510 -9.033081e-05 0.58692361 0.24131744
[14,] -210.2558 -1.020534e-05 0.22237139 0.77719951
[15,] -407.7668 -2.849821e-05 0.11921529 0.42430838
[16,] -505.7438 -1.841478e-05 0.27421749 0.22635609
[17,] -193.4423 -1.266605e-05 0.79456866 0.19993238
[18,] -426.6810 -3.046373e-05 0.26306608 0.29960224
[19,] -929.4232 -7.528851e-06 0.09520649 0.13700275


This was the GARCH(1,1) model. The GARCH*p,q) is its obvious generalization:
v(t+1) = gamma V + alpha1 v(t) + alpha2 v(t-1) + ... + alphaq v(t-q+1)
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+ beta1 u(t) + ... + betap u(t-p+1).


TODO: other motivation:


We do not only want a forecast of the value we are
studying but also an estimation of the forecast
error. Most models assume that the variance is constant,
so the forecast error does not change much.
But this is not realistic. The variance is not constant
and we must acocunt for it.


Question:
Among the disgnostics after modeling a time series, did I
mention heteroskedasticity?
I cursorily mentionned it in the definition of a white
noise.
You can see the problem by smoothing the squared
residualsor with the tests in the "lmtest" package.


TODO: a simulation
TODO: check


garch.sim <- function (n, gammaV, p=NULL, q=NULL) {
if(gammaV<0){ stop("gammaV should be positive") }
if (any(p)<0 || any(p)>1) {
stop("The coefficients in p should be in [0,1]")


}
if (any(q)<0 || any(q)>1 ){
stop("The coefficients in q should be in [0,1]")


}
if (sum(c(p,q))>1) {
stop("The coefficients (including gamma) should sum up to 1")


}
gamma <- 1-sum(p)-sum(q)
V <- gammaV/gamma
v <- ( sqrt(V)*rnorm(n) )^2
u <- sqrt(V)*rnorm(n)
# TODO: Initialisation
k <- max(length(p),length(q)+1)
for (i in k:n) {
v[i] <- gammaV
for (j in 1:length(q)) {
v[i] <- v[i] + q[j]*v[i-j]


}
for (j in 1:length(p)) {
v[i] <- v[i] + p[j]*u[i-j]^2


}
u[i] <- sqrt(v[i]) * rnorm(1)


}
ts(u)


}
res <- NULL
for (i in 1:20) {
x <- garch.sim(200,1,c(.3,.2),c(.2,.1))
r <- garch(x, order=c(2,2))
res <- rbind(res, r$coef)


}
res
res <- NULL
for (i in 1:200) {
x <- garch.sim(200,1,.5,.3)
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r <- garch(x, order=c(1,1))
res <- rbind(res, r$coef)


}
res
apply(res, 2, mean)


In R, the functions pertaining to GARCH models are in the “tseries” package.
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library(tseries)
x <- EuStockMarkets[,1]
y <- diff(x)/x
r <- garch(y)
# plot(r) The plot function is only for interactive use...
op <- par(mfrow=c(2,1))
plot(y, main = r$series, ylab = "Series")
plot(r$residuals, main = "Residuals", ylab = "Series")
par(op)


Histogram of y


Series


F
re


qu
en


cy


−0.10 −0.05 0.00 0.05


0
30


0
60


0


Histogram of Residuals


Series


F
re


qu
en


cy


−10 −5 0 5


0
40


0
80


0


op <- par(mfrow=c(2,1))
hist(y,


main = paste("Histogram of", r$series),
xlab = "Series")


hist(r$residuals,
main = "Histogram of Residuals",
xlab = "Series")


par(op)
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op <- par(mfrow=c(2,1))
qqnorm(y,


main = paste("Q-Q Plot of", r$series),
xlab = "Gaussian Quantiles")


qqnorm(r$residuals,
main = "Q-Q Plot of Residuals",
xlab = "Normal Quantiles")


par(op)
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ACF of Squared Residuals


op <- par(mfrow=c(2,1))
acf(y^2,


main = paste("ACF of Squared", r$series))
acf(r$residuals^2,


main = "ACF of Squared Residuals",
na.action = na.remove)


par(op)


We get (The Jacques Bera test is a gaussianity test):
> r
Call:
garch(x = y)
Coefficient(s):


a0 a1 b1
5.054e-06 6.921e-02 8.847e-01


> summary(r)
Call:
garch(x = y)
Model:
GARCH(1,1)
Residuals:


Min 1Q Median 3Q Max
-12.66546 -0.47970 0.04895 0.65193 4.39506
Coefficient(s):
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Estimate Std. Error t value Pr(>|t|)
a0 5.054e-06 8.103e-07 6.237 4.45e-10 ***
a1 6.921e-02 1.151e-02 6.014 1.81e-09 ***
b1 8.847e-01 1.720e-02 51.439 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Diagnostic Tests:


Jarque Bera Test
data: Residuals
X-squared = 17279.64, df = 2, p-value = < 2.2e-16


Box-Ljung test
data: Squared.Residuals
X-squared = 0.1291, df = 1, p-value = 0.7194


TODO
TODO: diagnostics (look at the residuals: the are supposed
to have a zero mean (or, at least, a constatn mean), a
constant variance and have no autocorrelation (Ljung-Box
test, with lags up to 15 days).


TODO: diagnostics.
Autocorrelation
Autocorrelation of u/sqrt(v)


TODO: forecasting the future returns???


(With the variance, you can plot the 95% confidence intervals of the
forecast paths.)


TODO: Generalizations
TARCH (Threshold ARCH)
EGARCH


http://marshallinside.usc.edu/simrohoroglu/teaching/543/spring2002/garch101.
pdf


TODO: regression with GARCH error terms ?
no (not yet in R)


15.8.9 Implied volatility


TODO


15.9 Multivariate time series


TODO


15.9.1 VAR models (Vector Auto-Regressive)


TODO


We had defined the notion of auto-regressive (AR) model for 1-dimensionnal time-series,
y {n+1} = A y n + noise.


For multidimensional time-series, i.e., vector-valued time-series, the formula is the same,
but A is a matrix. As in the 1-dimensional case, we can also add in earlier terms, go get a
VAR(p) process and not simply a VAR(1) process.



http://marshallinside.usc.edu/simrohoroglu/teaching/543/spring2002/garch101.pdf

http://marshallinside.usc.edu/simrohoroglu/teaching/543/spring2002/garch101.pdf
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TODO: Example.


TODO: how do we fit such a model?
?ar


library(dse1)
estVARXls(x)


TODO: VARMA
library(dse1)
x <- simulate(ARMA(...))


Other packages: MSBVAR (Bayesian VAR)


TODO: ARMA, VARMA, VARMAX???


correlogram
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data(EuStockMarkets)
x <- EuStockMarkets[,1]
y <- EuStockMarkets[,2]
acf(ts.union(x,y),lag.max=100)
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x <- diff(x)
y <- diff(y)
acf(ts.union(x,y),lag.max=100)
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15.9.2 Granger causality


TODO


15.9.3 Risk models


TODO


15.9.4 Dynamic principal component analysis


15.9.5 Cointegration


TODO


15.9.6 Panel data


TODO


15.10 State-Space Models and Kalman Filtering


TODO: Write this section...
TODO: SSM and classical models
Motivation: For the classical model (trend, seasonal
component, noise), I had used a set of equations to
describe the model: this was actually a SSM.


http://www.uio.no/studier/emner/matnat/biologi/BIO4040/h03/undervisningsmateriale/
Lectures/lecture10.pdf


15.10.1 Motivation


TODO
(The classical example with the space probe motion)


15.10.2 Other motivation: the notion of volatility in finance


When studying financial data, especially “return” time series (the return is the difference
between today’s price and yesterday’s price – some people define it as the difference of
the logarithms of those prices), it is tempting to assume that the values are taken from a
series of iid random variables. The volatility is the variance of those random variables. But
sometimes, the assumption that the variance, aka “volatility”, is constant is not reasonnable.
TODO: example (plot)


More recent models consider the volatility as a random variable: we model the evolution
of two random variables, the price and its volatility – the first is directly measurable, the
second is not.
We can see this as a state space model: the phenomenom we are studying lives in a 2-
dimensional space whose coordinates are the returns and the volatility. The first coordinate
can be measured, the second cannot. The aim of the game is to estimate this hidden
coordinate. For instance, the model could be
TODO: give the equations
give the name of this model
give a simulation


Given such a model, given the observed variable X n, we want to estimate the hidden variable
V n.



http://www.uio.no/studier/emner/matnat/biologi/BIO4040/h03/undervisningsmateriale/Lectures/lecture10.pdf

http://www.uio.no/studier/emner/matnat/biologi/BIO4040/h03/undervisningsmateriale/Lectures/lecture10.pdf
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15.10.3 Other, more formal, example


Let us consider an autoregressive process S,
S(t+1) = f( S(t) ) + noise 1


that is not directly observed: we only observe a certain function of S, with noise.
X = g(S) + noise 2.


One says that
S is the unobserved state
X are the observed data
g is the transition function
f is the measure function
noise 1 is the state noise
noise 2 is the measure noise


Quite often, we shall require that f and g be linear, but we will accept that the change with
time.
One can consider different problems:
1. Given f, g, the variance of both noises, the first values of X, forecast the past and future
values if S – this is the Kalman filter.
2. Given the first values of X, find f, g and the variance of both noises. For this problem,
we shall assume that f and g have a simple (linear) known form.


15.10.4 Examples


The following process
S(n) = a S(n-1) + u(n)
X(n) = S(n) + v(n)


is an ARMA(1,1) process.
(Exercise for the reaser: check this.)
All ARMA(1,1) processes are actually SSM: if
X(n) = a X(n-1) + u(n) + b u(n-1),


then, if we set
/ X(n-1) \
| |


S(n) = | u(n) |
| |
\ u(n-1) /


we get:
X = ( a 1 b ) * S


/ a 1 0 \ / 0 \
| | | |


S(n) = | 0 0 0 | * S(n-1) + | u(n) |
| | | |
\ 0 0 1 / \ 0 /


This can be generalized: all ARA(p,q) processes are SSM.


15.10.5 Scope of State Space Models


They are very general: they contain, as a special case, ARMA models, and even ARMA
models with time-changing coefficients.
They also allow us to study multivariate data: it we have several time series, we can either:
study them one at a time; or consider them as independant realizations of a single process
(panel data); or consider them as a single vector time series, accounting for correlations (or
more complicated relations) between them – SSM can be used in the last case.
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15.10.6 Kalman filter


Let us denote
x: state of the system, the hidden variables (that play a
pivotal role in the evolution of the system but cannot be
directly measured)


y: the quantities that can actually be measured


The state of the system (i.e., the hidden variables) at time n depend on the state of the
system at time n-1, but it is a stochastic process: some noise (here, epsilon) intervenes.
x n = f ( x {n-1}, epsilon {n-1} )


For instance, if the model states that x is “constant except that it moves a bit”, we can
model it as a random walk,
x n = x {n-1} + epsilon {n-1}.


If the variance of epsilon is small, x will indeed appear “not to move too much”.
The quantities actually measures are a function of the state of the system, with some noise
(here, eta),
y n = g ( x n, eta n )


For instance, if we simply measure the state of the system, but if we can only do so with
some imprecision, the equation would be
y n = x n + epsilon n.


We now compute the probability density of the hidden variables x n given the observed
variables y 1, y 2, ..., y n. We proceed in two steps: first, the a priori estimate,
p( x n | y 1, ..., y {n-1} )


where we do not use (yet) the value of the observed variable at time n; and second,
p( x n | y 1, ..., y {n-1}, y n ).


If you really want formulas:
p( x n | y 1, ..., y {n-1} ) = Integral of p(x n|x {n-1}) p(x {n-1}|y1,...,y {n-1})


d x {n-1}


p( y n | x n ) p( x n | y 1,...,y n )
p( x n | y 1, ..., y n ) = ---------------------------------------


p( y n | y 1,...,y n)


p( y n | x n ) p( x n | y 1,...,y n )
= -----------------------------------------------


Integral of p(y n|x n) p(x n|y 1,...y n) dx n


There are too many integrals, so we do not really use those equations (but actually, we
could, if the phenomena was was sufficiently non-linear and/or non-gaussian, with Monte
Carlo simulations – this would be called a Particle Filter). To simplify those formulas, let
us assume that the transition and measurement function f and g are linear
x n = f ( x {n-1}, epsilon {n-1} )


= A x {n-1} + W epsilon {n-1}


y n = g ( x n, eta n )
= H x n + U eta n


and that all the random variables are gaussian (it suffices to assume that the noises eta
and epsilon are gaussian). Then, instead of estimating the whole probability distribution
function of the a priori estimate
x n | y 1,...,y {n-1}


and the a posteriori estimate
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x n | y 1,...,y {n-1},y n


it suffices to compute the expectation and the variance of those apriori
\bar x n = E[ x n | y 1,...,y {n-1} ]
\bar P = Var[ x n | y 1,...,y {n-1} ]


and a posteriori estimates
\hat x n = E[ x n | y 1,...,y n ]
\hat P = Var[ x n | y 1,...,y n ]


The formulas become:
\bar x n = E[ x n | y 1,...,y {n-1} ]


= E[ A x {n-1} + W epsilon {n-1} | y 1,...,y {n-1} ]
= A E[ x {n-1} | y 1,...,y {n-1} ]
= A \hat x {n-1}


\bar P n = Var[ x n | y 1,...,y {n-1} ]
= Var[ A x {n-1} + W epsilon {n-1} | y 1,...,y {n-1} ]
= Var[ A x {n-1} | y 1,...,y {n-1} ] + Var[ W epsilon {n-1} | y 1,...,y {n-1}


]
= A Var[ A x {n-1} | y 1,...,y {n-1} ] A’ + W Var[ epsilon ] W’
= A \hat P {n-1} A’ + W Q W’


where
Q = Var[ epsilon ].


For the second set of formulas, it is trickier. We first need to know a little more about
conditionnal expectation and conditionnal variance, namely
If (X,Y) is gaussian
Then


E[X|Y] = E[X] + Cov(X,Y) (Var[Y])^-1 (Y-E[Y])
Var[X|Y] = Var[X] - Cov(X,Y) (Var[Y])^-1 Cov(X,Y)’


We get
E[x1|y1] = E[x1] + Cov(x1,y1) (Var y1)^-1 (y1-E[y1])


where
y1 = H x1 + U eta
Var[eta] = R
Cov(x1,y1) = Cov( x1, H x1 + U eta )


= Cov( x1, H x1 )
= (Var x1) H’
= \bar P1 H’


Var y1 = Var[ H x1 + U eta ]
= Var[ H x1 ] + Var[ U eta ]
= H Var[x1] H’ + U Var[eta] U’
= H \bar P1 H’ + U R U’


E[y1] = E[ H x1 + U eta ]
= H E[x1]
= H bar x1


thus (I take n=1 for readability reasons):
E[x1|y1] = \bar x1 + \bar P1 H’ (H \bar P1 H’ + U R U’)^-1 ( y1 - H \bar x1


)


and
Var[x1|y1] = Var[x1] - Cov(x1,y1) (Var[y1])^-1 Cov(x1,y1)’


= \bar P1 - \bar P1 H’ (H \bar P1 H’ + U R U’)^-1 (\bar P1 H)’
= \bar P1 - \bar P1 H’ (H \bar P1 H’ + U R U’)^-1 H \bar P1 ’


In general,
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\hat x n = E[ x n | y 1,...,y n ]
= \bar x n + \bar P n H’ (H \bar P n H’ + U R U’)^-1 ( y n - H \bar


x n )
\hat P n = Var[ x 1 | y 1,...,y n ]


= \bar P n - \bar P n H’ (H \bar P n H’ + U R U’)^-1 H \bar P n ’


TODO: check this formula
TODO: implement this
TODO: give some simple models (LLM, LTM), mention the already available implementations
TODO: CAPM regression


TODO: Extended Kalman Filter (EKF)
TODO: Unscented Kalman Filter (UKF)
TODO: Particle Filter


15.10.7 1-dimensional Kalman filter


The stats package contains a function StructTS that filters a 1-dimensional signal as- suming
it was produced by a Local Level Model (LLM) or a Local Trend Model (LTM).
TODO


15.10.8 Multi-dimensional Kalman filter: the dse1 package


The DSE package provides a Kalman filter for a general State Space Model (the model
has too many parameters for them to be reliably estimated, unless we have very long time
series).
TODO: try to use it


The DSE package also contains a function to compute the likelihood of a model.
TODO: use it to estimate the parameters


15.10.9 Adaptive least squares


Adaptive Least Squares (ALS) Regression is a non-linear Kalman filter, defined by the
following State Space Model.
beta {t+1} = beta t + noise (hidden variables)


x t = noise (observed variables)
y t = beta t x t + noise (observed variable)


This is simply a regression whose coefficient, beta, is a random walk. As we multiply two
of the variables, this is a non-linear model.
TODO...


15.10.10 Extended Kalman filter


TODO
If the state space model is not linear, just linearize it.
This still assumes Gaussian, additive noise.


15.10.11 Particle Kalman filter


TODO
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15.10.12 TODO


TODO
State-space models:
library(dse)
library(dse1)
library(dse2)
library(dseplus)


library(tseries)
(econometrics)


Kalman filtering
ARAR
Intervention analysis (at some moment in time, the model changes)
Transfer function models (?)


regime switching models


15.11 Non-linear time series and chaos


15.11.1 Power laws


A gaussian random walk (or its continuous-time equivalent, a brownian motion) is charac-
terized by
dt is proportionnal to (dx)^2


We can use this to simulate a random walk: if we know the values of x(0) and x(N), we
choose a value for x(N/2) according to a gaussian distribution of mean (x(0) + x(N)) / 2
and standard deviation (proportionnal to) Nˆ(1/2).


0 200 400 600 800 1000


−
60


−
50


−
40


−
30


−
20


−
10


0


power law random walk, alpha = 2


time


x


f <- function (N, alpha = 2, reverting = FALSE) {
if (N <= 1) {
res <- 0


} else {
a <- rnorm(1) * (N/2)^(1/alpha)
res <- c( seq(0, a, length = N/2) + f(N/2, reverting = TRUE),


seq(a, 0, length = N/2) + f(N/2, reverting = TRUE) )
}
if (!reverting) {
final <- rnorm(1) * N^(1/alpha)
res <- res + seq(0, final, length = length(res))


}
res


}
N <- 1024
plot( f(N),


type = "l",
xlab = "time", ylab = "x",


main = "power law random walk, alpha = 2" )







CHAPTER 15. TIME SERIES 1102


0 200 400 600 800 1000


0
20


40
60


80


Power law random walk, alpha = 2


Index


0 200 400 600 800 1000


−
4


0
2


4
6


Index


di
ff(


x)


Histogram of diff(x)


diff(x)


D
en


si
ty


−6 −4 −2 0 2 4 6


0.
00


0.
15


●


●
●


●
●


●●
●


●


●


●
●


●


● ●


●


●


●
●


●


●


●


●


●


●●●


●


●


●●


●
●●


●


● ● ● ●


●●


●●


●●
●


●●
● ●


● ●


● ●


●


● ●●●
●●


●


●


●


●


●
●●


●


● ●
●


●●


●


●


●
●


●


●
●


●


●●


●


●
●


●


●


●


●


●
●


●


●


●


●


●●
●


●
●


●


●


●
●●


●


●
●


● ●●●
●


●


●


●


●●
●


●●


●


●


●●
●


●


●


●


●●


●


●


●●


●


●


●●


●●


●


●


●


●


●


●
●


●


●


●


●
●


●


●
●


●


●
●


●●
●


●


●●


●


●
●●●


●


●


●


●
●


●
●


●


●


●●


●●
●


●


●
●


●


●


●●


●●


●


●


●


●


●
●


●
●●●


●


●


●●●● ●
●


●●
●●●


●


●


●


●
●


●


●


●


●


●
●


●


●


●
●


● ●


●


●


●


●


●
●


●


●
●


●


●


●


●


●
●


●● ●
●


●


●


●


●●


●
●●


●


●


●


●


●


●


●


●


●●


●


●


●


●


●


●


●


● ●


●
●


●


●


●
●


●●
●


●


●


●


●●
●


●


●


●


●●●●
●●


●
●


●


●


●●


●●


● ●
●


●


●


●


●
●


●
●


●●●
●


●


●


●
●


●


●
●


●


●


●
●●


●
●●●●●


●
●


●
●


●● ●


●


●●
●


●●
●


● ●●
●


●
●●


●
●●


●
● ●●


●


●


●


●


●
●


●●●●●


●●
●


●


●


●


●


●


●


●●●


●


●


● ●
●


●


●


●
●


●


●
●


●


● ●


●
●


●
●●●●


●
●


●●
●


●
●●●


●


●


●●


●●
●


●
●


●


●


●●


●


●


●


●


●


●
●●


●
●


●


●


●


●
●


●
●


●
●


●


●
●


●


●
●


●●
●


●


●
●●


●


●
●


●


●


●


●


●


●
●


●


●


●


●


●
● ●●


●


●
●


●
●


●


●


●


●


●
●


●
●


●
●●


●


●
●●


●


●


●


●


●


●
● ●


●


●
●


●
●●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●
●


●


●


●
●


●


●


●


●
●


●
●


●


●


●
● ●


●


●


●
●●


●
●


●


●
●


●


●


●●


●
●●


●


●
●● ●


●


●


●


●


● ●●


●


●
●


●


●


●●


●●


●


●
●


●
●


●


●● ●
●


●
●


●


●


●
●


●
●


● ● ●●● ●●
●


●


●●


●


●


●
●


●


●
●


●●


●


●
● ●


●●
●


●
●●


●


●


●


●


●


●


●


●
●


●
●●●


●●


●


●●
●


●


●●●


●


●


●


●●


●●
●


●
●


●
●●


●


●


●
●


●


●


●
●


●


●


●
●


●


●


●


●


●●


●
●


●●
●●●


●


●


●


●
● ●


●


●


●


●
●●●


●


●


●


●


●


●


●


●


●


●


●


●●


●


●


●●


●


●
●


●


●
●


●


●●
●


●


●●


●


●


●


●
●


●
●


●


●


●


●


●


●


●


●●
●


●●


●


●
●


●


●


●
●● ●


●
●


●●


●


●


●


●


●


●


●


●


●●


●


●
●


●
●


●●
●


●


●


●


●
●●


● ●●●


●


● ●


●


●


●


●


●
●


●


●


●


●


●


●
●


●
●


●
●●


●


●


●


●
●●


●


●●●
● ●


●
●


●●●
●


●●●
●


●


●


●


●
●●


●


●


●
●


●


●


●●
●


●


●


●


●
●●


●●


●


●


●


●


●●
●


●● ●


●
●


●


●


●


●


●


●


● ●


●


● ●
●


●●


●


●


●


●
●


●
●


●


●


●
●●


●
●


●


●


●


●


●


●


●●●
●


●


●●●●


●


●


●


●


●


●
●


●
●


●
●


●●


●
●


●


●


●


●


●


●


●


●
●


●●


● ●
●


●
●


●


●


●


●


●


●


● ●


●


●


●●


●
●


●


●


●


●
●


●●


●


●
●●


●


●


●


●
● ●●


●


●


●


●
●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


●
●


●


●


●


●


●


●


●


●


●


−3 −2 −1 0 1 2 3


−
4


0
4


Normal Q−Q Plot


Theoretical Quantiles


S
am


pl
e 


Q
ua


nt
ile


s


do.it <- function (alpha = 2, N=1024) {
op <- par()
layout(matrix(c(1,2,3, 1,2,4), nc=2))
par(mar=c(2,4,4,2)+.1)
x <- f(N, alpha = alpha)
plot(x,


type="l",
ylab="",
main = paste("Power law random walk, alpha =", alpha))


plot(diff(x), type="l")
par(mar=c(5,4,4,2)+.1)
hist(diff(x),


col = "light blue",
probability = TRUE)


lines(density(diff(x)),
col="red", lwd=3 )


qqnorm(diff(x))
qqline(diff(x), col="red", lwd=3)


par(op)
}
do.it()
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TODO: other plots, to see the exponent...


15.11.2 Beta


The spectrum of a random walk is very characteristic.


0.0 0.1 0.2 0.3 0.4 0.5


1e
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05
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02


1e
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01
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+
04


frequency
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Series: x
Raw Periodogram


bandwidth = 2.89e−05


N <- 10000
x <- cumsum(rnorm(N)) # Random walk
y <- spectrum(x)


On a logarithmic scale, it is linear.
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Frequency


S
pe


ct
ra


l d
en


si
ty


plot(y$spec ~ y$freq,
xlab = "Frequency",
ylab = "Spectral density",
log = "xy")


in other words, there exists a real beta such that
spectral density is proportional to 1/frequency^beta


The exponent seems to be around 1.8.


Exponent of the spectral density decay


res


F
re


qu
en


cy


−1.9 −1.8 −1.7 −1.6


0
5


10
15


20
25


N <- 1000
n <- 100
res <- rep(NA, n)
for (i in 1:n) {
x <- cumsum(rnorm(N))
y <- spectrum(x, plot = FALSE)
res[i] <- lm( log(y$spec) ~ log(y$freq) )$coef[2]


}
summary(res)
hist(res, col="light blue",


main = "Exponent of the spectral density decay")


TODO: Isn’t it supposed to be 2?


15.11.3 The colours of noise


TODO: More details


Noises are often classified from the decay of their spectral density:
white noise 1
pink noise 1/f
brown noise (random walk) 1/f^2
black noise 1/f^p with p > 2
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15.11.4 Alpha


We can do the same thing with the AutoCorrelation Function (ACF)


0 500 1000 1500 2000 2500


0.
0


0.
2


0.
4


0.
6


0.
8


1.
0


Lag


A
C


F


Series  x


N <- 10000
x <- cumsum(rnorm(N)) + rnorm(N)
y <- acf(x, lag.max=N/4)


TODO...
I seem to recall that:
ACF(k) is proportional to 1/k^alpha


15.11.5 H (Hurst exponent)


TODO...
I seem to recall that:
the spectral density is proportional to 1/f^beta
ACF(k) is proportional to 1/k^alpha
E[ R/S ] is proportional to n^H (n = sample size)


H = (beta - 1) / 2 = 1 - alpha / 2


H = 0.5 random
H > 0.5 long-term memory
H < 0.5 mean reversion


I am confused: is this valid for something resembling a
random walk (e.g., stock prices), or its first difference
(the returns)???


Implementation:
RS <- function (x) {
diff( range( cumsum( x - mean(x)))) / sd(x)


}
hurst <- function (x) {
stopifnot( is.vector(x) )
stopifnot( is.numeric(x) )
stopifnot( length(x) >= 16 )
n <- length(x)
N <- floor( log(n/8) / log(2) ) # Number of subdivisions
size <- rep(NA, length=N)
rs <- rep(NA, length=N)
for (k in 1:N) {
l <- floor( n / 2^k ) # Subdivision length
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start <- seq(1, n-l, by=floor(l/2))
y <- rep(NA, length=length(start))
for (i in seq(along=start)) {
y[i] <- RS( x[ start[i] : (start[i] + l) ] )


}
size[k] <- l
rs[k] <- mean(y)


}
size <- log(size)
rs <- log(rs)
lm(rs ~ size) $ coef [2]


}


N <- 200
n <- 100
res <- rep(NA, n)
for (i in 1:n) {
res[i] <- hurst(rnorm(N))


}
hist(res, col="light blue",


main="Hurst exponent of an iid gaussian")
%--


TODO
Look how stable its estimation is (very unstable?)
No, not that bad.


TODO: Design other examples: long-term memory, mean
reversion.


TODO: Try this with financial data (daily, weekly, monthly
returns)


15.11.6 Fractionnal brownian motion


TODO


15.11.7 Generalized Hurst exponent


TODO


( Mean abs( x(t+T) - x(t) )^q )^(1/q) ~ T ^ H q


Persistence probability (cf survival analysis):


P(T) = P[ x(t) \not \in range( x(t+1), ..., x(t+T) ) ]


Persistence exponent:


P(T) ~ T ^ -theta
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15.11.8 Other plots
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LAG(x, k)


x


LAG <- function (x, k = 1) {
stopifnot( is.vector(x) )
n <- length(x)
stopifnot( abs(k) < n )
if (k > 0) {
x <- c( x[ -(1:k) ], rep(NA, k) )


} else if ( k < 0 ) {
k <- -k
x <- c(rep(NA,k), x[ 1:(k-n) ])


}
x


}


x <- as.vector(sunspots)


# Delay plots
op <- par(mfrow=c(3,3))
for (k in 1:9) {


plot( LAG(x, k), x )
}
par(op)
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for (k in 1:N) {
d <- cbind(d, LAG(x,k))


}
d <- d[ 1:(dim(d)[1]-N), ]
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plot(r$x[,1:2])
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op <- par(mfrow=c(3,3))
for (i in 1 + 1:9) {
plot(r$x[,c(1,k)])


}
par(op)


# Recurrence plot
r <- outer(x, x, "-")
image(r)
image( abs(r) )


# Space-time separation plot
s <- tapply( as.vector(abs(r)),


as.vector(abs(row(r) - col(r))),
quantile, seq(.1, .9, by=.1)


)
s <- t(do.call(cbind, s))
matplot(s, type="l", lty=1,


xlab="time distance", ylab="signal distance",
main="Space-time separation plot")


# TODO: variants (moving quantiles, quantile regression)
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15.11.9 Recurrence plot


The recurrence plot of a time series plots the distance between x(t1) and x(t2) as a function
of t1 and t2.
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Recurrence plot: sine
recurrence plot <- function (x, ...) {
image(outer(x, x, function (a, b) abs(a-b)), ...)
box()


}
N <- 500
recurrence plot( sin(seq(0, 10*pi, length=N)),


main = "Recurrence plot: sine")
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Recurrence plot: noise
recurrence plot( rnorm(100),


main = "Recurrence plot: noise" )
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Recurrence plot: random walk
recurrence plot( cumsum(rnorm(200)),


main = "Recurrence plot: random walk")
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Recurrence plot: Lorentz attractor
library(tseriesChaos)
recurrence plot(lorenz.ts[100:200],


main = "Recurrence plot: Lorentz attractor")
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Thresholded recurrence plot
# Thresholded recurrence plot
thresholded recurrence plot <- function (
x,
threshold = 0,
FUN = function (x) x,
...


) {
image(-outer(


x, x,
function (a, b)
ifelse(FUN(a-b)>threshold,1,0)


),
...)


box()
}
thresholded recurrence plot(
lorenz.ts[1:100],
0,


main = "Thresholded recurrence plot"
)
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Thresholded recurrence plot
thresholded recurrence plot(
lorenz.ts[1:100],
5,
abs,
main = "Thresholded recurrence plot"


)


This is the “1-dimensional recurrence plot”: instead of taking the distance between x(t1) and
x(t2), one can compute the distance between the m-dimensional vectors (x(t1),x(t1+1),...,x(t1+m-
1)) and (x(t2),x(t2+1),...,x(t2+m-1)).
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1−dimensional recurrence plot
# Recurrence plot
recurrence plot <- function (x, m, ...) {
stopifnot (m >= 1, m == floor(m))
res <- outer(x, x, function (a,b) (a-b)^2)
i <- 2
LAG <- function (x, lag) {
stopifnot(lag > 0)
if (lag >= length(x)) {
rep(NA, length(x))


} else {
c(rep(NA, lag), x[1:(length(x)-lag)])


}
}
while (i <= m) {
res <- res + outer(LAG(x,i-1), LAG(x,i-1), function (a,b) (a-b)^2)
i <- i + 1


}
res <- sqrt(res)


if (m>1) {
res <- res[ - (1:(m-1)), ] [ , - (1:(m-1)) ]


}
image(res, ...)
box()


}
library(tseriesChaos)
recurrence plot(lorenz.ts[1:200], m=1,


main = "1-dimensional recurrence plot")
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0 recurrence plot(lorenz.ts[1:200], m=10)
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Recurrence plot
# A more complete function
recurrence plot <- function (
x,
m=1, # Dimension of the embedding
t=1, # Lag used to define this embedding
epsilon=NULL, # If non-NULL, threshold
box=TRUE, ...


) {
stopifnot( length(m) == 1, m >= 1, m == floor(m),


length(t) == 1, t >= 1, t == floor(t),
is.null(epsilon) || (
length(epsilon) == 1 && epsilon > 0 ) )


stopifnot( length(x) > m * t )
res <- outer(x, x, function (a,b) (a-b)^2)
i <- 2
LAG <- function (x, lag) {
stopifnot(lag > 0)
if (lag >= length(x)) {


rep(NA, length(x))
} else {
c(rep(NA, lag), x[1:(length(x)-lag)])


}
}
while (i <= m) {
y <- LAG(x,t*(i-1))
res <- res + outer(y, y, function (a,b) (a-b)^2)
i <- i + 1


}
res <- sqrt(res)
if (!is.null(epsilon)) {
res <- res > epsilon


}
if (m>1) {
# TODO: Check this...
res <- res[ - (1:(t*(m-1))), ] [ , - (1:(t*(m-1))) ]


}
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image(res, ...)
if (box) {
box()


}
}
library(tseriesChaos)
recurrence plot(lorenz.ts[1:200], m=10)
title("Recurrence plot")


Recurrence plots


op <- par(mfrow=c(5,5), mar=c(0,0,0,0), oma=c(0,0,2,0))
for (i in 1:5) {
for (j in 1:5) {
recurrence plot(lorenz.ts[1:200], m=i, t=j,


axes=FALSE)
}


}
par(op)
mtext("Recurrence plots", line=3, font=2, cex=1.2)


For more about recurrence plots, check
http://www.recurrence-plot.tk/


15.11.10 Phase plot


The phase plane plot of a time series (or, more generally, a dynamical system) is the plot of
dx/dt versus x. If you use the time to select the colour of the points, this can highlight a
regime change.
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phase plane plot <- function (
x,
col=rainbow(length(x)-1),
xlab = "x", ylab = "dx/dt",
...) {
plot( x[-1], diff(x), col = col,


xlab = xlab, ylab = ylab, ... )
}
phase plane plot( sin(seq(0, 20*pi, length=200)), pch=16 )



http://www.recurrence-plot.tk/
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x <- c(sin(seq(0, 5*pi, length=500)),
sin(seq(0, 5*pi, length=1000)) + .2*rnorm(1000),
sin(seq(0, 2*pi, length=500)^2))
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After turning a time series into a function, one can also look into Poincare sections.
http://mathworld.wolfram.com/SurfaceofSection.html
http://www.maplesoft.com/applications/app_center_view.aspx?AID=5&CID=1&SCID=


3
http://images.google.co.uk/images?q=poincare%20section


15.11.11 Correlation dimension


Phase space analysis, correlation dimension
number of i<j s.t. abs(xi-xj)<r


C(r) = -------------------------------
nomber of i<j (i.e., n(n-1))


in dimension d, C(r) sis proportional to r^d
We get the dimension of the attractor.
But the noise may be troublesome.


15.11.12 Zoom, Fish-eye


You may wish to zoom on part of the data, to highlight features hidden in a dense cloud of
points. Traditional zooming would only display a portion of the data, without any defor-
mation, but you can devise transformations that zoom in on part of the image and out on
the rest. In the following example, some text is hidden in the cloud of points: will you be
able to read it?



http://mathworld.wolfram.com/SurfaceofSection.html

http://www.maplesoft.com/applications/app_center_view.aspx?AID=5&CID=1&SCID=3

http://www.maplesoft.com/applications/app_center_view.aspx?AID=5&CID=1&SCID=3

http://images.google.co.uk/images?q=poincare%20section
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library(pixmap)
z <- read.pnm("2006-08-27 Hello.pgm") # Created (by hand) with The Gimp
z <- z@grey
d <- cbind(
x = col(z)[ ! z ],
y = -row(z)[ ! z ]


)
N <- 10000
d <- d[sample(1:nrow(d), N, replace = TRUE),]
d <- d + rnorm(2*N)
#plot(d)
d <- apply(d, 2, scale)
explode <- function (
d,
FUN = function (x) { rank(x, na.last="keep") / length(x) }


) {
# Convert to polar coordinates
d <- data.frame(


rho = sqrt(d[,1]^2 + d[,2]^2),
theta = atan2(d[,2], d[,1])


)
d$rho <- FUN(d$rho)
# Convert back to cartesian coordinates
d <- cbind(
x = d$rho * cos(d$theta),
y = d$rho * sin(d$theta)


)
d


}
#plot(explode(d))
d <- explode(d, FUN = function (x) x^4)
d <- apply(d, 2, function (x) (x - min(x))/diff(range(x)))
d <- rbind(d, matrix(rnorm(2*N), nc=2))


# Exercice: Find the word in the following cloud of points...
op <- par(mfrow=c(2,2), mar=c(.1,.1,.1,.1))
plot(d, axes = FALSE)
box()
plot( rank(d[,1]), rank(d[,2]), axes = FALSE )
box()
plot(explode(d), axes = FALSE)
box()
plot(explode(d, atan), axes = FALSE)
box()
par(op)


This also works with a single dimension.
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x


one dimensional fish eye <- function (x1, x2, y, method="natural") {
n <- length(y)
x <- seq(min(x1), max(x1), length=n)
x3 <- splinefun(x1, x2, method = method)(x)
if (! all(x3 == sort(x3))) {
warning("Non monotonic transformation!")


}
d <- cbind(x=x3, y=y)
op1 <- par(mar=c(.1,.1,.1,.1))
plot(d, type="l", lwd=3, axes = FALSE)
box()
abline(v=d[seq(0,length(y),by=ceiling(length(y)/50)),1])
op2 <- par(fig=c(.02,.2,.8,.98), mar=c(0,0,0,0), new=TRUE)
plot(x, x3, type = "l", lwd = 3, axes = FALSE)
polygon(rep(par("usr")[1:2], 2)[c(1,2,4,3)],


rep(par("usr")[3:4], each=2),
border = NA, col = "white")


lines(x, x3, type = "l", lwd = 3, col="blue")


box(lwd=3, col="blue")
par(op2)
par(op1)


}
library(Ecdat) # Some econometric data
data(DM)
y <- DM$s
# More details in the middle
one dimensional fish eye(
seq(0, 1, length = 4),
c(0, .2, .8, 1),
y


)


x


# More details on the left
one dimensional fish eye(
c(0, .33, .67, 1),
c(0, .6, .9, 1),
y


)
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x


# More details on the right
one dimensional fish eye(
seq(0, 1, length=4),
c(0, .1, .4, 1),
y


)


15.12 Other times


15.12.1 Irregular time series


TODO


15.12.2 Alternate times


When plotting time series, the time variable given by the actual, clock-on-the-wall time is
not always the best way of viewing your data. If the phenomenon studied goes faster at
some times of the day and slower at others, a time distortion according to this pace might
be helpful. This is the case with financial data: we can plot intraday prices with respect to
clock time or market time (defined, e.g., with the number of transactions or the cumulated
volume of those transactions).


y


0
1


2
3


4


x1


x2


0.0 0.5 1.0 1.5 2.0


0 0.5 1 1.5 2 2.5 3 3.5


y


x1


x2


0 0.6 1 1.2 1.4 1.6 1.8 2


0
1


2
3


4


0 1 2 3 4


two time scales <- function (x1, x2, y) {
stopifnot( length(x1) == length(y),


length(x2) == length(y),
x1 == sort(x1),
x2 == sort(x2) )


op <- par(mfrow=c(2,1))
plot(x1, y, type="l", xlab="", axes=FALSE)
box()
axis(2, lwd=2)
mtext(side=1, "x1", line=2.5, col="blue", font=2)
mtext(side=3, "x2", line=2.5, col="red", font=2)
x2lab <- pretty(x2, 10)
axis(1, col="blue", lwd=2)
axis(3, at = approx(x2, x1, x2lab)$y, labels=x2lab,


col="red", lwd=2)
plot(x2, y, type="l", axes=FALSE,


xlab="")
box()


mtext(side=1, "x1", line=2.5, col="blue", font=2)
mtext(side=3, "x2", line=2.5, col="red", font=2)
x1lab <- pretty(x1, 10)
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axis(1, at = approx(x1,x2,x1lab)$y, labels=x1lab,
col="blue", lwd=2)


axis(2, lwd=2)
axis(3, col="red", lwd=2)
par(op)


}
N <- 100
x1 <- seq(0, 2, length=N)
x2 <- x1^2
y <- x2
two time scales(x1,x2,y)
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x <- read.csv(gzfile("2006-08-27 tick data.csv.gz"))
op <- par(mfrow=c(3,1))
x$DateTime <- as.POSIXct(paste(as.character(x$Date),


as.character(x$Time)))
x <- x[!is.na(x$TradePrice),]
plot(TradePrice ~ DateTime,


data = x,
type = "l",
xlab = "Clock time",
main = "Is time a good choice for the X axis?")


plot(x$TradePrice,
type = "l",
ylab = "TradePrice",
xlab = "Transaction time")


coalesce <- function (x,y) ifelse(!is.na(x),x,y)
plot(cumsum(coalesce(x$TradeSize,0)),


x$TradePrice,
type = "l",


xlab = "Volume time",
ylab = "TradePrice")


par(op)
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two time scales(
cumsum(coalesce(x$TradeSize,0)),
as.numeric(x$DateTime - x$DateTime[1]) / 3600,
x$TradePrice


)


This is especially useful when comparing two time series that should follow the same pattern,
but one goes faster than the other or there is a (varying) delay between the two (this idea
emerged in speech recognition problems). “Dynamic Time Warping” (DTW) refers to the
algorithms used to automatically map the time of one time series to that of the other – they
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were initially used in spech recognition.
http://www.cs.ucr.edu/~eamonn/


The following example is similar, but the second time is derived from the data: we want the
absolute value of the slope of the curve (i.e., the amplitude of the variations) to be always
the same.


Index


data driven time warp <- function (y) {
cbind(
x = cumsum(c(0, abs(diff(y)))),
y = y


)
}
library(Ecdat) # Some econometric data
data(DM)
y <- DM$s
i <- seq(1,length(y),by=10)
op <- par(mfrow=c(2,1), mar=c(.1,.1,.1,.1))
plot(y, type="l", axes = FALSE)
abline(v=i, col="grey")
lines(y, lwd=3)
box()
d <- data driven time warp(y)
plot(d, type="l", axes=FALSE)
abline(v=d[i,1], col="grey")


lines(d, lwd=3)
box()
par(op)


15.12.3 Continuous time, stochastic differential equations


TODO


15.13 Discrete-valued time series: Markov chains and
beyond


Markov chains are very similar to AR(n) processes, but they have discrete values.


15.13.1 Example, definition


TODO
(The spider example)
(already there, see below, put it here...)


15.13.2 Stationnary distribution


Quite often, the vector of probabilities at time t stabilizes when t increases and does not
depend on the starting vector.
TODO: example


15.13.3 Irreducibility


Actually, the stationnary distribution is not always unique. For instance, if you can partition
the states into two sets and if it is impossible to go from one to the other: you will get a
stationnary distribution for each of those sets.



http://www.cs.ucr.edu/~eamonn/
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TODO: Examples (plot)


In the transition matrix, it means that we can change the ordering of the states so that it
be block diagonal.
TODO: Example of such a matrix.
Give an example in which we have to reorder the states.


A Markov chain is said to be irreducible if, given any two states a and b, it is always possible
to go from a to b, potentially in several steps.


15.13.4 Aperiodicity


A return time to a state e is an integer t such that
P( X(t)=e | X(0)=e ).


A Markov chain is aperiodic if, for any state, the gcd of its return times equals 1.
For instance, if we can partition the states into two classes and, if the transitions always go
from one class to the other (i.e., the Markov chain has the structure of a bipartite graph),
the return times are always even: such a Markov chain is not aperiodic.


15.13.5 Ergodicity


If a Markov chain is irreducible and aperiodic, then it has a unique stationnary distribution
and we can use this Markov chain to integrate with respect to this distribution.
1/N * Sum( f(X n), n=1..N ) ---> Integral( f * p )


15.13.6 Reversible Markov Chain


TODO: understand
A Markov chain with transition matrix P and stationnary distribution p is reversible if
P(y|x)p(x) = P(x|y)p(y)


15.14 Variants of Markov chains


15.14.1 Markov chains


A Markov chain is a sequence of random variables Xn such that
P[ X(n+1)=a | X(n)=b ]


is independant of n. This property is often refered to as “short memory”: if X(n+1) is a
decision taken on day n+1, it only depends on what happened the previous day, not what
happened before.
Let us imagine, for instance, a spider wandering on the edges of a tetrahedron, strolling
from vertex to another. Let us call the vertices 1, 2, 3, 4, X(n) the location of the spider
after n time units. If the spider selects the next vertex at random, we have:
P[ X(n+1) = a | X(n) = a ] = 0
P[ X(n+1) = a | X(n) = b ] = 1/3, if a <> b,


i.e., the probability that it stays on the same vertex is zero and the probability it goes to
one of the three other vertices is 1/3 (for each vertex).
Such a Markov chain is often represented by a transition matrix: the columns correspond
to X(n), the rows to X(n+1) and the matrix coefficients are the transition probabilities.


0 1/3 1/3 1/3
1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0


One can then write
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P n = M^n * P 0


where M is the transition matrix and P k the vector containing the probability of each state
(here, each vertex) at time k.
Let us make the model more interesting by adding flies on some vertices (the smell will
attract the spider and entice it to stay there) or glue (when it reaches such a vertex, the
spider will be stuck).


0 1/4 1/6 0
1/4 0 1/6 0


(fly) 1/2 1/2 1/2 0
(glue) 1/4 1/4 1/6 1


A Markov chain can also be represented as an oriented graph: the vertices are the states
(in our example, these are the vertices of the tetrahedron) and the edges are the transitions
(in our example, two for each edge of the tetrahedron: one in each direction); on each edge,
write the transtion probability.
TODO: plot...
(using Rgraphviz?)


Exercice: simulate the path of the spider, either with a computer, or with dice. Compare
those paths: in what proportion of the paths does the spider eat the fly? What is the life
expectancy of the spider (before it gest glued)?
TODO: Perform this simulation...


You may notice that Markov chains are very similar to finite automata: the main difference
between a Markov chain and a probabilistic finite automaton is that in the latter, the labels
are on the transitions, not on the states.
Markov chain example: the extinction of smokers
Smokers’ children have 60% “chances” of smoking while non-smokers’ children only have
20% chances of smoking. Given that half the population currently smokes (when I wrote
this, I was still living in France), can we expect that smokers will eventually disappear?
This situation can be modelled by a 2-state Markov chain, the states being “smoker” and
“non-smoker” and the transitions corresponding to generation renewal (to simplify things,
we assume that each individual has exactly one child). The probability vector P k is then
the proportion of smokers and non-smokers in generation k.
Exercise: write the transition matrix; compute P 100; what is the limit? Do smokers
eventually dwindle and disappear?
Remark: this is very similar to the evolution of an animal population facing a predator,
described by a (system of) differential equation(s): Markov chains are a discrete analogue
of some evolution models.
TODO: Picture?
TODO: URL?


Other Markov chain example
From an english text, one can derive transition probabilities from one word to another, e.g.,
P[ "destruction" given that the previous word was "mass" ] = 0.002,


i.e.,
P[ X(n+1) = "destruction" | X(n) = "mass" ] = 0.002


Of course, there are really many of them (if you disregard rare words and limit yourself to
2000 words, you would have 4 million probabilities – unless your corpus is really huge, many
of them would be zero).
Exercise: write a program that computes those probabilities from a set of texts (a corpus).
Write another program that uses those probabilities to perform a simulation, i.e., that wrotes
a text using that Markov chain. Modify those programs so that they use order 2 Markov
chains, i.e., probabilities
P[ X(n+2) | X(n+1), X(n) ].


I think this example is detailed in the book “Programming pearls”.
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http://netlib.bell-labs.com/cm/cs/pearls/


Remark: if you consider letters (or pairs of letters, forgetting spaces – these are called 2-
grams) instead of words, you can easily and reliably recognize the manguage of a text (using
the proportion of letters, regardless of the order, is less reliable).
Similarly, you can design a Markov chain to recognise a family of amino-acid sequences.


0.0 0.2 0.4 0.6 0.8 1.0
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0
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4


0.
6
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0


# Building a Markov chain
markov <- function (x) {
x <- strsplit(x,’’)[[1]]
x <- factor(x)
aa <- strsplit("ACDEFGHIKLMNPSQRTVWY01",’’)[[1]]
n <- length(aa)
m <- matrix(0, nr=n, nc=n)
colnames(m) <- aa
rownames(m) <- aa
m["1","1"] <- 1
m["0", x[1]] <- m["0", x[1]] +1
for (i in 1:(length(x)-1)) {
m[ x[i], x[i+1] ] <- m[ x[i], x[i+1] ] +1


}
m[ x[length(x)], "1" ] <- m[ x[length(x)], "1" ] +1
# This is a contingency matrix, we want a probability
# matrix, where the sum of each row is 1
m <- m +.001 # Pas n


m <- m/apply(m,1,sum)
print(round(m, digits=2))
invisible(m)


}
x <-"MAKGVAVLNSSEGVTGTIFFTQEGDGVTTVSGTVSGLKPGLHGFHVHALGDTTNGCMSTGPHFNPDGKTHGAPEDANRHAGDLGNITVGDDGTATFTITDCQIPLTGPNSIVGRAVVVHADPDDLGKGGHELSLATGNAGGRVACGIIGLQG"
m <- markov(x)
image(m)


Exercise: use this Markov chain to build new sequences.
If you estimate the parameters (the transition matrix) of a Markov chain naively, by counting
the number of occurrences of each transition, this may yield null probabilities: you can avoid
them with Laplace pseudocounts


n a + 1
P(a) = --------------


sum(n i+1)


or with “m-estimators”
n a + m


P(a) = ----------------
sum(n i) + m


(one then says there are m virtual instances).
Other Markov chain example
(This example is not mine)


In the Land of Oz they never have two nice days in a row. If
they have a nice day they are just as likely to have snow as
rain in the next . If they have snow (or rain) they have an
even chance of having the same in the next day. If there is
a change from snow or rain, only half of the time is this
change to a nice day.


You plan to arrive in the Land of Oz on a Monday, but
require that it did not rain on Sunday.



http://netlib.bell-labs.com/cm/cs/pearls/





CHAPTER 15. TIME SERIES 1126


1. What is the probability that Monday is a nice day?


2. What is the probability that the next Saturday is a nice day?


3. When you arrive, it is snowing. What is the probability
that the next Saturday is a nice day?


4. On Tuesday, you sleep all day, and on Wednesday it is
still snowing. What is the probability that the weather
was nice when you were sleeping?


5. On a long span of time, what are the proportion of
snowy, rainy and nice days? Is this climate description
valid right away or should we wait some time for a "steady
regime" to kick in?


Markov chains are merely another presentation of the notion of conditional probability, a
graphical and algorithmic one.
Exercise: another Markov chain example
TODO: Translation


On considere une population diplo eux alls A et
a, enerations non recouvrantes. Il y a trois gtypes
possibles, b1=AA, b2=Aa et b3=aa. Il y a six types de
couples possibles : E1 = AA AA, E2 = AA Aa, E3 = Aa Aa, E4 = Aa aa, E5 =


AA aa, E6 = aa aa.


Modser cette situation par une cha de Markov en
supposant que les accouplements se font entre frs et
soeurs (i.e., entre enfants issus d’un m couple).


(Indication : on pourra choisir les diffnts types de
couples, E1, E2, ..., E6 comme ts.)


Quelle est la frence limite des divers gtypes ?


Hidden Markov chains (or Hidden Markov Models, HMM)
A hidden Markov model (HMM) is a Markov chain whose states have probabilistic labels
and whose states are not observed: only the labels are. In other words, the states are hidden,
but they emit labels or symbols, that are observed.
Let us come back to our wandering spider example. When it is stuck on the glue vertex, it
screams for help with probability 0.8 (and remains silent, frozen by fear, with probability
0.2); when it reaches the fly vertex, it is a scream of joy with probability 0.8 (and a silent
feast with probability 0.2); when it is on another vertex, there is a scream of joy with
probability 0.1 (it probably dreams of the fly vertex) and a scream for help with probability
0.1 (a nightmare) and remains silent with probability 0.8.
Those probabilities can be represented by a matrix,
silence .8 .8 .2 .2
scream for help .1 .1 0 .8
scream of joy .1 .1 .8 0


Imagine that we do not see the spider but that we can only hear it: from the sound, what
can we infer about its path on the tetrahedron?
Here is a summary pf the vocabulary of HMM
tetrahedron transition matrix


voicing emission probability matrix


spider position states
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spider sounds symboles, labels


Example: speech recognition. One can design a HMM for each word and, given a sequence
of phonemes, one tries to find the closest HMM, i.e., the word that most likely produced
this sound. (The HMM is not entirely deterministic because of pronunciation differences
between people, regions).
Example: hand writing. The situation is the same as above: one designs a HMM for each
character and then, given a scribble, one selects the closest HMM (i.e., letter). This is a
real-world example, used by postal services to automatically read postcodes and route mail,
or by PDAs, that recognize simplified letters.
TODO: In those examples, explain what the hidden states are.


Example: text analysis (the states are the PoS (parts-of-speech) of the words, the symbols
are the words). This can be refined: the states are hidden and have no a priori interpretation;
the PoS are classes (or “colours”) of states; the symbols are the words – we do not really
want to predict the hidden states, but just the PoS.
Given a set of texts (a corpus) of an author (or of a given genre, or on a give subject), build
a HMM describing it. Then, given a new text (e.g., a newly discovered manuscript, whose
author is to be identified), check if it is reasonable to claim it is from the same author. This
is not only yet another way of fueling the “Did Ben Johnson write Shakespeare’s plays?”
debate, but also a means of automatically classifying electronic documents, e.g., web pages
or research articles.
Example: predicting coding and non-coding parts of a DNA sequence. The HMM has two
states (coding, non-coding) and the symbols are the bases.
Algorithms around Markov chains
There are three of them
1. Given a HMM, find the probability of a sequence of symbols: forward algorithm.
This probability can be turned into an “alignment” score between the sequence of symbols
and the HMM: if you have several HMMs, this can help choose the “best” (in biology, you
can use this to recognize coding and non-coding DNA, CpG islands, protein families, etc.)
2. Find the most probable path (the sequence of states) given a sequence of symbols: Viterbi
algorithm.
3. Find the parameters of the Markov chain (transition matrix (transition matrix, emission
probability matrix – we already know the topology of the Markov chain: forward-backward
algorithm, aka Baum–Welch algorithm, aka EM algorithm.
Forward algorithm
The problem is the following: we have a hidden Markov chain and a sequence of symbols
produced by it (or not). We want to know the probability of this sequence being generated
by this HMM.
This can help us choose between several HMMs (for instance, the HMM can describe protein
domains, or protein families) – this probability is sometimes refered to as a score, and the
pairing between a sequence and an HMM as an alignment.
If we knew the sequence of states, it would be very easy – but we only have the symbols.
The idea is to go proceed recursively, by computing the probability of observing the first t
symbols given that we reach state e.
As often, to avoid numerical instability, we replace probabilities by their logarithms and
products of probabilities by sums of logarithms of probabilities.
# Not tested


# Transition matrix: mt[i,j] is P[i --> j]
mt <- matrix(c( 1/4,1/2,1/4,


1/8,3/4,1/8,
7/10,1/10,1/5),


nr=3, byrow=T)
rownames(mt) <- c(’p1’,’p2’,’p3’)
colnames(mt) <- rownames(mt)
mt
# Emission probability matrix
pe <- matrix(c( 1/4,1/4,1/4,1/4,


1/3,1/6,1/6,1/3,
1/5,3/10,1/4,1/4),
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nr=3, byrow=T)
rownames(pe) <- rownames(mt)
colnames(pe) <- c(’A’,’C’,’G’,’T’)
pe
# Observed symbols
x <- "TTACGGATCGGGTATC"
x <- strsplit(x,’’)[[1]]


# Forward algorithm: score of the alignment of an HMM and a sequence
forward <- function (mt,pe,x) {
if(length(x)==1) {
x <- strsplit(x,’’)[[1]]


}
k <- length(x)
n <- dim(mt)[1]
m <- matrix(-Inf, nr=n, nc=k)
pe <- log(pe)
mt <- log(mt)
m[,1] <- pe[,x[1]]
for(i in 2:k) {
for (j in 1:n) {
m[j,i] <- sum( m[,i-1] + mt[,j] + pe[j,x[i]] )


}
}
m


}
forward(mt,pe,x)


The problem of those scores is that they depend on the length of the sequence. To facilitate
comparisons, we con consider the (logarithm of the) likelihood ration:


Probability of observing this sequence with this HMM
log -----------------------------------------------------------


Probability of observing this sequence with a trivial HMM


But there is no single best choice for this “trivial HMM”: it can be built from the frequencies
of the amino-acids in the species at hand, etc.
Quite often, this is not a real problem, because we actually want to compare two models:
we just have to compute the quotient of their likelihoods.
This can be done with the Viterbi algorithm.
TODO: ???


The problem is the following: we know the Markov chain and the sequence of symbols it
produced and we want the most probable sequence of states.
The idea is to proceed recursively, computing, for each time t and each state e, the most
probable sequence of states producing the first t symbols and reaching state e.
You quickly realize that the problem is not recursive but requires dynamic programming
(in pictorial terms: if you draw the graph of function calls required to get the result, they
do not form a tree): we will store, in a table, the probability that the first t symbolswere
produces by a sequence of states stopping at state e and then, once this table is filled, we
just read it in the other direction to find the most probable path.
As usual, to avoid numeric instability, we replace probabilities by their logarithms and we
add them instead of multiplying them.
# Not tested
# Transition matrix: mt[i,j] = P[ i --> j ]
mt <- matrix(c( 1/4,1/2,1/4,


1/8,3/4,1/8,
7/10,1/10,1/5),


nr=3, byrow=T)
rownames(mt) <- c(’p1’,’p2’,’p3’)
colnames(mt) <- rownames(mt)
mt
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# Emssion probability matrix
pe <- matrix(c( 1/4,1/4,1/4,1/4,


1/3,1/6,1/6,1/3,
1/5,3/10,1/4,1/4),


nr=3, byrow=T)
rownames(pe) <- rownames(mt)
colnames(pe) <- c(’A’,’C’,’G’,’T’)
pe
# The observed symbols
x <- "TTACGGATCGGGTATC"
x <- strsplit(x,’’)[[1]]
viterbi <- function (mt,pe,x) {
if(length(x)==1) {
x <- strsplit(x,’’)[[1]]


}
pe <- log(pe)
mt <- log(mt)
n <- dim(mt)[1] # Number of states
k <- length(x) # Length of the sequence of symbols
# Building the dynamic programming matrix
m <- matrix(-Inf, nr=n, nc=k)
m[,1] <- pe[,x[1]]
for (i in 2:k) {
for (j in 1:n) {
m[j,i] <- max(m[,i-1] + mt[,j] + pe[,x[i]])


}
}
rownames(m) <- rownames(mt)
colnames(m) <- x
print(m)
# Reconstructiong the path ("chemin" is French for "path")
chemin <- rep(NA, k)
chemin[k] <- which( m[,k] == max(m[,k]) )[1]
for (i in k:2) {
j <- chemin[i]
chemin[i-1] <- which( m[j,i] == max(m[,i-1] + mt[,j] + pe[,x[i]]) )[1]


}
ch <- rownames(pe)[chemin]
print(ch)
image(t(m))
lines( seq(0,1,length=k), seq(0,1,length=n)[chemin] )
invisible(list(matrice=m, chemin=ch))


}
r <- viterbi(mt,pe,x)


See, for instamce:
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/


s1_pg1.html


Topology of Markov chains
Until now, we always assumed that we knew the topology of the Markov chain – quite often,
a clique: each state was reachable from each stae in a single step. Easy enough, but it does
not scale well.
Depending on the nature of sequences studied and on the a priori knowledge of those se-
quences, people suggested ad hoc topologies.
For instance, to study proteins, one aound have pairong states, insertion states, deletion
states (that do not emit any symbol), an initial state and a final state.
TODO: Picture


From a multiple protein alignment (or a PSSM), one can easily obtain the transition and
emission probabilities: those Markov chains are just another way of representing a PSSM.



http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s1_pg1.html

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s1_pg1.html





CHAPTER 15. TIME SERIES 1130


TODO: THe same picture as above, with probabilities, and
the corresponding PSSM.


The fact that some of those probabilities can be sero can be a problem: it completely
forbids you to recognize a sequence that would differ by a single character. To avoid this, we
ask that the probabilities be at least equal to some threshold: this is called Markov vhain
regularization.
Learning a hidden Markov model: EM (Expectation-Maximization) algorithm, Forward-
Backward algorithm, Baum-Welsh algorithm.
Until now, we assumed that the Markov model was known: we shall now see how one can
build it from a set of sequences and a set of states. We need to find the initial probabilities,
the transition probabilities and the emission probabilities.
The idea is the following: start with random probabilities, compute the score of the sequences
for this HMM, derive better estimations of the probabilities, iterate.
Since this is a local search, we might have a problem with local extrema: we might get stuck
with suboptimal that can not be bettered by a small modification of the probabilities, that
would need a drastic change...
This algorithm computes a HMM that maximizes the likelihood of the sequences. To increase
your chances of finding a global, not local maximum, you can run the algorithm several
times, with different initial guesses. Another idea would be to accept slightly suboptimal
probabilities at each iteration (the tolerance would decrease with time): this is simulated
annealing instead.
Bias
There is another problem: the set of sequences used to teach the HMM might contain very
similar sequences, that could lead to a biased HMM. To correct this, one can compute a
(rooted) phylogenetic tree on those sequences and assign a weight to each of them (the root
has weight 1 and at each branching, the weight is equally divided into the two branches –
this might reming you of Kirchoff’s laws, in electricity).
Another means of correcting this bias is to assign a higher weight to the sequences with
a bad score – the weights change at each iteration. This is very similar to “boosting”
(the idea is to “stabilize” an estimator by computing it on many bootstrap samples, but,
contrary to bagging, the bootstrap samples are not completely random: the mis-classified
or mis-predicted observations have a higher probability of being chosen).
There are other ways of correcting this bias, for instance, using weights computed for each
column, with lower weights for more frequent amino acids.
TODO: Dirichlet mixtures?


While learning a hidden Markov chain, instead of considering the amino acids one by one,
we can group them: some are hydrophilic, some are hydrophobic, etc. Those classes can
overlap: a single amino acid can be inseveral classes. We no longer look for the probability
transitions from one aminoacid to another, but from one class to another – aminoacid
transition probabilities being a further step.x
This can also be seen as a form of regularization
HMM and multiple alignment
A multiple alignment can be computed as follows: build a HMM that recognizes the se-
quences at hand (using the “classical” topology mentionned above) and find the most prob-
able path using Viterbi’s algorithm.
Beyond HMMs
I do not know anything about what follows.
Hybrids of HMMs and neural nets
dynamic Bayesian nets
factorial HMMs
Boltzmann trees
hidden Markov random fields <-- I know this one


(example: handwritten characters)


Secondary ARN structure and stochastic grammars (SCFG)
http://www.cs.tufts.edu/comp/150B/lectures/RNA2DStructureLecture.ppt


The bases of an ARN strand tend to pair, providing it with a 3-dimensional structure.
This can be described by a dotplot of the sequence with itself.



http://www.cs.tufts.edu/comp/150B/lectures/RNA2DStructureLecture.ppt
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TODO (I have not presented the notion of a dotplot in this document)


You can also write the sequence on a circle and draw a chord for each pair.
TODO: picture


One usually assumes that there are no pseudo-knot, i.e., that the chords of the graphical
representation do not cross.
A knot can also be represented as follows.


--------------------
| ------------------ |
|| ---------------- ||
||| -------------- |||
|||| ------------ ||||
||||| ---------- |||||
|||||| -------- ||||||
||||||| ------ |||||||
|||||||| ||||||||
GCGCGCGCATATATGCGCGCGCATATAT


|||||| ||||||
||||| -------- |||||
|||| ---------- ||||
||| ------------ |||
|| -------------- ||
| ---------------- |
------------------


Algorithms
This is still dynamic programming (I skip the details).
Ussinov-Jacobson algorithm
Zuker algorithm


Stochastic grammars
A language is a set of words (a word is a sequence of letters, a letter is a member of an
aggreed on set). For instance “all the English words” or “any sequence of a’s and b’s”, or
“all the words made from the letters a and b and starting with aaabab” or “all the words
made from the letters a and b and containing aaabab” or “all the words made from the
letters a and b and containing as many a’s as b’s”.
A grammar is a set of rules describing a language, of the form
S --> aXaab
S --> X
X --> aXa
X --> b
aX --> Xb


Here, the capitals are “non-terminal symbols”, the lower case characters are the actual
letters: start with the start symbol S, apply a rule, that replaces the symbol by a sequence
of letters and symbols, and continue to apply rules until you have no more non-terminal
symbols. The language described by this grammar is the set of words that can be obtained
in this way.
Rules with the same left-hand side are usually regrouped as follows (the vertical bar reads
“or”):
S --> aXaab | X
X --> aXa | b
aX --> Xb


Here is an example of a complete derivation of a word:
Rule Result
----------------------------------
S --> aXaab aXaab
aX --> Xb Xbaab
X --> aXa aXabaab
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X --> aXa aaXaabaab
aX --> Xb aXbaabaab
X --> b abbaabaab


Thus, “abbaabaab” is in the language described by the grammar above.
N. Chomsky (not a computer scientist but a linguist) distinguishes between four classes of
grammars.
A grammar is regular (it is sometimes called a “regular expression” or a rational expression”
– you probably have that somewhere in your text processor) if its rules are of the form
W --> a V


or
W --> V a


where V and W are non-terminal symbols and a is one or several letters.
A regular language can be described by a finite automaton. The main counter-example is the
set of well-formed parrenthesis strings – strings of opening and closing parentheses, where
each closing parenthesis corresponds to a previously openned one –, which is not regular.
A Context-Free Grammar (CFG)is a grammar whose rules are of the form
W --> S


where W is a non-terminal symbol and S any sequence of non-terminal symbols and letters.
They can be be described by stack automata.
For instance, palindromes form a CFG:
S --> a S a | b S b | aa | bb


On the other hand, the language of copies (e.g., baba) are not context-free.
There are also context-sensitive grammars
a W b --> a S b


and general grammars.
a W b --> S


Stochastic grammars
Grammars are typically used when implementing compilers: they are used to describe pro-
gramming languages and, given a program, to check if it is valid and to decompose it.
Grammars can also be used in a generative ways: start with the initial symbol, and apply
rules at random, until all non-terminal symbols have disappeared. This can be formalized
by adding a probability for each rule.
For instance, the grammar
S --> aXaab | X
X --> aXa | b | Xb


can be turned into a stochastic grammar:
S --> aXaab with probability 0.7
S --> X with probability 0.3


X --> aXa with probability 0.2
X --> b with probability 0.5
X --> Xb with probability 0.3


Stochastic grammars generalize hidden Markov chains – Markov chains are the special case
of regular grammars.
Stochastic grammar and ARN secondary structure
ARN secondary structure can be described by a grammar:
S --> aS | cS | uS | gS (non-pairing)
S --> Sa | Sc | Su | Sg (non-pairing)
S --> aSu | uSa | cSg | gSc (pairing)
S --> SS (bifurcation)







CHAPTER 15. TIME SERIES 1133


We then proceed as with hidden Markov models: start with a set of sequences whose struc-
ture is known, compute the probabilities in the model; after that learning phase, you can
give a new sequence to the stochastic grammar and ask it the most probable path, i.e., the
most probable secondary structure.
The learning phase still uses an EM algorithm.
The alignment of the grammar with a sequence can use the Cocke-Younger-Kasami algorithm
(CYK algorith).
(As with Markiv chains, one can also focus on a third problem: compute the score of an
alignment between a sequence and a stochastic grammar, in order to choose between several
grammar the closest to the sequence studied.
http://www.dcs.kcl.ac.uk/teaching/units/csmacmb/DOC/lecture18b.pdf


http://www.imb-jena.de/RNA.html
http://scor.lbl.gov/index.html
http://www.rnabase.org/metaanalysis/


Optimization algorithms
The find the secondary structure of an ARN sequence, one can start with one and try
to modify it, step by step, via “elementary moves”, with usual optimization algorithms
(simulated annealing, genetic algorithms).
http://www.santafe.edu/%7Ewalter/Papers/kinfold.pdf


ARN sequence indexing
Usually, the bases in an ARN sequence are not well preserved, while the secondary structure
is. Therefore, when searching in a database of ARN sequences, we do not really want similar
sequences, but sequences whose secondary structure is similar.


15.14.2 HMM (Hidden Markov Chains)


TODO


A Tutorial on Hidden Markov Models and selected
applications in speech recognition (L.R. Rabiner)
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%


20and%20applications.pdf


15.14.3 HMM emitting continuous variables


TODO


15.14.4 Markov Decision Processes (MDP)


TODO


In each state, one can make a decision that leads to
different transition probabilities. "Reinforcement
learning" is the problem of finding a profitable (wrt some
reward awarded to each decision) policy to make these
decisions.


See: Reinforcement learning, a survey, by Kaelbling, Littman and Moore.
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a.pdf


15.14.5 TO SORT


15.14.6 Markov chains


A Markov chain of order 1 is a time series with discrete values such that



http://www.dcs.kcl.ac.uk/teaching/units/csmacmb/DOC/lecture18b.pdf

http://www.imb-jena.de/RNA.html

http://scor.lbl.gov/index.html

http://www.rnabase.org/metaanalysis/

http://www.santafe.edu/%7Ewalter/Papers/kinfold.pdf

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a.pdf
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P( X(n+1)=a | X(n)=b )


does not depend on n. The matrix of those probabilities is called the transition matrix.
(Higher order Markov chains can be expressed as “vector-valued” Markov chains of order
1.)
TODO: Markov chains: simulation, estimating the transition matrix.
library(help=dse1)
library(help=dse2)
library(help=VLMC) # Variable-length Markov Chains


15.14.7 Hidden Markov chains


Hidden Markov model
(We do not directly observe the states of the Markov
chain, but other states, probabilistically related to
them (by a "confusion matrix"))


Forward algorithm: probability of observing a given
(sequence of) state(s).


Viterbo algorithm: to get an estimation of the hidden
state transitions knowing the observable state
transitions


Forward-backward algorithm: to get an estimation of the
transition matrix, the confusion matrix, and the initial
probability vector


http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html


library(msm) # Multi-state Markov models in continuous time
library(qtl) # Tools for analyzing QTL experiments --


# Analysis of experimental crosses to
# identify genes (called quantitative trait
# loci, QTLs) contributing to variation in
# quantitative traits -- see
http://www.biostat.jhsph.edu/~kbroman/qtl


15.15 Untackled subjects


Missing values
Rnews 2 2 (June 2002)


library(fracdiff)
Maximum likelihood estimation of the parameters of a
fractionally differenced ARIMA(p,d,q) model (Haslett and
Raftery, Applied Statistics, 1989).


TODO: Example with two periodic components whose ratio is not rational.



http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html

http://www.biostat.jhsph.edu/~kbroman/qtl
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bandwidth = 0.000144


n <- 2000
x <- 1:n
y <- sin(x/10) + cos(pi*x/20) + rnorm(n)
op <- par(mfrow=c(4,1))
plot(ts(y))
acf(y)
pacf(y)
spectrum(y, col=par(’fg’))
abline(v=c(1/40,1/20/pi), lty=3)
par(op)


TODO
# AR, MA, ARMA, ARIMA, etc.


library(nlme)
?gls


TODO: plot() on all those examples
doit <- function (d) {
name <- deparse(substitute(d))
cat(paste(name,"\n"))
png(filename=paste(name,".png",sep=’’), width=600, height=600, pointsize=12,


bg="white")
try(plot(d, main=name))
dev.off()


}
source("ALL.R")


find -size 0 -exec rm {} \;
find -name "*.png" -size 444c -exec rm {} \;
(
echo ’<html><head><title>R</title></head><body>’
for i in *.png
do
echo ’<p>’$i’</p>’
echo ’<img src="’$i’"><hr>’


done
echo ’</body></html>’


) > all.html


TODO: Plots are more informative, easier to compare, when the slope of the lines is around
45 degres.
TODO: give an example with a large unreadable plot and a smaller readable plot.
?filter
(Exercice: compute Centered Moving Averages with it)
help(filter)
filter(y,rep(1,12),method="convolution",sides=1)[-(1:11)]


Various libraries:
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The "ts" package, for ARIMA models


tseries contains other models primarily of interest in
economics, and GARCH models (which are better models of
stock prices). It also has arma, which is subsumed by
arima (and arima0) in R-devel.


fracdiff handles fractionally differenced models, a very
specialized topic.


(GARCH models variance, i.e., volatility)


15.15.1 TODO


Replicated time series


15.16 TO SORT


15.16.1 Examples of time series (TO DELETE?)


MA(1) theta_1=.9
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see.ts <- function (name, ma=NULL, ar=NULL, d=0, n=2000) {
order=c(length(ar), d, length(ma))
x <- arima.sim(list(ma=ma, ar=ar, order=order), n)
op <- par(mfrow=c(4,1))
plot(x, main=name)
acf(x)
pacf(x)
spectrum(x, spans=10, col=par(’fg’))
par(op)


}
n <- 200
see.ts("MA(1) theta 1=.9", .9)
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MA(1) theta_1=.5
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MA(1) theta_1=−.9
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AR(1) phi_1=.9
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AR(1) phi_1=.8
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AR(1) phi_1=.1
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AR(1) phi_1=−.9
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AR(1) phi_1=−.8
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ARMA(1,1) theta_1=.9 phi_1=.9
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ARMA(1,1) theta_1=.9 phi_1=−.9
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ARMA(1,1) theta_1=−.9 phi_1=.9
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ARMA(1,1) theta_1=−.9 phi_1=−.9
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15.16.2 Examples (TO DELETE?)


Examples from the manual.
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op <- par(mfrow=c(4,1))
data(AirPassengers)
plot(AirPassengers)
acf(AirPassengers)
pacf(AirPassengers)
spectrum(AirPassengers);
par(op)
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op <- par(mfrow=c(4,1))
data(austres)
plot(austres)
acf(austres)
pacf(austres)
spectrum(austres);
par(op)


Time


ts
(b


ea
ve


r1
$t


em
p)


0 20 40 60 80 100


36
.4


0 5 10 15 20


−
0.


2


Lag


A
C


F


Series  beaver1$temp


5 10 15 20


−
0.


2


Lag


P
ar


tia
l A


C
F


Series  beaver1$temp


0.0 0.1 0.2 0.3 0.4 0.5


5e
−


05


frequency


sp
ec


tr
um


Series: x
Raw Periodogram


bandwidth = 0.00241


op <- par(mfrow=c(4,1))
data(beavers)
plot(ts(beaver1$temp))
acf(beaver1$temp)
pacf(beaver1$temp)
spectrum(beaver1$temp);
par(op)
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op <- par(mfrow=c(4,1))
data(BJsales)
plot(BJsales)
acf(BJsales)
pacf(BJsales)
spectrum(BJsales);
par(op)
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op <- par(mfrow=c(4,1))
data(EuStockMarkets)
plot(EuStockMarkets[,1])
acf(EuStockMarkets[,1])
pacf(EuStockMarkets[,1])
spectrum(EuStockMarkets[,1]);
par(op)
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op <- par(mfrow=c(4,1))
data(JohnsonJohnson)
plot(JohnsonJohnson)
acf(JohnsonJohnson)
pacf(JohnsonJohnson)
spectrum(JohnsonJohnson);
par(op)


Time


La
ke


H
ur


on


1880 1900 1920 1940 1960


57
6


0 5 10 15


−
0.


2


Lag


A
C


F


Series  LakeHuron


5 10 15


−
0.


2


Lag


P
ar


tia
l A


C
F


Series  LakeHuron


0.0 0.1 0.2 0.3 0.4 0.5


5e
−


03


frequency


sp
ec


tr
um


Series: x
Raw Periodogram


bandwidth = 0.00289


op <- par(mfrow=c(4,1))
data(LakeHuron)
plot(LakeHuron)
acf(LakeHuron)
pacf(LakeHuron)
spectrum(LakeHuron);
par(op)







CHAPTER 15. TIME SERIES 1147


Time


lh


0 10 20 30 40


1.
5


3.
5


0 5 10 15


−
0.


2


Lag


A
C


F


Series  lh


5 10 15


−
0.


2


Lag


P
ar


tia
l A


C
F


Series  lh


0.1 0.2 0.3 0.4 0.5


0.
01


frequency


sp
ec


tr
um


Series: x
Raw Periodogram


bandwidth = 0.00601


op <- par(mfrow=c(4,1))
data(lh)
plot(lh)
acf(lh)
pacf(lh)
spectrum(lh);
par(op)
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op <- par(mfrow=c(4,1))
data(lynx)
plot(lynx)
acf(lynx)
pacf(lynx)
spectrum(lynx);
par(op)
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op <- par(mfrow=c(4,1))
data(Nile)
plot(Nile)
acf(Nile)
pacf(Nile)
spectrum(Nile);
par(op)
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op <- par(mfrow=c(4,1))
data(nottem)
plot(nottem)
acf(nottem)
pacf(nottem)
spectrum(nottem);
par(op)
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op <- par(mfrow=c(4,1))
#data(sunspot, package=ts) # Il y en a aussi dans "boot"...
data(sunspot)
plot(sunspot.month)
acf(sunspot.month)
pacf(sunspot.month)
spectrum(sunspot.month);
par(op)
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op <- par(mfrow=c(4,1))
data(treering)
plot(treering)
acf(treering)
pacf(treering)
spectrum(treering);
par(op)
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op <- par(mfrow=c(4,1))
data(UKDriverDeaths)
plot(UKDriverDeaths)
acf(UKDriverDeaths)
pacf(UKDriverDeaths)
spectrum(UKDriverDeaths);
par(op)
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op <- par(mfrow=c(4,1))
data(UKLungDeaths)
plot(ldeaths)
acf(ldeaths)
pacf(ldeaths)
spectrum(ldeaths);
par(op)
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op <- par(mfrow=c(4,1))
data(UKgas)
plot(UKgas)
acf(UKgas)
pacf(UKgas)
spectrum(UKgas);
par(op)
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op <- par(mfrow=c(4,1))
data(USAccDeaths)
plot(USAccDeaths)
acf(USAccDeaths)
pacf(USAccDeaths)
spectrum(USAccDeaths);
par(op)
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op <- par(mfrow=c(4,1))
data(WWWusage)
plot(WWWusage)
acf(WWWusage)
pacf(WWWusage)
spectrum(WWWusage);
par(op)


15.16.3 Nyquist Frequency


Nyquist theorem: you should sample you process often enough, otherwise, you will miss the
highest frequencies and you may be left with artefacts.
Sampling frequency > 2 * maximum frequency


TODO: plots.


15.16.4 Phase space


Another way of ploting a time series: y(i+1)˜y(i) (plot the segments)
Example: a sine wave
TODO


Example: a sum of two sine waves
TODO


Example: a deterministic time series
x(n+1) = 4 * x(n) * ( 1 - x(n) )


TODO


Examples: AR(1)
TODO


Examples: Something completely random.
TODO


etc.


15.16.5 Phase space


The attractor above can be written
x(n+1) = f( x(n) )


As we represent the points in a 2-dimensional space, this can be written
x(n+1) = y(n)
y(n+1) = f(y(n))
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If we set X = (x,y), this becomes
X = f(X).


Thus, we can consider vector-valued time series. In some cases, we have all the coordinates,
but in other cases, we think that our process can be described in this way, but we only have
a single variable, a single coordinate – the others were not observed. We have a model with
“hidden variables” (or “latent variables”).


15.16.6 Other packages


TODO: put this at the end of this document?
ArDec Auto-regressive decomposition







Chapter 16


Miscellaneous


In this chapter:
Survival analysis
Spatial statistics
Bootstrap and simulations (this should be somewhere else...)
MCMC
Graph theory


16.1 Survival analysis


TODO: finish writing this – I have not mentionned Cox regression yet.
TODO: structure of this chapter
Survival Analysis with no predictive variables
Survival function, Hazard function, Cumulative hazard function
Some distributions
Non-parametric methods: Kaplan-Meier estimation
Oarametric methods: TODO


Discrete models
Survival Analysis with predictive variables
TODO


TODO:
One should clearly distinguish discrete survival data and continuous
survival data.
Quite often, one only mentions continuous data and caters to
discrete data as if they were continuous -- it is a bad idea.


TODO:
Survival data are quite tricky to use: we shall replace them by
(say) the survival function. A function is easier to handle.


TODO:
Problem with classical regression: it does not allow censored data
(i.e., data of the form "more than 2" or "less that 15" or "between
2 and 15", i.e., intervals instead of numbers), nor time-dependant
predictive variables.


TODO:
No predictive variables:
- Parametric variables (MLE, with the models mentionned below)
- non parametric methods (Kaplan-Meier (continuous case)
or LifeTable (discrete case))


With predictive variables:
- parametric methods


1154
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- semi-parametric methods (Cox regression: parametric for the part
that depends on the predictive variables, non-parametric for the
rest)


TODO: frailty = unobserved heterogeneity.
TODO: What difference between survival data and longitudinal data?


16.2 Introduction


16.2.1 Definition and Examples


We are interested, in this chapter, in survival variables: a survival variable is very similar to
a quantitative variable, but it can assume both precise numeric values, such as “13 years”,
but also less precise values, such as “more than 15 years”.
Those less precise values are called “censored values”. They are usually written as
10+ More that 10 (right censored)
5- Less than 5 (left censored)
[5,10] Between 5 and 10


You get that kind of data, for instance, when you study the survival after a cancer: if the
study lasts ten years, you will have the precise survival of the patients who died, but for
the others, you will only know that they survived more than 10 years. Furthernore, some
patients will have left the study (because they moved, got bored, or died in an accident):
you will just know that they survived as long as they were in the study – their survival time
will also be right censored.
Left censorship corresponds to the events that took place before the study began.
TODO: give a concrete example.


You get interval censorship for instance when a symptom is first seen in a medical exam-
ination: we know it has appeared since the previous examination, but you do not know
when.
Here are other examples:
survival of a patient
survival of a marriage
survival of a company
time until a machine breaks down
time until a trendy product becomes less popular and ceases to be produced
survival of a high school teacher (until his resignation, his admission in


asylum, his suicide, etc.)
time until a patient stops to take a drug
etc.


You can also see survival variables as binary qualitative variables (those you try to forecast
in logistic regression) indicating wether the event occurred, to which you have added the
time it occurred. The censored values correspond to “the event did not occurred”; in the
above examples, this is equivalent to replacing “alive/dead” by “alive / date of death”.
Survival variables can have several values, for instance “healthy”, “ill”, “death” (and if the
patient is cured between two deseases, it gets even more complicated). In more complex
situations, we sometimes speak of “transitionnal data” (we are interested in the transition
from one state to another) or “spell duration data”.
You can also see survival data as qualitative time series, in which you are interested in the
transitions from one state to another.
Time Series:
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19


20
Value 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181


6765


Survival data:
Age 18 19 20 21 22 23 24 25 ...
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Value S S S S M M M M D D D D D D M M M M *
S=Single, M=Married, D=Divorced, *=Dead


TODO:
Competing risk models
S atsrt state and several absorbing states
(Example: jobless --> employed, jobless --> unemployed and no longer
looking for a job)
(Other example: Alive --> Dead in an accident; Alive --> Dead with
cancer; Alive --> Death from a cardiovascular disease)


16.2.2 Survival function, Hazard function


If T is a survival variable, its survival function is
S(t) = P(T>t) = 1-F(t).


For instance, if T is the number of years a patient survives after being diagnosed a cancer,
S(t) is the probability it survives at least t years.
Its “hazard function” or “hazard rate” is


P( t < T <= t + u | T > t )
lambda(t) = lim -----------------------------


u -> 0 u


dF/dt
= -------


S


d ln S
= - --------


dt


The formula really looks like the definition of the probability density, but we have added
the condition “T>t”.
This is very similar to the difference between the life expectancy at birth and the life ex-
pectancy at 60.
You might also want to consider the “cumulative hazard function”, antiderivative of the
previous one, that corresponds to the cumulated risk.
Lambda(t) = - ln S(t)


16.3 Some Models


16.3.1 Exponential distribution


It corresponds to a constant hazard function.
lambda(t) = lambda
Lambda(t) = lambda t
S(t) = exp( - lambda t )







CHAPTER 16. MISCELLANEOUS 1157


0.0 0.5 1.0 1.5 2.0


1.
5


2.
5


λλ


x


la
m


bd
a


0.0 0.5 1.0 1.5 2.0


0
1


2
3


4


ΛΛ


x


la
m


bd
a 


* 
x


0.0 0.5 1.0 1.5 2.0


0.
0


0.
4


0.
8


S


x


ex
p(


−
la


m
bd


a 
* 


x)


op <- par(mfrow=c(3,1))
n <- 20
lambda <- rep(2,n)
x <- seq(0,2,length=n)
plot(lambda ~ x, type=’l’, main=expression(lambda))
plot(lambda*x ~ x, type=’l’, main=expression(Lambda))
plot(exp(-lambda*x) ~ x, type=’l’, main="S")
par(op)


16.3.2 Weibull Distribution


It corresponds to a hazard function of the form
Lambda(t) = a * t ^ gamma
S(t) = exp( - a * t ^ gamma )
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op <- par(mfrow=c(3,1))
n <- 20
alpha <- 1
g <- rep(2,n)
x <- seq(0,2,length=n)
plot(g * alpha * x^(g-1) ~ x, type=’l’, main=expression(lambda (gamma==2)))
plot(alpha * x^g ~ x, type=’l’, main=expression(Lambda))
plot(exp(-alpha*x^g) ~ x, type=’l’, main="S")
par(op)
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op <- par(mfrow=c(3,1))
n <- 20
alpha <- 1
g <- rep(.5,n)
x <- seq(0,2,length=n)
plot(g * alpha * x^(g-1) ~ x, type=’l’, main=expression(lambda (gamma==.5)))
plot(alpha * x^g ~ x, type=’l’, main=expression(Lambda))
plot(exp(-alpha*x^g) ~ x, type=’l’, main="S")
par(op)


This can be used, for instance, to model the time a machine works without breaking: the
older the machine, the more likely it is to break down; the risk it breaks (the hazard rate)
depends on its age.


16.3.3 Gamma Distribution


Consider a very reliable machine: it is redundant, it is equivalent to three machines. For it
to really break down, we have to wait until the three copies really break down.
TODO: Gamma distribution


16.3.4 Log-normal distribution


TODO: explain
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op <- par(mfrow=c(3,1))
n <- 200
x <- seq(0,5,length=n)
plot(1-plnorm(x) ~ x, type=’l’, main="S")
L <- function (x) { -log(1-plnorm(x)) }
plot(L(x) ~ x, type=’l’, main=expression(Lambda))
h <- .001
plot( (L(x+h)-L(x))/h ~ x, type=’l’, main=expression(lambda))
par(op)
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16.3.5 Other models


Weibul: lambda = alpha * t^(alpha-1) * exp(+X beta)
???
TODO: there is a predictive variable, it does not belong here (yet)


log-logistic model:


1
S(t) = -------------------------- with lambda = exp(- X beta)


1 + (lambda t)^(1/gamma)


Gompertz: lambda = exp( exp(+X beta) + gamma t )
(important)


Generalized Gamma
(generalizes the preceding models: kappa=1:Weibul,
kappa=0:lognormal, kappa=sigma:gamma)


There are also discrete-time models:
logistic
complementary log-log


16.4 Kaplan-Meier estimation


16.4.1 product-limit Kaplan–Meier estimator of the survival func-
tion


If there is no censorship, we can estimate the survival function as:
Card( i : T i>t )


S(t) = -------------------
n


If there are censored data, we take them into account until their value, and then, we forget
them. More precisely, it the time is discrete,
S(t0) = P(alive at t=t0 | alive at t=t0-1) * P(alive at t=t0-1)


For instance, the survival function of
1 2 2 2+ 3+ 3+ 3+ 4 4 4 4 ... (100 subjects)


can be computed as follows:
time subjects dead censored p1 p2 S=p1*p2
-------------------------------------------------------
1 100 1 0 99/100 1 .99
2 99 2 1 97/100 .99 .9603
3 96 0 3 96/100 .9603 .9219
4 93 3 0 90/100 .9219 .8297


The values of S are the products:
S(0) = 1
S(1) = 1 * 99/100
S(2) = 1 * 99/100 * 97/100
S(3) = 1 * 99/100 * 97/100 * 96/100
S(4) = 1 * 99/100 * 97/100 * 96/100 * 90/100
etc.


We can give a general formula:
di


S(t) = Product ( 1 - ---- )
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i such that ti<t ni


We can compute confidence intervals if we assume that Lambda (i.e., -log(S)) is approxsi-
mately gaussian.
TODO
PROBLEM: Where do we get the variance of Lambda from?


There are other estimators of the survival function, for instance the Altschuler–Nelson–
Aalen–Flemming–Harrington one:


di
Lambda(t) = Sum ------.


i such that ti<t ni


Those estimators have a high variance: if you have a reasonnable model, prefer a Maximum
Likelihood parametric estimator (actually, the Kaplan–Meier estimator is a “maximum like-
lihood non parametric estimator”).


16.4.2 Survival analysis with R


Most of the functions are in the “survival” package.
The “Surv” functions creates survival variables.
> Surv(c(1,2,2,2,3,3,3,4,4,4,4),
+ c(1,1,1,0,0,0,0,1,1,1,1))
[1] 1 2 2 2+ 3+ 3+ 3+ 4 4 4 4


The “survfit” computes the survival function
> x <- Surv(c(1,2,2,2,3,3,3,4,4,4,4),
+ c(1,1,1,0,0,0,0,1,1,1,1))


> survfit(x)
Call: survfit(formula = x)


n events rmean se(rmean) median 0.95LCL 0.95UCL
11.000 7.000 3.364 0.322 4.000 Inf Inf


> summary(survfit(x))
Call: survfit(formula = x)
time n.risk n.event survival std.err lower 95% CI upper 95% CI


1 11 1 0.909 0.0867 0.754 1
2 10 2 0.727 0.1343 0.506 1
4 4 4 0.000 NA NA NA


that can then be plotted.
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set.seed(87638)
library(survival)
# survfit <- survival:::survfit # Incompatibility Design/survival?
try( detach("package:Design") )
n <- 200
x <- rweibull(n,.5)
y <- rexp(n,1/mean(x))
s <- Surv(ifelse(x<y,x,y), x<=y)
plot(s) # not insightful
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Fleming−Harrington
Theoretical survival function


Survival function (Kaplan−Meier estimator)
plot(survfit(s))
lines(survfit(s, type=’fleming-harrington’), col=’red’)
r <- survfit(s)
lines( 1-pweibull( r$time, .5 ) ~ r$time, lty=3, lwd=3, col=’blue’ )
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,


c("Kaplan-Meier", "Fleming-Harrington", "Theoretical survival function"),
lwd=c(1,1,3), lty=c(1,1,3),
col=c(par("fg"), ’red’, ’blue’))


title(main="Survival function (Kaplan-Meier estimator)")
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op <- par(mfrow=c(3,1))
r <- survfit(s)
plot(r$surv ~ r$time, type=’l’, main="S")
curve( 1-pweibull(x,.5,1), col=’red’, lty=2, add=T )
plot(-log(r$surv) ~ r$time, type=’l’, main=expression(Lambda))
curve( -log(1-pweibull(x,.5,1)), col=’red’, lty=2, add=T )
# Before derivating, we smooth Lambda
a <- -log(r$surv)
b <- r$time
# library(modreg) # Merged into stats...
l <- loess(a~b)
bb <- seq(min(b),max(b),length=200)
aa <- predict(l, data.frame(b=bb))
plot( diff(aa) ~ bb[-1], type=’l’, main=expression(lambda) )
aa <- -log(1-pweibull(bb,.5,1))
lines( diff(aa) ~ bb[-1], col=’red’, lty=2 )
par(op)


Actually, you can get some of those plots using the “fun” argument of the “plot.survfit”
function.


0 2 4 6 8


0.
2


0.
4


0.
6


0.
8


1.
0


log−survival curve
plot(r, fun="log", main="log-survival curve")
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plot(r, fun="event", main="cumulative events: f(y)=1-y")
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cumulative hazard: f(y)=−log(y)=Lambda
plot(r, fun="cumhaz", main="cumulative hazard: f(y)=-log(y)=Lambda")
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complementary log−log plot
try(
plot(r, fun="cloglog", main="complementary log-log plot")


)
# f(y)=log(-log(y)), log-scale on the x-axis


You can also have one (or several) qualitative predictive variables – more about this later –
hopefully.
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n <- 200
x1 <- rweibull(n,.5)
x2 <- rweibull(n,1.2)
f <- factor( sample(1:2, n, replace=T), levels=1:2 )
x <- ifelse(f==1,x1,x2)
y <- rexp(n,1/mean(x))
s <- Surv(ifelse(x<y,x,y), x<=y)
plot(s, col=as.numeric(f))
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N = 62   Bandwidth = 0.1393
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non censored, f = 1
censored, f = 1
non censored, f = 2
censored, f = 2


plot( density(s[,1][ s[,2] == 1 & f == 1]), lwd=3,
main="Survival analysis, one factor" )


lines( density(s[,1][ s[,2] == 0 & f == 1]), lty=2, lwd=3 )
lines( density(s[,1][ s[,2] == 1 & f == 2]), col=’red’, lwd=3 )
lines( density(s[,1][ s[,2] == 0 & f == 2]), lty=2, col=’red’, lwd=3 )
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,


c("non censored, f = 1", "censored, f = 1",
"non censored, f = 2", "censored, f = 2"),


lty=c(1,2,1,2),
lwd=1,
col=c(par(’fg’), par(’fg’), ’red’, ’red’) )
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plot(survfit(s ~ f), col=as.numeric(levels(f)))


TODO: with two qualitative predictive variables.
survfit(s~f1+f2)


TODO: and what if is not a factor? (later, when we perform regressions).
TODO: Choose two examples, one with predictive variables, one without, with which we
will play until the end of the chapter.
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data(lung)
x <- Surv(lung$time, lung$status)
plot(x)
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plot(survfit(x))


16.4.3 Mantel-Cox Log-rank test


We can wonder if a survival variable depends on a factor.
data(lung)
y <- Surv(lung$time, lung$status)
x <- lung$sex
summary(coxph(y~x))


Rsquare= 0.046 (max possible= 0.999 )
Likelihood ratio test= 10.6 on 1 df, p=0.00111
Wald test = 10.1 on 1 df, p=0.00149
Score (logrank) test = 10.3 on 1 df, p=0.00131
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16.5 Discrete time models


TODO


Discrete hazard rate:
h(aj) = P[ a(j-1) < T <= a(j) | T > a(j-1) ]
TODO: write the survival function as a function of h.


TODO:
LifeTable: This is the discrete equivalent of the Kaplan-Meier estimator.


16.6 Parametric regression models


TODO: Introduction
We are now about to add predictive variables.


Some do not depend on the subject (but depend on time):
inflation, unemployment rate, mean temperature in summer, etc.


Others depend on the subject and may depend on time (SES, age, blood
preasure) or not (sex).


Methods:
- parametric
- semi-parametrix (Cox regression): parametric for the part that
depends on the predictiva variables, non-parametric (Kaplan-Meier)
for the rest.


TODO: Classification of the various models.
Continuous:
Exponential (PH and AFT)
Weibull (PH and AFT)
Gompertz (PH)
lognormal (AFT)
loglogistic (AFT)
generalized gamma (AFT)


discrete:
logistic (proportionnal odds)
cloglog (PH)


PH (Proportionnal Hazards): lambda = lambda0(t) * exp(X beta)


AFT (Accelerated Failure Time): T = exp(-X beta) * exp(z)


TODO: the “survreg” function???
We can first do the computations by hand, by explicitely writing the log-likelihood.
Prod( f(b,x i) where i is not censored ) * Prod( S(b,x i) where i is censored


)


You can object that there should be a factor for the probability of censorship: we shall
assume it is independant of the outcome of the experiment and forget it.
You can maximize the log-likelihood with the “optim” function – but be careful with the
choice of the initial parameters.
To check that it is indeed a minimum, we can plot the log-likelohood (here, we only have
two parameters to estimate: it there was a simgle parameter, we would draw the curve of
the log-likelihood; if there were more, it would be more troublesome to plot – with just three
variables, we could use an animation or a treillis plot).
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data(lung)
x <- Surv(lung$time, lung$status)
f <- function (p,t) { dweibull(t,p[1],p[2]) }
S <- function (p,t) { 1-pweibull(t,p[1],p[2]) }
ll <- function (p) {
time <- x[,1]
status <- x[,2]
censored <- 0
dead <- 1
# cat(p); cat("\n"); str(time); cat("\n");
-2*( sum(log(f(p,time[status==dead]))) + sum(log(S(p,time[status==censored]))) )


}


# Estimations of the second parameter
m <- 1 # Does not work
m <- 100
s <- survfit(x)
m <- mean(s$time)


m <- max(s$time[s$surv>.5])


r <- optim( c(1,m), ll )


# Plot the log-likelohood
myOuter <- function (x,y,f) {
r <- matrix(nrow=length(x), ncol=length(y))
for (i in 1:length(x)) {
for (j in 1:length(y)) {
r[i,j] <- f(x[i],y[j])


}
}
r


}
lll <- function (u,v) {
r <- ll(c(u,v))
if(r==Inf) r <- NA
r


}
a <- seq(1,1.6,length=50)
b <- seq(100,700,length=50)
ab <- myOuter(a,b,lll)
persp(a,b,ab)
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op <- par(mfrow=c(3,3))
for (i in seq(0,360,length=10)[-10]) {
persp(a,b,ab,theta=i)


}
par(op)


We could also use xgobi:
xgobi(data.frame(
x=rep(a,1,each=length(b)),
y=rep(b,length(a)),
z=as.vector(ab))


)


But it is probably clearer in dimension 2:
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b ●


image(a,b,ab)
points(r$par[1],r$par[2],lwd=3,cex=3)


With the default colors, we do not see anything.
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n <- 255
image(a,b,ab, col=topo.colors(n), breaks=quantile(ab,(0:n)/n, na.rm=T))
points(r$par[1],r$par[2],lwd=3,cex=3)


Or even, to stress the differences around the minimum:
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image(a,b,ab, col=topo.colors(n), breaks=quantile(ab,((0:n)/n)^2,na.rm=T))
points(r$par[1],r$par[2],lwd=3,cex=3)


We could do the same king of plots with the “lattice” library.
A FAIRE
library(lattice)
?levelplot
?contourplot


You can compare the Kaplan-Meier curve with the theoretical one:
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plot(survfit(x))
curve( 1-pweibull(x,r$par[1],r$par[2]), add=T, col=’red’, lwd=3, lty=2 )


Let us take an example and try to model it with an exponential model, a Weibull model
and a Gamma model.
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Exponential(0.0024)
Weibull(1.3, 420)
Gamma(1.5, 0.0038)


Parametric estimation of PH models
ph.mle.weibull <- function (x) {
f <- function (p,t) { dweibull(t,p[1],p[2]) }
S <- function (p,t) { 1-pweibull(t,p[1],p[2]) }
m <- mean(survfit(x)$time)
ph.mle.optim(x,f,S,c(1,m))


}
ph.mle.exp <- function (x) {
f <- function (p,t) { dexp(t,p) }
S <- function (p,t) { 1-pexp(t,p) }
m <- mean(survfit(x)$time)
ph.mle.optim(x,f,S,1/m)


}
ph.mle.gamma <- function (x) {
f <- function (p,t) { dgamma(t,p[1],p[2]) }
S <- function (p,t) { 1-pgamma(t,p[1],p[2]) }
m <- mean(survfit(x)$time)
ph.mle.optim(x,f,S,c(1,1/m))


}


ph.mle.optim <- function (x,f,S,m) {
ll <- function (p) {
time <- x[,1]
status <- x[,2]
censored <- 0
dead <- 1
-2*( sum(log(f(p,time[status==dead]))) + sum(log(S(p,time[status==censored]))) )


}
optim(m,ll)


}
eda.surv <- function (x) {
r <- survfit(x)
plot(r)
a1 <- ph.mle.exp(x)$par
lines( 1-pexp(r$time,a1) ~ r$time, col=’red’ )
a2 <- ph.mle.weibull(x)$par
lines( 1-pweibull(r$time,a2[1],a2[2]) ~ r$time, col=’green’ )
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a3 <- ph.mle.gamma(x)$par
lines( 1-pgamma(r$time,a3[1],a3[2]) ~ r$time, col=’blue’ )
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,


c(paste("Exponential(", signif(a1,2), ")", sep=’’),
paste("Weibull(", signif(a2[1],2), ", ", signif(a2[2],2), ")", sep=’’),
paste("Gamma(", signif(a3[1],2), ", ", signif(a3[2],2), ")", sep=’’)


),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="Parametric estimation of PH models")
}


data(lung)
x <- Surv(lung$time, lung$status)
eda.surv(x)


To assess the quality of the estimation, we can use a quantile-quantile plot.
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Exponental(0.0024)
Weibull(1.3, 420)
Gamma(1.5, 0.0038)


Parametric estimation of PH models
x <- Surv(lung$time, lung$status)
r <- survfit(x)
a1 <- ph.mle.exp(x)$par
t1 = 1-pexp(r$time,a1)
a2 <- ph.mle.weibull(x)$par
t2 <- 1-pweibull(r$time,a2[1],a2[2])
a3 <- ph.mle.gamma(x)$par
t3 <- 1-pgamma(r$time,a3[1],a3[2])
plot( t1 ~ r$surv, col=’red’, xlab=’sample’, ylab=’model’)
points( t2 ~ r$surv, col=’green’)
points( t3 ~ r$surv, col=’blue’ )
abline(0,1)
legend( par("usr")[1], par("usr")[4], yjust=1, xjust=0,


c(paste("Exponental(", signif(a1,2), ")", sep=’’),
paste("Weibull(", signif(a2[1],2), ", ", signif(a2[2],2), ")", sep=’’),
paste("Gamma(", signif(a3[1],2), ", ", signif(a3[2],2), ")", sep=’’)


),
lwd=1, lty=1,


col=c(’red’, ’green’, ’blue’))
title(main="Parametric estimation of PH models")


We can also plot the residuals (the difference between the non parametric (Kaplan-Meier)
estimation and the parametric estimation of the survival function.
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Parametric estimation of PH models
plot( t1 - r$surv ~ t1, col=’red’, xlab=’predicted values’, ylab=’residuals’)
points( t2 - r$surv ~ t2, col=’green’)
points( t3 - r$surv ~ t3, col=’blue’ )
abline(h=0, lty=3)
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,


c(paste("Exponential(", signif(a1,2), ")", sep=’’),
paste("Weibull(", signif(a2[1],2), ", ", signif(a2[2],2), ")", sep=’’),
paste("Gamma(", signif(a3[1],2), ", ", signif(a3[2],2), ")", sep=’’)


),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="Parametric estimation of PH models")
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Parametric estimation of PH models
plot( abs(t1 - r$surv) ~ t1, col=’red’,


xlab=’predicted values’, ylab=expression( abs(residuals) ))
points( abs(t2 - r$surv) ~ t2, col=’green’)
points( abs(t3 - r$surv) ~ t3, col=’blue’ )
abline(h=0, lty=3)
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=1,


c(paste("Exponental(", signif(a1,2), ")", sep=’’),
paste("Weibull(", signif(a2[1],2), ", ", signif(a2[2],2), ")", sep=’’),
paste("Gamma(", signif(a3[1],2), ", ", signif(a3[2],2), ")", sep=’’)


),
lwd=1, lty=1,
col=c(’red’, ’green’, ’blue’))


title(main="Parametric estimation of PH models")


TODO: Add a test to check if, under a Weibull model, the
data are very different from an exponential one (i.e.,
test if the first parameter is really different from one).
Put this test in "eda.surv" and add the result to the
plot.


If we get back to our simulated example (Weibull, parameters .5 and 1), we get values close
to the theoretical ones.
> n <- 200
> x <- rweibull(n,.5)
> y <- rexp(n,1/mean(x))
> s <- Surv(ifelse(x<y,x,y), x<=y)
> ph.mle.weibull(s)$par
[1] 0.4891810 0.9924432


TODO: tests...
TODO: diagnostic plots...







CHAPTER 16. MISCELLANEOUS 1174


16.7 Proportional Hazard (PH) models


If you want to predict a survival variable from another variable X, you can try the following
model
lambda(t|X) = lambda(t) * exp(X*b)


where lambda is an underlying hazard function (corresponding, say, to a Weibull model) and
b is a parameter to be estimated. To find b and the parameters of the underlying model,
we still us the Maximum Likelihood method.
TODO: example


data(lung)
y <- Surv(lung$time, lung$status)
x1 <- lung$age
x2 <- lung$meal.cal


TODO: Add b in the following code...
I cannot get a simple and general expression of the log-likelihood
(I have an integral of lambda that appears...)


f <- function (p,t) { dweibull(t,p[1],p[2]) }
S <- function (p,t) { 1-pweibull(t,p[1],p[2]) }
m <- mean(survfit(y)$time)
ll <- function (p) {
time <- y[,1]
status <- y[,2]
censored <- 0
dead <- 1
-2*( sum(log(f(p,time[status==dead]))) + sum(log(S(p,time[status==censored])))


)
}
optim(m,ll)


Actually, the “survreg” function already provides us with that result.
TODO: understand
Exokain why it is the same result.


> summary(survreg(y~x1+x2))
Call:
survreg(formula = y ~ x1 + x2)


Value Std. Error z p
(Intercept) 6.82e+00 0.57891 11.785 4.64e-32
x1 -1.35e-02 0.00809 -1.667 9.55e-02
x2 2.37e-05 0.00018 0.131 8.95e-01
Log(scale) -2.54e-01 0.06973 -3.641 2.71e-04
Scale= 0.776
Weibull distribution
Loglik(model)= -930.6 Loglik(intercept only)= -932.2


Chisq= 3.17 on 2 degrees of freedom, p= 0.21
Number of Newton-Raphson Iterations: 4
n=181 (47 observations deleted due to missing)


TODO: To check that I have correctly understood the result,
do a simulation (Weibul, parameters .5 and 3, b=c(1 2 -1)) and give
it to "survreg".


TODO: an example with predictive variables that do not
depend on time TODO: an example with predictive variables
that depend on time.
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16.8 Accelerated Failure Time (AFT) models


We assume that the survival variable T is given by
ln(T) = beta X + error


where the error term follows a certain distribution (for instance, if it is a gaussian distribu-
tion, T is log-normal).
TODO: extreme value distribution with 2 parameters (this yields
the Weibul distribution)


You can also write those models:
ln(psi * T) = error
psi = exp(-beta X)


Note that psidoes not depend on T; furthermore, if psi>1, they die more quickly, if psi<1,
they die more slowly – hence the name “Accelerated Failure Time”.
These are simply gemeralized linear models
TODO
?glm


16.9 Other models


16.9.1 PCE model (Piecewise Constant Exponential)


This is a PH model in which lambda (the underlying Hazard function) is pievewise constant
– the experimentor chooses the times at which the value changes.
This is a first analysis, a bit simplistic, of what can be done when the predictors depend on
time.
TODO: an example


16.10 Cox Proportional Hazard model


In a “Proportional Hazard Model”,
lambda = lambda0 * exp(b * X)


you can actually estimate the coefficients b of the regression, without taking lambda0 into
account, with a partial likelihood.
TODO: Where does this "partial likelihood" come from?


16.11 TODO


16.11.1 TODO


library(survival)
?survfit
?survreg
?coxph


Proportionnal hazard: lambda(t|X) = lambda(t) exp(X beta)


Cox proportional hazard model
A popular semi-parametric model for survival analysis -- as efficient as parametric


models,
even when those apply.
The model is still lambda(t|X) = lambda(t) exp(X beta), but we do not assign


a prescribed form to lambda.
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Predictive variables: they can depend on time -- it really
complicates things.


16.11.2 Interval-censored data


See the ICE package.


16.11.3 Multiple events


There can be several events in the series, for instance, several kinds of death, or a final event
(death) preceded by several non lethal events (heart attack, high blood pressure diagnosis,
surgery, etc.)
TODO: example
If there are two independant lethal events, they can be tackled
separately.
Violent death: 1 1 1 3
Disease-related death: 1 2 4 5 5 6
Alive: 7+ 7+ 7+


To study violent deaths:
1 1 1 3 1+ 2+ 4+ 5+ 5+ 6+ 7+ 7+ 7+


To study disease-related deaths:
1+ 1+ 1+ 3+ 1 2 4 5 5 6 7+ 7+ 7+


If the events are not independant (for instance, death by
cancer and by heart attack can have a common cause:
tobacco), the results would be biased.


16.11.4 Frailty models (unobserved heterogeneity)


We can also imagine the following situation: all the patients have a hazard function of the
same form, up to a multiplicative factor. If we had enough predictive variables, we would
try to predict this factor, but if we have none (or not enough), we cannot reliably predict
it. In that case, we can consider a model of the form
lambda(t) = lambda0(t) * u


where u is a random variable, positive, with mean 1. As the value of u changes from one
subject to the next, we will not be able to predict it, but, at least, we can predict its variance.
TODO: How do we do this?


TODO: in R?


frail.fit(eha) Fits a frailty proportional hazards model
frailty(survival) (Approximate) Frailty models
mlefrailty.fit(survrec)


Survival function estimator for correlated
recurrence time data under a Gamma Frailty
Model


16.11.5 TODO


Recurrent failure times
library(survrec)


Penalized maximum likelihood
?pspline
?frailty
?ridge
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The Kaplan-Meier curves should not cross: it indicates that
the PH model does NOT hold.


You can use survival analysis even when the observations are not
censored: the notions (hazard function, etc.) and the plots may be
relevant.


16.12 Spatial data and GIS (Geographical Information
Systems)


A few packages allow us to manipulate spacial data:
geoR (see rather geoRglm)
geoRglm
spatstat
fields
grasper
pastecs
spatial
splancs
GRASS (devel)
gstat


For more details, see for example:
http://freegis.org/index.en.html


TODO


16.12.1 Deformed maps


http://www.sasi.group.shef.ac.uk/worldmapper/
http://aps.arxiv.org/abs/physics/0401102/


16.12.2 Spacial processes and graphs


Plotting a spacial process (this could actually be any 2-dimensional process, regardless of the
interpretation of those two dimensions) does not always give enough insight. To improve this
plot, one can “decorate” it with various graphs. The most useful is probably the minimum
spanning tree (MST): if there is a functional relation between the two variables, or of the
points tend to lie on a 1-dimensional subspace, this will become obvious – even more so if
you consider a pruned MST.
Other potentiall useful decorations include: a minimum length path (this is the traveling
salesman problem (TSP)), the nearest neighbour graph (each point is connected to the
closest – this is actually a subgraph of the MST), the convex hull, the alpha hull, the
Voronoi mosaic, the Delaunay triangulation, etc.



http://freegis.org/index.en.html

http://www.sasi.group.shef.ac.uk/worldmapper/

http://aps.arxiv.org/abs/physics/0401102/
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Nearest neighbour graph
x <- runif(100)
y <- runif(100)
nearest neighbour <- function (x, y, d=dist(cbind(x,y)), ...) {
n <- length(x)
stopifnot(length(x) == length(y))
d <- as.matrix(d)
stopifnot( dim(d)[1] == dim(d)[2] )
stopifnot( length(x) == dim(d)[1] )
i <- 1:n
j <- apply(d, 2, function (a) order(a)[2])
segments(x[i], y[i], x[j], y[j], ...)


}
plot(x, y,


main="Nearest neighbour graph",
xlab = "", ylab = "")


nearest neighbour(x, y)
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Minimum spanning tree
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plot(x, y,
main = "Minimum spanning tree",
xlab = "", ylab = "")


nearest neighbour(x, y, lwd=10, col="grey")
points(x,y)
library(ape)
r <- mst(dist(cbind(x, y)))
i <- which(r==1, arr.ind=TRUE )
segments(x[i[,1]], y[i[,1]], x[i[,2]], y[i[,2]],


lwd = 2, col = "blue")
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Voronoi mosaic


voronoi.mosaic(x, y)


# Voronoi diagram
library(tripack)
plot(voronoi.mosaic(x, y))
segments(x[i[,1]], y[i[,1]], x[i[,2]], y[i[,2]],


lwd=3, col="grey")
points(x, y, pch=3, cex=2, lwd=3)
box()
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Delaunay triangulation


tri.mesh(x, y)


●●


● ●


●
●


●


●
●


●●


●
●
●


●
●


●


●
●


●
●


● ●


●●
●●


●


●●
●


●
●


●
●


●●


●


●


●●


●


●●


●


●


●


●


●
●


●


●●●


●


●


●


●


●


●
●


●


●●●


●


●


●
●


●


●
●


●
●


●


●


●


●


●


●


●


●


●


●


●
●


●


●●


●


●
●


●


●


●


●


●


●


●


●


●


●


●


●
●●


●


●●●


●


● ●


●


●


●
●


●


●


●
●


●●
●


●
●


●


●


●


●
●


●


● ●


●●
●


●


●●


●


●


●●


●
●


●


●


●
●


●


●●


●


●


●


●


●


●●


●


●
●●


●


●


●


●


●


●


●


●


●


●


# Delaunay triangulation
# See also the "deldir" package
plot(tri.mesh(x,y))
plot(voronoi.mosaic(x, y), add=T, col="grey")
points(x, y, pch=3, cex=2, lwd=3)


16.12.3 Sample data: galaxy locations


http://cfa-www.harvard.edu/~huchra/zcat/


wget http://cfa-www.harvard.edu/~huchra/zcat/n36.dat


The file looks like
1234567890X12121234X1212123456123456
Name RA (1950) Dec Mag Vh sig sour type D1 D2 BT UGC RFN


Comments and other names
08003+3336 080018.0 33360014.7 1173515010510 1 P AK151
08005+3529 080030.0 35290015.4 10079 441-1 -1 T11956
N2649 084059.1 34535613.1 4235 2010617 4X2R 1.7 1.6 04555
08410+3342 084100.8 33415015.2 7656 301-1 4A / 1.8 0.3 04558 T12403
08422+3437 084212.0 34370014.7 7691 311-1 1B P T12067
08424+3707 084224.0 37070013.8 392315010510 0 0.7 0.7 04572 MK626,M6-19-21,AK176



http://cfa-www.harvard.edu/~huchra/zcat/

http://cfa-www.harvard.edu/~huchra/zcat/n36.dat
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It is a fixed-width file, that can be read as
w <- c(
name = 10,
-1,
ra.hour = 2,
ra.min = 2,
ra.sec = 4,
-1,
dec.deg = 2,
dec.min = 2,
dec.sec = 6)
v.helio = 7,
v.err = 3,
b.source = 1,
v.source = 2,
v.source2 = 2,
t.type = 2,
bar.type = 1,
lum.class = 1,
struct = 1,
d1.min = 4,
d2.min = 2,
bt.mag = 6,
ugc = 6,
d.mpc = 4,
space = 1,
ra.hr.1950 = 2,
ra.min.1950 = 2,
ra.sec.1950 = 5,
dec.sign.1950 = 1,
dec.deg.1950 = 2,
dec.min.1950 = 2,
dec.sec.1950 = 4,
space = 1,
rfn = 6,
flag = 1,
comments = 78


)


x <- read.fwf("/tmp/n36.dat", w,
skip = 31,
nrows = 718,
col.names = names(w) [ names(w) != "" ],
row.names = NULL)


y <- x
y$dec.sec <- as.numeric(as.character(y$dec.sec))
y$ra <- y$ra.hour + y$ra.min/60 + y$ra.sec/3600
y$dec <- y$dec.deg + y$dec.min/60 + y$dec.sec/3600
y <- y[,c("ra", "dec")]
plot(y)


16.12.4 Voronoi tessallations


Other applications:
mesh generation (with centroidal vorinoi tessellation, i.e., Voronoi
tessallations, i.e., the center of each tile is its center of
gravity) to solve PDE.


One can compute a centroidal Voronoi tessallation as follows: take a set of points, compute
their Voronoi tessallation, replace the points by the center of gravity of their tiles, iterate
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until convergence.
TODO: Implement this
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Voronoi mosaic and tile centers


v
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library(tripack)
set.seed(1)
n <- 20
x <- runif(n)
y <- runif(n)
v <- voronoi.mosaic(x, y)
plot(v, main="Voronoi mosaic and tile centers")
points(x,y, pch=3, cex=1.5, lwd=2)


# Center of gravity of a convex polygon, given by
# the coordinates of its vertices.
voronoi.center <- function (x,y) {
stopifnot( length(x) == length(y) )
n <- length(x)
# A point inside the polygon
x0 <- mean(x)
y0 <- mean(y)
# Reorder the vertices


o <- order(atan2(y-y0, x-x0))
x <- x[o]
y <- y[o]
# Duplicate the first point at the end, for the loop
x <- c(x, x[1])
y <- c(y, x[1])
# Compute the center of gravity and the area of each triangle
gx <- gy <- rep(NA, n)
a <- rep(NA, n)
for (i in 1:n) {
xx <- c( x0, x[i], x[i+1] )
yy <- c( y0, y[i], y[i+1] )
gx[i] <- mean(xx)
gy[i] <- mean(yy)
a[i] <- voronoi.polyarea(xx, yy)


}
# Compute the barycenter of those centers of gravity, with
# weights proportionnal to the triangle areas.
res <- c(


x = weighted.mean(gx, w=a),
y = weighted.mean(gy, w=a)


)
attr(res, "x") <- x[1:n]
attr(res, "y") <- y[1:n]
attr(res, "G") <- c(x0,y0)
attr(res, "gx") <- gx
attr(res, "gy") <- gy
res


}
voronoi.centers <- function (v) {
ntiles <- length(v$tri$x)
res <- matrix(NA, nc=2, nr=ntiles)
for (i in 1:ntiles) {
vs <- voronoi.findvertices(i, v)
if (length(vs) > 0) {
res[i,] <- voronoi.center(v$x[vs], v$y[vs])


}
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else {
res[i,] <- NA


}
}
res


}


points( voronoi.centers(v), pch=16, col="red")


# Test of the "voronoi.center" function
k <- 5
theta <- seq(0, length=k, by=2*pi/k)
X <- rlnorm(k) * cbind(cos(theta), sin(theta))


plot(rbind(X,X[1,]), type="l")
segments(0,0,X[,1],X[,2], lty=3)
r <- voronoi.center(X[,1],X[,2])
G <- attr(r,"G")
points(G[1], G[2], col="red", pch=16)
segments(G[1],G[2],X[,1],X[,2], col="red")
points(attr(r,"gx"), attr(r,"gy"), col="red", pch=15)
segments(attr(r,"gx"), attr(r,"gy"), X[,1], X[,2], col="red")
segments(attr(r,"gx"), attr(r,"gy"),


X[c(k,1:(k-1)),1], X[c(k,1:(k-1)),2], col="dark green")
points(r[1], r[2], pch=3, col="blue", cex=3, lwd=5)
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Centroidal Voronoi tessallation?
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for (i in 1:10) {
z <- voronoi.centers(v)
x <- ifelse( is.na(z[,1]), x, z[,1] )
y <- ifelse( is.na(z[,2]), y, z[,2] )
v <- voronoi.mosaic(x, y)


}
plot(v, main="Centroidal Voronoi tessallation?")
points(x,y, pch=3, cex=1.5, lwd=2)
points( voronoi.centers(v), pch=16, col="red")
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Centroidal Voronoi tessallation?


v


●


●


●


●


●


●


●●


●


● ●


for (i in 1:10) {
z <- voronoi.centers(v)
x <- ifelse( is.na(z[,1]), x, z[,1] )
y <- ifelse( is.na(z[,2]), y, z[,2] )
v <- voronoi.mosaic(x, y)


}
plot(v, main="Centroidal Voronoi tessallation?")
points(x,y, pch=3, cex=1.5, lwd=2)
points( voronoi.centers(v), pch=16, col="red")
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Centroidal Voronoi tessallation?


v


●


●


●


● ●


●●


●


●


for (i in 1:10) {
z <- voronoi.centers(v)
x <- ifelse( is.na(z[,1]), x, z[,1] )
y <- ifelse( is.na(z[,2]), y, z[,2] )
v <- voronoi.mosaic(x, y)


}
plot(v, main="Centroidal Voronoi tessallation?")
points(x,y, pch=3, cex=1.5, lwd=2)
points( voronoi.centers(v), pch=16, col="red")
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Centroidal Voronoi tessallation?
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for (i in 1:10) {
z <- voronoi.centers(v)
x <- ifelse( is.na(z[,1]), x, z[,1] )
y <- ifelse( is.na(z[,2]), y, z[,2] )
v <- voronoi.mosaic(x, y)


}
plot(v, main="Centroidal Voronoi tessallation?")
points(x,y, pch=3, cex=1.5, lwd=2)
points( voronoi.centers(v), pch=16, col="red")


TODO:
- Check that my "voronoi.center" function works as advertised
(I have a few doubts).


- Change the loop inside "voronoi.centers" so as to include the
"degenerate" cells as well.


Here is another way of getting a centroidal Voronoi tessallation: take points at random,
apply the k-means algorithm, compute the Voronoi diagram of the resulting centers. If
there were sufficiently many points to begin with, the result will be sufficiently close to a
centroidal Voronoi tessellation.
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Centroidal Voronoi tessallation (k−means)


v


library(tripack)
n <- 100 # Number of cells
k <- 100 # Number of points in each cell
x <- runif(k*n)
y <- runif(k*n)
z <- kmeans(cbind(x,y), n)
v <- voronoi.mosaic( z$centers[,1], z$centers[,2] )
plot(v, main="Centroidal Voronoi tessallation (k-means)")
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Non−centroidal Voronoi tessallation


voronoi.mosaic(rnorm(n), rnorm(n))


plot(voronoi.mosaic( rnorm(n), rnorm(n) ),
main = "Non-centroidal Voronoi tessallation")


See also:
library(help=geometry) # qhull (convex hull, voronoi, etc.)


16.12.5 Penrose tilings


TODO


16.13 Bootstrap and simulations


Bootstrap (Resampling)


16.14 Simulations: Parametric bootstrap


16.14.1 Monte Carlo Method


A “Monte Carlo Method” is any computation algorithm that relies on random numbers,
whose result will change each time, whose result will be the more precise the more random
numbers you use.
For instance, you can compute an approximate value of pi in the following way: take points
at random (uniformly) in the [0,1]x[0,1] square and we count how many are in the dic of
center 1 and center O. The ratio of that number over the total number of points is close to
Pi/4.
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Monte Carlo Simulation: pi=3.28
pi.monte.carlo.plot <- function (n=10000, pch=’.’, ...) {
x <- runif(n)
y <- runif(n)
interieur <- x^2 + y^2 <= 1
p <- 4*sum(interieur)/n
xc <- seq(0,1,length=200)
yc <- sqrt(1-xc^2)
plot( xc, yc, type=’l’ )
lines( c(0,1,1,0,0), c(0,0,1,1,0) )
abline(h=0, lty=3)
abline(v=0, lty=3)
points(x[interieur], y[interieur], col=’red’, pch=pch, ...)
points(x[!interieur], y[!interieur], pch=pch, ...)
title(main=paste("Monte Carlo Simulation: pi=",p,sep=’’))


}
pi.monte.carlo.plot(100, pch=’+’, cex=3)
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Monte Carlo Simulation: pi=3.1596
pi.monte.carlo.plot()


You can use it, as here, to compute multiple integrals. In small dimensions, it is not very
useful (it is too slow), but in higher dimensions, it becomes more interesting. For instance,
to compute an approximation of the integral of a function of 100 variables on the hypercube
[0,1]ˆ100, the rectangle method, i.e., computing the value of the function on each of the
vertices of the hypercube, is not realistic, because there are 2ˆ100 vertices; on the contrary,
a Monte Carlo simulation vill give an acceptable value in a reasonable time.


16.14.2 Distribution of a statistic


Such simulations also enable you to compute the expectation of a given statistic (let us recall
that a statistic is a function to be evaluated on a sample of a random variable, i.e., for a
sample of dize n, a function Rˆm —> R (to be absolutely rigorous, it is a family of such
functions, one function for each sample size)). For instance, let us consider the following the
following experiment: toss a die; if you get 1, draw a number at random from a gaussian
distribution of mean -1 and standard deviation 1; otherwise, draw a number at random from
a gaussian distribution of mean 1 and standard deviation 2; do this 10 times. What can you
say of the mean, of the quartiles of those 10 numbers?
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You could probably do the computation but, as we are lazy, let us ask the computer to
perform a few simulations instead.
n <- 10
x <- ifelse( runif(n)>1/6, rnorm(n,1,2), rnorm(n,-1,1) )
mean(x)
quantile(x)


If you perform several such simulations, you get an estimation of the expectation of the
mean of those numbers, and an estimation of the variance of the mean of those numbers.
n <- 10
N <- 1000
r <- matrix(NA, nr=N, nc=6)
for (i in 1:N) {
x <- ifelse( runif(n)>1/6, rnorm(n,1,2), rnorm(n,-1,1) )
r[i,] <- c( mean(x), quantile(x) )


}
colnames(r) <- c("mean", "0% (min)", "25%", "50% (median)", "75%", "100% (max)")
res <- rbind( apply(r,2,mean), apply(r,2,sd) )
rownames(res) <- c("mean", "sd")


It yields:
mean 0% (min) 25% 50% (median) 75% 100% (max)


mean 0.6365460 -2.256153 -0.6387419 0.5499527 1.8228999 3.807241
sd 0.6446216 1.028375 0.7504127 0.7864454 0.8537194 1.236234


You can even ask some more and look at the distribution of the various statistics of interest.


−5 0 5


0.
0


0.
1


0.
2


0.
3


0.
4


0.
5


0.
6


Index


de
ns


ity


mean
min
1st quartile
median
3rd quartile
max


n <- 10
N <- 1000
r <- matrix(NA, nr=N, nc=6)
for (i in 1:N) {
x <- ifelse( runif(n)>1/6, rnorm(n,1,2), rnorm(n,-1,1) )
r[i,] <- c( mean(x), quantile(x) )


}
colnames(r) <- c("mean", "0% (min)", "25%", "50% (median)", "75%", "100% (max)")
rr <- apply(r,2,density)
xlim <- range( sapply(rr,function(a){range(a$x)}) )
ylim <- range( sapply(rr,function(a){range(a$y)}) )
plot(NA, xlim=xlim, ylim=ylim, ylab=’density’)
for (i in 1:6) {
lines(rr[[i]], col=i)


}
legend(par(’usr’)[2], par(’usr’)[4], xjust=1, yjust=1,


c(’mean’, "min", "1st quartile", "median", "3rd quartile", "max"),
lwd=1, lty=1,


col=1:6 )


On this simulation, you see, in particular, that the mean and the median have more or less
the same value, but the variance of the mean is lower, i.e., the mean is more precise. With
such data, you would use the mean rather than the median.
To have an idea of the distribution of the statistic we are studying may help spot some
pathologies. Thus, we ofthen assume that the statistics have an (almost) gaussian distribu-
tion. If you cannot (formally) prove this is the case, you can at least use simulations. In the
following example, let us look at the quantile-quantile plots.
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op <- par(mfrow=c(2,3))
for (i in 1:6) {
qqnorm(r[,i], main=colnames(r)[i])
qqline(r[,i], col=’red’)
text( par("usr")[1], par("usr")[4], adj=c(-.2,2),


round(shapiro.test(r[,i])$p.value, digits=4) )
}
par(op)


To avoid too much copy-pasting of the same code, let us use the following function for our
simulations (in the following example, we look at the distribution of the coefficients of a
regression).


−1.0 −0.5 0.0 0.5 1.0 1.5 2.0


0
1


2
3


4
5


6


Index


de
ns


ity


my.simulation <- function (get.sample, statistic, R) {
res <- statistic(get.sample())
r <- matrix(NA, nr=R, nc=length(res))
r[1,] <- res
for (i in 2:R) {
r[i,] <- statistic(get.sample())


}
list(t=r, t0=apply(r,2,mean))


}


r <- my.simulation(
function () {
n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
y <- 1 - x1 + 2 * x2 + rnorm(n)
data.frame(y,x1,x2)
},


function (d) {
lm(y~x1+x2, data=d)$coef


},
R=999


)


matdensityplot <- function (r, ylab=’density’, ...) {
rr <- apply(r,2,density)
n <- length(rr)
xlim <- range( sapply(rr,function(a){range(a$x)}) )
ylim <- range( sapply(rr,function(a){range(a$y)}) )
plot(NA, xlim=xlim, ylim=ylim, ylab=ylab, ...)
for (i in 1:n) {
lines(rr[[i]], col=i)


}
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}


matdensityplot(r$t)


You can also use those simulations to study more complicated statistics, such as differences
or quotients of means.


Distribution of the ratio of two means


r$t
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5
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Experimental mean


q <- runif(1,0,10)
m1 <- runif(1,0,10)
m2 <- q*m1
r <- my.simulation(
function () {
n1 <- 200
n2 <- 100
x1 <- m1*rlnorm(n1)
x2 <- m2*rlnorm(n2)
data.frame( x=c(x1,x2), c=factor(c(rep(1,n1),rep(2,n2))))


},
function (d) {
a <- tapply(d[,1],d[,2],mean)
a[2]/a[1]


},
R=999


)
hist(r$t, probability=T, col=’light blue’,


main="Distribution of the ratio of two means")
lines(density(r$t), col=’red’, lwd=3)
abline(v=c(q,r$t0), lty=3, lwd=3, col=c(’blue’,’red’))
legend( par("usr")[2], par("usr")[4], xjust=1, yjust=1,


c("Theoretical mean", "Experimental mean"),
lwd=1, lty=3, col=c(’blue’,’red’) )


Instead of computing the mean and the standard deviation of our statistic, we can compute
other quantities, such as confidence intervals or p-values.


Distribution of the ratio of two means
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# 5% confidence interval of the preceding example
hist(r$t, probability=T, col=’light blue’,


main="Distribution of the ratio of two means")
qt <- quantile(r$t, c(.025,.975))
d <- density(r$t)
o <- d$x>qt[1] & d$x<qt[2]
lines(d$x[o], d$y[o], col=’red’, lwd=3)
lines(d, col=’red’)
abline(v=c(q,r$t0), lty=3, lwd=3, col=c(’blue’,’red’))
legend( par("usr")[2], par("usr")[4], xjust=1, yjust=1,


c("Theoretical mean", "Experimental mean",
"5% confidence interval"),


lwd=c(1,1,3), lty=c(3,3,1), col=c(’blue’,’red’, ’red’) )


TODO: put the following code a bit later, in the section about
non-parametric bootstrap.
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Distribution of the ratio of two means
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# We have two samples, of different sizes, and we study the
# quotient of their means
n1 <- 200
n2 <- 100
q <- runif(1,0,10)
m1 <- runif(1,0,10)
m2 <- q*m1
x1 <- m1*rlnorm(n1)
x2 <- m2*rlnorm(n2)
d <- data.frame( x=c(x1,x2), c=factor(c(rep(1,n1),rep(2,n2))))
R <- 999
library(boot)
r <- boot(d,


function (d,i) {
a <- tapply(d[,1][i],d[,2][i],mean)
a[2]/a[1]


},
R=R)


hist(r$t, probability=T, col=’light blue’,
main="Distribution of the ratio of two means")


qt <- quantile(r$t, c(.025,.975))
d <- density(r$t)
o <- d$x>qt[1] & d$x<qt[2]
lines(d$x[o], d$y[o], col=’red’, lwd=3)
lines(d, col=’red’)
abline(v=c(q,r$t0), lty=3, lwd=3, col=c(’blue’,’red’))
legend( par("usr")[2], par("usr")[4], xjust=1, yjust=1,


c("Theoretical mean", "Experimental mean",
"5% confidence interval"),


lwd=c(1,1,3), lty=c(3,3,1), col=c(’blue’,’red’, ’red’) )


16.14.3 Accuracy of the forecasts


Simulations do not only study the distribution of the estimations of the model parameters,
but also the distrinution of the predictions that use those estimated parameters.
TODO: an example
Compute the MDE for a classical regression


TODO: parametric bootstrap example, without "boot".
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Bias of a linear regression
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# The variables to predict are the first of the data.frame
my.simulation.predict <- function (
get.training.sample,
get.test.sample=get.training.sample,
get.model,
get.predictions=predict,
R=999) {
r <- matrix(NA, nr=R, nc=3)
colnames(r) <- c("biais", "variance", "quadratic error")
for (i in 1:R) {
d.train <- get.training.sample()
d.test <- get.test.sample()
m <- get.model(d.train)
p <- get.predictions(m, d.test)
if(is.vector(p)){ p <- data.frame(p) }
d.test <- d.test[,1:(dim(p)[2])]
b <- apply(d.test-p, 2, mean)
v <- apply(d.test-p, 2, var)


e <- apply((d.test-p)^2, 2, mean)
r[i,] <- c(b,v,e)


}
list(t=r, t0=apply(r,2,mean))


}


get.sample <- function () {
n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
y <- sin(x1) + cos(x2) - x1*x2 + rnorm(n)
data.frame(y,x1,x2)


}
r <- my.simulation.predict(
get.sample,
get.model = function (d) {
lm(y~x1+x2,data=d)


}
)
hist(r$t[,1], probability=T, col=’light blue’,


main="Bias of a linear regression")
lines(density(r$t), col=’red’, lwd=3)
abline(v=r$t0[1], lty=3)


TODO: I am too allusive about the MSE. Recall what bias is, why
biased estimators are not necessarily bad.


TODO: another example for a biased method
(but we need something really biased)
Principal component regression? (or its continuous analogue, ridge regression)


16.14.4 Comparing two methods, choice of a parameter (ridge re-
gression)


You can use simulations to estimate the Mean Square Error (MSE) of several methods, in
order to choose the best one.
get.sample <- function () {
n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
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y <- sin(x1) + cos(x2) - x1*x2 + rnorm(n)
data.frame(y,x1,x2)


}
r1 <- my.simulation.predict(
get.sample,
get.model = function (d) {
lm(y~x1+x2,data=d)


}
)
r2 <- my.simulation.predict(
get.sample,
get.model = function (d) {
lm(y~poly(x1,3)+poly(x2,3),data=d)


}
)
library(splines)
r3 <- my.simulation.predict(
get.sample,
get.model = function (d) {
lm(y~ns(x1)+ns(x2),data=d)


}
)
matdensityplot(cbind(r1$t[,1], r2$t[,1], r3$t[,1]),


main="Bias of three regression methods")
abline(v=c(r1$t0[1],r2$t0[1],r3$t0[1]), lty=3, col=1:3)
legend( par("usr")[2], par("usr")[4], xjust=1, yjust=1,


c("Linear regression", "Polynomial regression", "Splines"),
lty=1, lwd=1, col=1:3)


%--


This plot is not very helpful: let us look at the MSE.
> rbind( r1$t0, r2$t0, r3$t0 )


bias variance MSE
[1,] -0.004572499 2.301057 2.311898
[2,] -0.001475014 2.186536 2.194847
[3,] -0.001067888 2.331862 2.342088


The second method seems preferable: the difference between the means is small but statis-
tically significant.
> t.test( r2$t[,3], r1$t[,3] )


Welch Two Sample t-test
data: r2$t[, 3] and r1$t[, 3]
t = -7.1384, df = 1994.002, p-value = 1.317e-12
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.14920930 -0.08489377
sample estimates:
mean of x mean of y
2.194847 2.311898


> wilcox.test( r2$t[,3], r1$t[,3] )
Wilcoxon rank sum test with continuity correction


data: r2$t[, 3] and r1$t[, 3]
W = 397602, p-value = 3.718e-15
alternative hypothesis: true mu is not equal to 0


Here is another example, not to choose between different methods, but to estimate a pa-
rameter in a single method.
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Bootstrap simulations to choose the parameter in a ridge regression
library(MASS)
get.sample <- function () {
n <- 20
x <- rnorm(n)
x1 <- x + .2*rnorm(n)
x2 <- x + .2*rnorm(n)
x3 <- x + .2*rnorm(n)
x4 <- x + .2*rnorm(n)
y <- x + (x1+x2+x3+x4)/4 + rnorm(n)
data.frame(y,x1,x2,x3,x4)


}
get.model <- function (d) {
r <- lm.ridge(y~., data=d)


}
get.predictions <- function (r,d) {
m <- t(as.matrix(r$coef/r$scales))
inter <- r$ym - m %*% r$xm
drop(inter) + as.matrix(d[,-1]) %*% drop(m)


}


lambda <- c(0,.001,.002,.005,.01,.02,.05,.1,.2,.5,1,2,5,10,20,50,100)
n <- length(lambda)
res <- rep(NA,n)
for (i in 1:n) {
res[i] <- my.simulation.predict(
get.sample,
get.model = function (d) {
lm.ridge(y~., data=d, lambda=lambda[i])


},
get.predictions = get.predictions,
R=99


)$t0[3]
}
plot(res~lambda, type=’l’, log=’x’)
abline(h=res[1], lty=3)
i <- (1:n)[ res == min(res) ]
x <- lambda[i]
y <- res[i]
points(x,y,col=’red’,pch=15)
title(main="Bootstrap simulations to choose the parameter in a ridge regression")


16.14.5 Estimating the bias of an estimator


Maximum Likelihood Estimators are ofteh biased: the expectation of the estimator is not
the right one. (However, the situation is not that bad: they are asymptotically unbiased,
i.e., for large samples, the bias tends towards zero.)
TODO: give a biased MLE.


In other situations, the parameters might be unbiased, but the forecasts will be biased.
The estimators can even be intertionnaly biased: in ridge regression or in principal compo-
nent regression, we accept a slight bias in exchange for a smaller variance, in the hope that
it will decrease the MSE.
Simulations can help estimate the bias of an estimator of a forecast.
If we go back to the case of ridge regression, we realize that the forecasts are not really
biased.
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Bias in ridge regression forecasts
library(MASS)
get.sample <- function () {
n <- 20
x <- rnorm(n)
x1 <- x + .2*rnorm(n)
x2 <- x + .2*rnorm(n)
x3 <- x + .2*rnorm(n)
x4 <- x + .2*rnorm(n)
y <- 1+x1+2*x2+x3+2*x4 + rnorm(n)
data.frame(y,x1,x2,x3,x4)


}
get.model <- function (d) {
r <- lm.ridge(y~., data=d)


}
get.predictions <- function (r,d) {
m <- t(as.matrix(r$coef/r$scales))
inter <- r$ym - m %*% r$xm
drop(inter) + as.matrix(d[,-1]) %*% drop(m)


}


lambda <- c(0,.001,.002,.005,.01,.02,.05,.1,.2,.5,1,2,5,10,20,50,100)
lambda <- exp(seq(-7,7,length=100))
n <- length(lambda)
res <- rep(NA,n)
for (i in 1:n) {
res[i] <- my.simulation.predict(
get.sample,
get.model = function (d) {
lm.ridge(y~., data=d, lambda=lambda[i])


},
get.predictions = get.predictions,
R=20


)$t0[1]
}
plot(res~lambda, type=’l’, log=’x’)
abline(h=0,lty=3)
title("Bias in ridge regression forecasts")


On the other hand, the estimation if the coefficients are biased.
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Bias in ridge regression coefficients
get.sample <- function () {
n <- 20
x <- rnorm(n)
x1 <- x + .2*rnorm(n)
x2 <- x + .2*rnorm(n)
x3 <- x + .2*rnorm(n)
x4 <- x + .2*rnorm(n)
y <- 1+2*x1+3*x2+4*x3+5*x4 + rnorm(n)
data.frame(y,x1,x2,x3,x4)


}
s <- function(d,l) {
r <- lm.ridge(y~., data=d, lambda=l)
m <- t(as.matrix(r$coef/r$scales))
inter <- r$ym - m %*% r$xm
c(inter,m)


}
lambda <- exp(seq(-7,7,length=100))
n <- length(lambda)


res <- matrix(NA,nr=n,nc=5)
for (i in 1:n) {
res[i,] <- my.simulation(
get.sample,
function (d) { s(d,lambda[i]) },
R=20


)$t0
}
matplot(lambda,res,type=’l’,lty=1,log=’x’)
abline(h=1:5,lty=3,col=1:5)
title("Bias in ridge regression coefficients")


Let us take another example, Principal Component Regression (PCR) and let us plot the
bias as a function of the parameter values.


res


Y


Z


get.sample <- function (a,b) {
n <- 20
x <- rnorm(n)
x1 <- x + .2* rnorm(n)
x2 <- x + .2* rnorm(n)
y <- a*x1 + b*x2 + rnorm(n)
data.frame(y,x1,x2)


}
get.parameters <- function (d) {
y <- d[,1]
x <- d[,-1]
p <- princomp(x)
r <- lm(y ~ p$scores[,1] -1)
drop(p$loadings %*% c(r$coef,0))


}
N <- 5
a.min <- 0
a.max <- 10


res <- matrix(NA,nr=N,nc=N)
a <- seq(a.min,a.max,length=N)
b <- seq(a.min,a.max,length=N)
for (i in 1:N) {
for(j in 1:N) {
res[i,j] <- my.simulation(
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function () { get.sample(a[i],b[j]) },
get.parameters,
R=20


)$t0[1] - a[i]
}


}


persp(res)
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image(a,b,res,col=topo.colors(255))
text( matrix(a,nr=N,nc=N),


matrix(b,nr=N,nc=N, byrow=T),
round(res) )


We can use this knowledge of the bias to help correct it. Thus, in the following example,
the bias on a is approximately (b-a)/2.


res


Y


Z


get.parameters <- function (d) {
y <- d[,1]
x <- d[,-1]
p <- princomp(x)
r <- lm(y ~ p$scores[,1] -1)
res <- drop(p$loadings %*% c(r$coef,0))
a <- res[1]
b <- res[2]
c( a - (b-a)/2, b - (a-b)/2 )


}
N <- 5
a.min <- 0
a.max <- 10
res <- matrix(NA,nr=N,nc=N)
a <- seq(a.min,a.max,length=N)
b <- seq(a.min,a.max,length=N)
for (i in 1:N) {
for(j in 1:N) {


res[i,j] <- my.simulation(
function () { get.sample(a[i],b[j]) },
get.parameters,
R=20


)$t0[1] - a[i]
}


}
persp(res)
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image(a,b,res,col=topo.colors(255))
text( matrix(a,nr=N,nc=N),


matrix(b,nr=N,nc=N, byrow=T),
round(res) )


This is plain wrong: we get an estimation of the bias in function of the theoretical values
of the parameters, while we would need an estimation of the bias as a function of their
estimated values.
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get.parameters <- function (d) {
y <- d[,1]
x <- d[,-1]
p <- princomp(x)
r <- lm(y ~ p$scores[,1] -1)
drop(p$loadings %*% c(r$coef,0))


}
N <- 5
a.min <- 0
a.max <- 10
res <- matrix(NA,nr=N,nc=N)
res.a <- matrix(NA,nr=N,nc=N)
res.b <- matrix(NA,nr=N,nc=N)
a <- seq(a.min,a.max,length=N)
b <- seq(a.min,a.max,length=N)
for (i in 1:N) {
for(j in 1:N) {
r <- my.simulation(


function () { get.sample(a[i],b[j]) },
get.parameters,
R=20


)$t0
res.a[i,j] <- r[1]
res.b[i,j] <- r[2]
res[i,j] <- r[1] - a[i]


}
}
plot(res.a, res.b, type=’n’)
text(res.a, res.b, round(res))
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plot(as.vector(res) ~ as.vector(res.a-res.b))


Well, that was not a very good example (but in some cases, such as ridge regression, above,
estimating the bias and correcting it can improve the estimator).


16.14.6 Parametric bootstrap


In the preceding discussions, we assumed that we had a model that faithfully described the
observations. In this case, we can usually compute exactly the expectation, the variance,
the distribution of the estimators, their bias, their MSE.
However, those simulations, often called “parametric bootstrap” are still useful, in particular
when the model is too complex for the exact computations to be carried out or when the
model is given as a black box (say, you have a program to generate new observations, but
you do not know how it works).
We shall now see that simulations can also be helpful even if we do not have a model: this
is the “non-parametric bootstrap”.


16.15 Non-parametric bootstrap


16.15.1 Cross-validation


If we want to perform a simulation without any model (because we do not have any), with
just the sample we have at hand, our only solution is to use this sample.
One of the first ideas to come to mind is to split the sample in two, using 75% of the data
to find the estimator or the parameters needed for the forecasts, and using the 25 remaining
percents to assess the quality of those forecasts. You can then repeat this process, with
another splitting, in order to have a better idea of the distribution of the forecasting errors.
Then, if the model or the algorithm seems acceptable, you run it on all the data (in order
to have a more precise result that with the 75%). This is called cross-validation.
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MSE estimation by cross−validation
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my.simulation.cross.validation <- function (
s, # sample
k, # number of observations to fit the the model
get.model,
get.predictions=predict,
R = 999 )


{
n <- dim(s)[1]
r <- matrix(NA, nr=R, nc=3)
colnames(r) <- c("bias", "variance", "MSE")
for (i in 1:R) {
j <- sample(1:n, k)
d.train <- s[j,]
d.test <- s[-j,]
m <- get.model(d.train)
p <- get.predictions(m, d.test)
if(is.vector(p)){ p <- data.frame(p) }
d.test <- d.test[,1:(dim(p)[2])]


b <- apply(d.test-p, 2, mean)
v <- apply(d.test-p, 2, var)
e <- apply((d.test-p)^2, 2, mean)
r[i,] <- c(b,v,e)


}
list(t=r, t0=apply(r,2,mean))


}


n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- 2 - x1 - x2 - x3 + rnorm(n)
s <- data.frame(y,x1,x2,x3)
r <- my.simulation.cross.validation(s, 150, function(s){lm(y~.,data=s)}, R=99)
hist( r$t[,3], probability=T, col=’light blue’,


main="MSE estimation by cross-validation" )
lines(density(r$t[,3]),col=’red’,lwd=3)
abline(v=mean(r$t[,3]),lty=2,lwd=3,col=’red’)


16.15.2 Jack-knife


The splitting need not be 75%/25%, you can take 90%/10% or even remove a single obser-
vation: this is the Kack-knife.
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Histogram of r[, 5] − r[, 1]
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my.simulation.jackknife <- function (
s,
get.model,
get.predictions=predict,
R=999)


{
n <- dim(s)[1]
if(R<n) {
j <- sample(1:n, R)


} else {
R <- n
j <- 1:n


}
p <- get.predictions(get.model(s), s)
if( is.vector(p) ) {
p <- as.data.frame(p)


}
r <- matrix(NA, nr=R, nc=dim(s)[2]+dim(p)[2])


colnames(r) <- c(colnames(s), colnames(p))
for (i in j) {
d.train <- s[-i,]
d.test <- s[i,]
m <- get.model(d.train)
p <- get.predictions(m, d.test)
r[i,] <- as.matrix(cbind(s[i,], p))


}
r


}


n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- 2 - x1 - x2 - x3 + rnorm(n)
s <- data.frame(y,x1,x2,x3)
r <- my.simulation.jackknife(s, function(s){lm(y~.,data=s)})
hist( r[,5]-r[,1], col=’light blue’ )


16.15.3 Jack-knife


TODO: explain how to lower the bias of an estimator with the Jackknife.


TODO
Explain the idea, give the resulting formula, and finally the
formula actually used.


TODO
Give an example (probably the population variance, which is a biased
estimator: the jack-knife will give the sample variance).


16.15.4 Bootstrap


In crossed validation (or in the jack-knife), each observation was used exactly once: you
build the sample on which you will perform the computations by sampling WITHOUT
replacement. Instead, you can sample WITH replacement: this os the idea behind the
bootstrap. In other words, the sample is used as an infinite population.
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We choose to sample WITH replacement so that the random variables be independant –
when you sample without replacement, they are not.
To implement this, we could reuse the function we had used for cross-validation.


Using the bootstrap to estimate the MSE
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my.simulation.bootstrap <- function (
s,
get.model,
get.predictions=predict,
R = 999 )


{
n <- dim(s)[1]
r <- matrix(NA, nr=R, nc=3)
colnames(r) <- c("bias", "variance", "MSE")
for (i in 1:R) {
j <- sample(1:n, n, replace=T)
d.train <- s[j,]
d.test <- s
m <- get.model(d.train)
p <- get.predictions(m, d.test)
if(is.vector(p)){ p <- data.frame(p) }
d.test <- d.test[,1:(dim(p)[2])]
b <- apply(d.test-p, 2, mean)


v <- apply(d.test-p, 2, var)
e <- apply((d.test-p)^2, 2, mean)
r[i,] <- c(b,v,e)


}
list(t=r, t0=apply(r,2,mean))


}


n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- 2 - x1 - x2 - x3 + rnorm(n)
s <- data.frame(y,x1,x2,x3)
r <- my.simulation.bootstrap(s, function(s){lm(y~.,data=s)}, R=99)
hist( r$t[,3], col=’light blue’,


main="Using the bootstrap to estimate the MSE" )
lines(density(r$t[,3]),col=’red’,lwd=3)
abline(v=mean(r$t[,3]),lty=2,lwd=3,col=’red’)


But actually, there is already a function to do this.
Here is, for instance, our first application of the bootstrap: investigate the distribution of a
statistic (here, the mean of a sample).
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Histogram of r$t


r$t


D
en


si
ty


1.3 1.4 1.5 1.6 1.7 1.8


0
1


2
3


4


Bootstrap to estimate the distribution of the mean of a sample
library(boot)
n <- 200
x <- rlnorm(n)
r <- boot(x, function(s,i){mean(s[i])}, R=99)
hist(r$t, probability=T, col=’light blue’)
lines(density(r$t),col=’red’,lwd=3)
abline(v=mean(r$t),lty=2,lwd=3,col=’red’)
title("Bootstrap to estimate the distribution of the mean of a sample")


The first argument contains the observations, as a vector (if there is only one variable), an
array or a data.frame. The second argument is the statistic, as a function whose arguments
are the data and the vector of indices and that returns a vector. The last argument is the
number of bootstrap samples to consider (at least 1,000).
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n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- -2 - x1 +0* x2 + x3 + rnorm(n)
s <- data.frame(y,x1,x2,x3)
r <- boot(s, function(s,i){lm(y~.,data=s[i,])$coef}, R=99)
plot(NA,xlim=range(r$t), ylim=c(0,6.5))
for (i in 1:4) {
lines(density(r$t[,i]), lwd=2, col=i)


}


The result is a list. We shall mainly be interested in two of ots components: t, that contains
all the estimations of the statistic and t0, that contains the same estimation for the whole
sample. The “print.boot” function also gives the estimated bias.
> r
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = s, statistic = function(s, i) {


lm(y ~ ., data = s[i, ])$coef
}, R = 99)
Bootstrap Statistics:


original bias std. error
t1* -2.0565761 -0.0001888077 0.06901359
t2* -1.0524309 -0.0060001140 0.06248444
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t3* -0.1340356 -0.0082527142 0.06299820
t4* 1.0176907 0.0013180553 0.06206947


Let us now consider the other application of the bootstrap: assessing the quality of forecasts.
Here, we merely study the statistic “MSE of the forecasts”.


Mean Square Error (MSE)
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n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- 1+x1+x2+x3+rnorm(n)
d <- data.frame(y,x1,x2,x3)
r <- boot(d,


function (d,i) {
r <- lm(y~.,data=d[i,])
p <- predict(r, d[-i,])
mean((p-d[,1][-i])^2)


},
R=99)


hist(r$t,probability=T,col=’light blue’,
main="Mean Square Error (MSE)")


lines(density(r$t),lwd=3,col=’red’)
abline(v=mean(r$t),lty=3)


16.15.5 Remarks


The belief underlying the bootstrap is the following: the relation between the sample at
hand and the population it comes from is very similar to those between the sample at hand
and the bootstrap samples we draw from it (i.e., the samples sampled with replacement
from the sample at hand).
Let us check on an example that this assumption is not too unrealistic.
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get.sample <- function (n=50) { rnorm(n) }
get.statistic <- function (x) { mean(x) }
# Plot the density of the estimator
R <- 200
x <- rep(NA,R)
for (i in 1:R) {
x[i] <- get.statistic(get.sample())


}
plot(density(x), ylim=c(0,4), lty=1,lwd=3,col=’red’,


main="Relevance of the bootstrap")
# Let us plot a few estimations of this density,
# obtained from the bootstrap
for (i in 1:5) {
x <- get.sample()
r <- boot(x, function(s,i){mean(s[i])}, R=R)
lines(density(r$t))


}
curve(dnorm(x,sd=1/sqrt(50)),add=T, lty=2,lwd=3,col=’blue’)


legend(par(’usr’)[2], par(’usr’)[4], xjust=1, yjust=1,
c(’parametric bootstrap’, ’non-parametric bootstrap’,
"theoretical curve"),


lwd=c(3,1,2),
lty=c(1,1,2),
col=c("red", par("fg"), "blue"))
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Conclusion: do not expect any miracle from the bootstrap.
The bootstrap is only relevant for some, “well-behaved”, estimators: in particular, avoid it
to study pathological estimators such as the maximum.


A statistic for which the bootstrap is not very relevant...
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n <- 50
x <- rnorm(n)
r <- boot(x, function(s,i){max(s[i])}, R=999)
hist(r$t, probability=T, col=’light blue’,


main="A statistic for which the bootstrap is not very relevant...")
lines(density(r$t,bw=.05), col=’red’, lwd=3)


16.15.6 Confidence intervals


The “boot.ci” function derives confidence intervals from bootstrap results.
n <- 20
x <- rnorm(n)
r <- boot(x, function(x,i){mean(x[i])}, R=99)


> boot.ci(r)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 99 bootstrap replicates


CALL:
boot.ci(boot.out = r)


Intervals:
Level Normal Basic
95% (-0.1457, 0.6750 ) (-0.2429, 0.5969 )


Level Percentile BCa
95% (-0.1050, 0.7348 ) (-0.0559, 0.7891 )
Calculations and Intervals on Original Scale
Some basic intervals may be unstable
Some percentile intervals may be unstable
Warning: BCa Intervals used Extreme Quantiles
Some BCa intervals may be unstable
Warning messages:
1: Bootstrap variances needed for studentized intervals in: boot.ci(r)
2: Extreme Order Statistics used as Endpoints in: norm.inter(t, adj.alpha)
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n <- 20
N <- 100
r <- matrix(NA,nr=N,nc=2)
for (i in 1:N) {
x <- rnorm(n)
r[i,] <- boot.ci(boot(x,function(x,i){mean(x[i])},R=99))$basic[c(4,5)]


}
plot(NA,xlim=c(-1.5,1.5), ylim=c(0,2),


main="Confidence interval boundaries (bootstrap)")
lines(density(r[,1]), lwd=3, col=’red’)
lines(density(r[,2]), lwd=3, col=’blue’)
abline(v=0,lty=3)


16.15.7 The bootstrap is biased


The bootstrap is biased towards zero, because some observations are used both on the sample
used to build the model (i.e., the bootstrap sample) and in the sample used to validate it
(i.e., the whole initial sample, used as the population).
The “out-of-the-bag bootstrap” and the ”.632 bootstrap” try to correct this bias.


16.15.8 Out-of-the-bag bootstrap


The out-of-the-bag bootstrap does not use all the observations to validate the model, but
only those that were not in the bootstrap sample – this is already what we were doing with
cross-validation.


16.15.9 .632 bootstrap


Actually, the out-of-the-bag bootstrap is still biased, but in the other directions. To correct
this bias, one can consider a weighted mean of the raw bootstrap and the oob bootstrap.
.368 * (bias estimated from the raw bootstrap) +
.632 * (bias estimated from the oob bootstrap)


This strange ”.632” coefficient comes from the following remark: when the sample size is
large, the bootstrap samples contain on average 63.2% of the initial observations.
TODO: example?
The following example is not very good: the estimator is not
biased...
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Bias estimation: bootstrap, oobb, .632
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n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
y <- 1+x1+x2+x3+rnorm(n)
d <- data.frame(y,x1,x2,x3)
r1 <- boot(d, function (d,i) {


r <- lm(y~.,data=d[i,])
p <- predict(r, d)
mean(p-d[,1])


},
R=99)$t


r2 <- boot(d, function (d,i) {
r <- lm(y~.,data=d[i,])
p <- predict(r, d[-i,])
mean(p-d[,1][-i])


},
R=99)$t


r3 <- .368*r1 + .632*r2
hist(r1,probability=T,col=’light blue’,


main="Bias estimation: bootstrap, oobb, .632")
lines(density(r1),lwd=3,col=’red’)
lines(density(r2),lwd=3,col=’green’)
lines(density(r3),lwd=3,col=’blue’)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1, yjust=1,


c("raw bootstrap", "out-of-the-bag bootstrap", ".632"),
lwd=3,
col=c("red", "green", "blue")


)


16.16 Other examples


16.16.1 Bootstrap and linear regression


In the context of a linear regression, one tends to bootstrap the residuals rather than the
observations.
You can see this as a semi-parametric bootstrap.
In a parametric bootstrap, you would choose a model (here, a linear model with gaussian
noise), estimate the parameters of this model (the linear relation and the noise variance)
and sample from that model.
Here, you only choose half a model: a linear model with unspecified noise. You estimate the
model (the linear relation) and sample from the estimated noise (the residuals).
TODO
plot( res ~ leverage )


library(boot)
fit <- lm(calls ~ year, data=phones)
ph <- data.frame(phones, res=resid(fit), fitted=fitted(fit))
ph.fun <- function(data, i) {
d <- data
d$calls <- d$fitted + d$res[i]
coef(update(fit, data=d))


}
ph.lm.boot <- boot(ph, ph.fun, R=499)
ph.lm.boot
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16.16.2 Bootstrap and time series


The bootstrap cannot be directly applied to time series because the observations are not
independant. Usually, one samples (with replacement) chunks of time series and joins them
together.
If the time series looks like an AR(1) process, one would rather do that the first difference
of the time series.


16.17 TODO: delete what follows?


TODO: in the above examples, use the “boot” function, even for the parametric bootstrap.
get.sample.ridge <- function (n=100) {
x1 <- rnorm(n)
x2 <- rnorm(n)
y <- 1 - x1 - x2 + rnorm(n)
data.frame(y,x1,x2)


}
statistic.ridge <- function (x, lambda=0) {
r <- lm.ridge(y~x1+x2, data=x, lambda=lambda)


}
statistic.ridge.for.boot <- function (x,i, lambda=0) {
statistic.ridge(x[i,], lambda=10)


}


# Non-parametric bootstrap
n <- 20
N <- 100
x <- get.sample.ridge()
r <- boot(x, statistic.ridge.for.boot, R=999)


It yields:
> r
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = x, statistic = statistic.ridge.for.boot, R = 999)
Bootstrap Statistics:


original bias std. error
t1* 1.1380068 0.0007701467 0.10555253
t2* -1.0200495 0.0037754155 0.09702321
t3* -0.9293355 0.0017206597 0.08876848


And for the parametric bootstrap:
# Parametric bootstrap
ran.ridge <- function (d, p=c(1,-1,-1)) {
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
y <- p[0] + p[1]*x1 - p[2]*x2 + rnorm(n)
data.frame(y,x1,x2)


}
r <- boot(x, statistic.ridge.for.boot, R=999, sim=’parametric’,


ran.gen=ran.ridge, mle=c(1,-1,-1))
TODO: There is an error...


16.17.1 Cross-validation and bootstrap


TODO: estimating the bias for biased forecasts (take a classical regression, do the forecasts
and add 1 – so as to be sure the forecasts are biased). Use the “boot” function for those
forecasts.
Plot the forecast error density for the chosen method before and after correction of the bias.
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TODO: compare several regressions.
y <- sin(2*pi*x)+.3*rnorm(n)
y~x
y~ns(x)
y~poly(x,20)
Compare: MSE (bootstrap), AIC, BIC


16.17.2 Jackknife: correcting the bias


- Split the observations into 10 groups: 1, 2, ..., 10.
- Use groups 2,3,...,10 to compute the estimator, compare with group 1,
estimate the bias.


- Repeat with groups 1,3,4...,10 (i.e., put aside group 2),
etc.
The mean of those 10 biases is an estimation of the bias.


- Compute the estimator with thw whole sample, correct it with the
estimated bias.


16.17.3 Bootstrap (resampling)


TODO: reuse the following paragraph.
Consider the following situation. We have a sample, from a non-gaussian population, and we
are trying to estimate a statistic (mean, median, maximum, the coefficients of a regression,
etc.). Which estimator should we choose? Is it biased? Can we have an estimation of
thi bias? What is its variance? Has it a gaussian distribution? Can we have confidence
intervals? If we do not know anything of the whole population, we cannot say much. But
we do know something: we have a sample. The idea is to use this sample to manufacture
more samples (we simply sample, with replacement, from this sample – this differs from
cross-validation where we sample without replacement). As we now have several samples,
we can study the behaviour and the relevance of the various candidate estimators
TODO: recall that one cannot study ANY statistic that way. For the results to be cor-
rect/meaningful/relevant, it has to have some theoretical properties. The typical patholog-
ical example is the “maximum”.
TODO: completely rewrite what follows. With another example – the maximum is the worst
you could think of...
TODO: Bias and optimism.
Let us explain the difference between bias and optimism. We have a population (which
we do not know), a sample, and several bootstrap samples. We also have an estimator,
supposed to measure some parameter of the population. The bias of this estimator is the
expectation of the difference between this parameter and its estimation from the sample; the
optimism is the difference between the estimator evaluated on the sample and the average
of its evaluations on the bootstrap samples.
The bias is a comparison between the parameter and the estimator, the optimism is a
comparison of the estimator between the sample and the bootstrap samples (the optimism
completely forgets about the parameter to be estimated).
TODO: write a funtion to perform bootstrap computations.


my.bootstrap <- function (data, estimator, size, ...) {
values <- NULL
n <- dim(data)[1]
for (i in 1:size) {
bootstrap.sample <- data[ sample(1:n, n, replace=T), ]
values <- rbind(values, t(estimator(bootstrap.sample, ...)))


}
values


}


TODO: present the “boot” function. Already done above (The “bootstrap” package is
older.)
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library(boot)
my.max <- function (x, i) { max(x[i]) }
r <- boot(faithful$eruptions, my.max, R=100)
plot(r)


> r


ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = faithful$eruptions, statistic = my.max, R = 100)


Bootstrap Statistics:
original bias std. error


t1* 5.1 -0.02265 0.0367342


16.17.4 Jackknife-after-Bootstrap Plots


I do not know what it is. (to investigate the influence of each observation on the result).
TODO
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*


20522213 16203182266146110160241302721284652157310886561677715023316519297392121525723170243188235126431901572087137222261075632591755227255 174


80135 2 11112425223955177881642371012044270511032601483410082180120871431542427122124513824426926295139811368326721421310421140184265249151242268 149
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5811561 9821145991962701341791582011761979236218851016120616215213723426321725015611320010684168471872581197247117195281485722423210240216178 248


2251296014818917119926941142091218191198746466252071726238159186785035962614920231240254173331949113090145679218514212531116312376116 238


jack.after.boot(r)
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16.17.5 Why should the bootstrap work?


The efficiency of the bootstrap relies on the belief that the relation between the population
(that we do not know) and the sample (we have one) is the same as the relation between
the sample and the bootstrap samples. There is no reason for those relations to be exactly
the same.
To try to justify the bootstrap, we can perform the following experiment.
1. Choose a distribution
2. Take a sample
3. Apply the bootstrap to estimate a parameter of confidence


intervals.
4. Go back to point 2.


Here is what it could yield:
TODO...


TODO: compare parametric and non-parametric bootstrap (in particular, look how many
samples you must have to get reliable estimators).


16.17.6 Out-of-the-bag bootstrap and bootstrap .632


TODO: already done above...
TODO: delete/proofread this example


0.5 0.6 0.7 0.8 0.9


0
2


4
6


Basic and out−of−the−box bootstrap
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Basic bootstrap
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get.sample <- function (n=50) {
x <- rnorm(n)
y <- 1-x+rnorm(n)
data.frame(x,y)


}
s <- get.sample()


R <- 100
n <- dim(s)[1]
x <- s$x
y <- s$y
res <- rep(NA,R)
res.oob <- rep(NA,R)
for (k in 1:R) {
i <- sample(n,n,replace=T)
xx <- x[i]
yy <- y[i]
r <- lm(yy~xx)


ip <- rep(T,n)
ip[i] <- F
xp <- x[ip]
yp <- predict(r,data.frame(xx=xp))
try( res.oob[k] <- sd(yp - s$y[ip]) )
res[k] <- sd( yy - predict(r) )


}
plot(density(res), main="Basic and out-of-the-box bootstrap")
lines(density(res.oob),lty=2)
abline(v=1,lty=3)
legend( par("usr")[2], par("usr")[4], xjust=1, yjust=1,


c("Basic bootstrap", "Out-of-the-box bootstrap"),
lwd=1, lty=c(1,2) )


It yields
> mean(res)
[1] 0.9221029
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> mean(res.oob)
[1] 0.9617512


instead of 1. In most cases, however, classical bootstrap gives overoptimistic estimations
while the oob bootstrap is too pessimistic: quite often, we take a (weighted) mean of both.
> .368*mean(res) + .632*mean(res.oob)
[1] 0.9471606


16.17.7 Bootstrap and estimator comparison


TODO: proofread this
TODO: change the title of this section?
We have seen how the bootstrap could help us estimate the bias, variance and MSE of an
estimator. It allows us to compare several estimators and choose the “best” (say, the one
with the lowest MSE).
We have already tackled the same problem with ridge regression: if the variables are multi-
colinear, a regression using
b = (X’X)^-1 X’ y


would not work well (because the X’X matrix is almost singular: the estimator would have
a higes variance); instead we use
b = (X’X + kI)^-1 X’ y.


Let us try to find the value of k that minimizes the estimator variance. (In this situation,
as there is nothing but linear algebra and gaussian distributions, you probably can do the
exact computations.)
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echantillon.multicolineaire <- function (n=100) {
x0 <- rep(1,n)
x1 <- x0 + .1*rnorm(n)
x2 <- x0 + .1*rnorm(n)
x3 <- x0 + .1*rnorm(n)
y <- x0 + x1 + x2 + x3 + rnorm(n)
x <- cbind(x0,x1,x2,x3)
m <- cbind(y,x)
m


}
m <- echantillon.multicolineaire()
f <- function (m, k) {
x <- m[,-1]
y <- m[,1]
n <- dim(x)[2]
solve( t(x) %*% x + k*diag(rep(1,n)), t(x) %*% y )


}
N <- 200


variance <- rep(NA, N)
biais <- rep(NA, N)
exact <- f(m,0)
k <- exp(seq(.01,4, length=N))-1
for (j in 1:N) {
g <- function (m, i) { f(m[i,], k[j]) }
s <- boot(m, g, R=1000)
variance[j] <- max(var(s$t))
biais[j] <- max(exact - apply(s$t,2,mean))


}
plot(variance ~ k, log=’x’, type=’l’)
par(new=T)
plot(biais ~ k, type=’l’, log=’x’, col=’red’, xlab=’’, ylab=’’, axes=F)
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axis(4, col="red")
legend( par("usr")[2], par("usr")[4], yjust=1, xjust=0,


c("variance", "optimism"),
lwd=1, lty=1,
col=c(par(’fg’), ’red’) )


TODO: This plot does not suggest k=10... Before using the “boot” function, I got:
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my.bootstrap <- function (data, estimator, size, ...) {
values <- NULL
n <- dim(data)[1]
for (i in 1:size) {
bootstrap.sample <- data[ sample(1:n, n, replace=T), ]
values <- rbind(values, t(estimator(bootstrap.sample, ...)))


}
values


}


n <- 100
x0 <- rep(1,n)
x1 <- x0 + .1*rnorm(n)
x2 <- x0 + .1*rnorm(n)
x3 <- x0 + .1*rnorm(n)
y <- x0 + x1 + x2 + x3 + rnorm(n)
x <- cbind(x0,x1,x2,x3)
f <- function (m, k) {


x <- m[,-1]
y <- m[,1]
n <- dim(x)[2]
solve( t(x) %*% x + k*diag(rep(1,n)), t(x) %*% y )


}
N <- 200
variance <- rep(NA, N)
biais <- rep(NA, N)
k <- exp(seq(0,6, length=N))-1
for (i in 1:N) {
s <- my.bootstrap(cbind(y,x), f, 100, k[i])
variance[i] <- max(apply(s, 2, var))
biais[i] <- max(abs( s -
matrix( as.vector(f(cbind(y,x),0)), nr=dim(s)[1], nc=dim(s)[2], byrow=T )


))
}
plot(variance ~ k, log=’x’, type=’l’)
par(new=T)
plot(biais ~ k, type=’l’, log=’x’, col=’red’, xlab=’’, ylab=’’, axes=F)
axis(4)


We choose k=0.2
> g <- function (m, i) { f(m[i,], .2) }
> s <- boot(m, g, R=100)
> apply(s$t,2,mean)
[1] 1.1294813 1.0082432 0.3821003 1.2957629


> g <- function (m, i) { f(m[i,], 10) }
> s <- boot(m, g, R=100)
> apply(s$t,2,mean)
[1] 0.9402689 0.9762665 0.8696934 0.9346982


These values are much better that those obtained with k=0 (i.e., with classical regression):
the coefficients of x1, x2, x3 are supposed to be equal.
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> as.vector(exact)
[1] 1.3112394 1.0350861 0.2463275 1.2259999


We can check the forecasts accuracy.
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Residues of a ridge regression
s <- my.bootstrap(cbind(y,x), f, 100, 10)
b <- apply(s, 2, mean)
b0 <- as.vector(f(cbind(y,x),0))


# Another sample from the same population
# TODO: put this in a function
n <- 100
x0 <- rep(1,n)
x1 <- x0 + .1*rnorm(n)
x2 <- x0 + .1*rnorm(n)
x3 <- x0 + .1*rnorm(n)
y <- x0 + x1 + x2 + x3 + rnorm(n)
x <- cbind(x0,x1,x2,x3)


a1 <- x %*% b
a2 <- x %*% b0
boxplot( c(as.vector(a1), as.vector(a2)) ~


gl(2,n,2*n, c("ridge", "classic")),


horizontal=T )
title(main="Residues of a ridge regression")


16.17.8 TODO


library(ipred)


16.17.9 TODO


Sample use of the bootstrap
95% confidence band for spline regression
Compare with the confidence intervals provided by classical
regression.


16.17.10 TODO


We have just used regression to compare estimators, we can also use
it to compare models.


16.17.11 TODO: TO SORT


TODO: For each bootstrap example, add a few plots:
boxplot, hist, qqnorm, jack.after.boot
boot.ci to compute confidence intervals (several methods, some
require very long computations).


TODO: To sort
An article about the bootstrap and its implementation in R in
http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf


library(help=bootstrap)
Old



http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
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library(help=boot)
More recent
Also works with right-censored data and time series.
?censboot
?tsboot
Also: multi-sample problems


TODO: influence function estimation from the bootstrap.
?empinf


16.17.12 Jackknife


The estimators obtained from the Maximum Likelihood method are often biased (they are
asymptotically unbiased, though). The Jack-Knife algorithm can transform a biased esti-
mator U into a less-biased one.
Split the sample into N samples of the same size (for instance, of size 1) and compute the
estimatior Ui on each of those samples. Then, set
J = N U - (N-1)/N * (U1 + U2 + ... + Un)


For instance, if we start with the population variance formula (the one with “n” in the
denominator, which is a biased estimator), we get the sample variance formula (with “n-1”
in the denominator: it is unbiased).
TODO: check this.
TODO
library(boot)
?jack.after.boot


16.18 TODO


Use the bootstrap to:
estimate the variance of an estimator
compute a confidence interval
perform tests, compute p-values


Example: take a sample, bootstrap to get a 95% confidence interval. Plot, as a function of
the bootstrap sample, the median median and the 0.025 and 0.975 quantiles of the median.
TODO


16.19 TODO


TODO
# Use bootstrap (normal or .632) or cross-validation
# to estimate classification error
library(ipred)
?errortest
xpdf ipred-examples.pdf


16.19.1 Compromise bias-varance


TODO: Should this really be here???
TODO: plot 1:


The forecast error (on the taring sample and the test
sample) as a function of the model complexity. When a
model is too complex, the forecasts are bad: this is
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called overfit.)
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n <- 50
k <- 10
N <- 50
get.sample <- function (n) {
x <- runif(n)
y <- sin(2*pi*x)+.3*rnorm(n)
m <- data.frame(x=x, y=y)
m


}
error <- rep(NA,k)
for (i in 1:k) {
e <- rep(NA,N)
for (j in 1:N) {
training.sample <- get.sample(n)
x <- training.sample$x
y <- training.sample$y
r <- lm(y~poly(x,i))
test.sample <- get.sample(1000)


e[j] <- mean( (predict(r, data.frame(x=test.sample$x)) - test.sample$y)^2 )
}
error[i] <- mean(e)


}
plot(error, type=’l’, log=’y’,


xlab="Model complexity",
ylab="Errorr")


We can plot bias, variance, Mean Squared Error (MSE) as a function of the model complex-
ity, the parameter in ridge regression, the number of neighbours in the “k nearest nearest
neighbours” method, the speed at which the temperature decreases in simulated anneal-
ing, the number of parameters in principal component regression, the degree in polynomial
regression, the number of nodes in restricted cubic splines, etc.
TODO: detail
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Bias and variance of a biased estimator
a <- 2
curve(dnorm(x-a), xlim=c(-3,5), ylim=c(0,.5))
abline(v=0, lty=3, col=’red’)
abline(v=a, lty=3, col=’blue’)
arrows(0,.45,a,.45, code=3, col=’green’)
arrows(a-pnorm(1), dnorm(pnorm(1)), a+pnorm(1), dnorm(pnorm(1)), code=3, col=’red’)
legend(par(’usr’)[2], par(’usr’)[4], xjust=1,


c("true value", "estimator expectation", "bias", "variance"),
lwd=1, lty=c(3,3,1,1),
col=c(’red’, ’blue’, ’green’, ’red’) )


title(main="Bias and variance of a biased estimator")
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16.20 MCMC: Monte Carlo simulations with Markov
Chains


16.20.1 Bibliography


The algorithm is clearly described here:
http://students.washington.edu/~fkrogsta/bayes/stat538.pdf


For more details, Google for “MCMC metropolis hastings”.


16.20.2 Structure of this part


Motivations
Random sampling
Integral computations (expectation: mean, varaince, etc.)
Bayesian Methods
Examples of spaces


Metropolis Algorithms, Implementation
Generalizations and variants
Hastings corrections
Gibbs sampling
Metropolis-Hastings-Green


Applications
Phylogeny
Multiple Alignment


16.20.3 Motivations (1): Random sampling


We want to sample at random an element among the population (x1,x2,...,xn) according to
the distribution (p1,p2,...,pn). A very complicated way of doing so consists in designing a
Markov chain whole limit distribution is (p1,...,pn).
For simple examples, it is really weird, but you sometimes face finite but huge spaces (or
“universes”): for instance, in a phylogenetic study, you might want to sample from the set
of 1000-leaf trees.
If we wanted an equi-probable distribution, we could find a simpler way out: but, in order
to perform simulations, we would like the trees to describe the evolution of the species we
are studying, we would like the more probable trees to appear more often and the more
unlikely ones to appear more rarely.
But the situation is even worse that that! Usuallky, we cannot compute the probability of
each element. For each tree a, we can compute a score S(a) and the probability of a tree a0
is


score(a0)
P(a0) = ----------------


Sum score(a)
a


The problem is that the sum at the denominator has too many terms to be computed.
Markov chains will allow us to wander in the space of all trees, going from a tree to a
“neighbouring” tree (for a notion of “neighbourhood” still to be defined). The samples
wil will get on that way will not be independant, but they will be sufficient to computes
quantities of interest associated to the probability distribution on our space of trees.
One meets those non-equiprobable probability measures when one applies bayesian methods:
when we want to compute the value of a parameter in a model, the values that best fits the
observed data data, we often ask for a single result. But this is not natural, because the
result will be imprecise: often, we complete this result with a “variance”. This variance is
meaningful if the distribution of the estimated parameter is gaussian, which is rarely the
case (it can be skewed, it can be bimodal – or even worse, the parameter need not be a
number, it could be a tree in a huge set of trees). An idea, to get around this problem, is to
give, not a single value of the parameter but all its distribution: if we really want a single
value, if we think (after having a look at the distribution, to check if it is a good idea), we



http://students.washington.edu/~fkrogsta/bayes/stat538.pdf
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can take the mode (this will be a Maximum Likelohood (ML) estimator) or the mean of this
distribution; if we want confidence intervals, having the distribution will yield more accurate
results. This distribution is known as the “a posteriori” (or “posterior” distribution).
If the universe is intricate (e.g., if it is a set of trees or graphs), it might be hard to describe
this probability distribution. But that is not a problem, because we do not need to describe
it: if we can randomly sample from it, we can easily get the answer to our questions (mode,
median, confidence intervals, etc.). The methods we are about to present are actually (Monte
Carlo simulations with Markov Chains, MCMC) will allow us to perform suc a sampling.


16.20.4 Motivation (2): integration


The Monte Carlo method allows you to compute an integral
Integral( f(x), x \in I )


in the following way: take x1, x2,..., xn at random in I and compute
1
--- Sum f(X k)
N k=1..N


If the set I over which we integrate is a close interval of the real line, we shall draw x1 at
random from a uniform distribution. On the contrary, if it is the whole real line, it will not
work (there is no uniform probability distribution on the whole real line). Instead, we shall
try to write the function to integrate under the form f(x) = g(x) p(x) where p is the density
of a probability distribution on the real line. Then, we just have to sample the xi from that
distribution and compute


1
--- Sum g(X k)
N k=1..N


If you compare this with the classical numerical integration algorithmas you are used to
(rectangles, etc.), it does not seem very efficient – especially in dimension 1, i.e., if you
integrate a function of a single variable. Monte Carlo integration becomes more interesting
in higher dimensions. Imagine you want to compute the integral of a function f of 1000
variables in the hypercube [0,1]ˆ1000. The generalization of the rectangles method suggests
to evaluate the function at each vertex of this hypercube and average those values. The
problem is that this hypercube has 2ˆ1000 vertices. This is too much. Instead, the Monte
Carlo method will just evaluate f at a few hundred points in the hypercube and average
them: it is not as precise, but we do not have to wait until the Sun becomes a super nova.
This example might sound extreme: do we really see functions of a thoud variables in our
day to day life? Do we really have to compute integral on such spaces in concrete problems?
Well, yes, we do. With a phylogenetic tree describing the evolution of a thousand species,
you might want to know the number of mutations on each of the branches, i.e., the length of
those branches. The set of those lengths (a thousand) is a point in a high-dimension space.
Actually, the situation is even worse, because you will want to consider all the possible
trees...
But do we really want to compute integrals on such spaces? Well, yes, we do: mean (expec-
tation), variance, probabilities can be expressed as integrals. For instance, the probability
that the situation we are studying is in a set H0 of hypotheses, given that we we observed
O is:
P(H \in H0) = integral( P(H|O), H \in H0 )


P(O|H) P(H)
= integral( ------------- , H \in H0 )


P(O)


Other example: the probability of observing O given that we have already observed O is
P(O’|O) = Integral( P(O’|H) * P(H|O), H )
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16.20.5 The Metropolis-Hastings algorithm


Here is a simplistic algorithm:
For i = 1 to N:
Choose Xi at random following the distribution p


The problem is that p can be arbitrary and, in particular, diffucult to compute. In the situa-
tions we shall be interested in, the universe will be finite but very large and the probabilities
will be of the form


w(a)
P(X=a) = ------------------


Sum( w(b), b )


We can compute the numerator, but the denominator, a sum onver all the elements of the
universe, cannot be computed.
Instead, we can try:
Choose X0 at random
For i = 1 to N:
Choose Xi among the neighbours of X(i-1)


In other words, we put a Markov chain on our space, that allows us to jump from an element
x(i) to another nearby x(i+1). The way we define that notion of “neighbouring element” is
called a “transition kernel”.
There is a slight problem, however: we no longer use p. Let us put it back in.
Choose X0 at random
For i = 1 to N:
Choose X’ among the neighbours of X(i-1)
Set X(i) = X(i-1) or X(i) = X’ (choose according to p)


But how do we “choose according to p”? As p has the form mentionned above, we cannot
compute the probability of a given element, but we can compute the quotent of two such
probabilities. We can proceed as follows.
# Metropolis Algorithm
Choose X0 at random
For i = 1 to N:
Choose X’ among X(i-1)’s neighbours
Choose a number u at random in [0,1]


P(X’)
If u < -----------


P(X(i-1))
Then
X(i) = X’


Else
X(i) = X(i-1)


This algorithm works (i.e., the Markov chain has the desired limit distribution) if (the
transition network satisfies a few properties and) the Markov chain is symetric, i.e., if the
probability of going from X to Y is the same as that of going from Y to X. If not, the
algorithm has to be amended, as follows.
# Metropolis-Hastings Algorithm
Choose X0 at random
For i = 1 to N:
Choose X’ among X(i-1)’s neighbours
Choose a number u, uniformly at random in [0,1]


P( X(i-1) | X’ ) P(X’)
If u < ------------------ -----------


P( X’ | X(i-1) ) P(X(i-1))
Then
X(i) = X’


Else
X(i) = X(i-1)
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You might have a few qualms about the Xi’s not being independant – but actually, it is not
that serious.


16.20.6 Variant: Random Walk Metropolis


P(X — X’) only depends on the distance between X and X’.


16.20.7 Variant: Independance sampler


In the algorithm, we can change
Choose X’ among X(i-1)’s neighbours


into
Choose X’ at random.


If the distribution used to choose X’ has fatter tails than the target distribution, it will work
fine – but otherwise, it will not.


16.20.8 Variant: one coordinate at a time


In an n-dimensional space, we can change the coordinates one at a time.


16.20.9 Variant: Gibbs Sampling


According to the literature, it is simpler, more rudimentary than the Metropolis-Hastings:
but to me, it seems more complex and besides, it assumes you know much more about the
distribution.
The Gibbs sampler is a particular case of the preceding method, that tackled one coordinate
at a time: but here, we ash that the transition kernel be the conditionnal probability
P(xi | xj, j!=i)


It means that we have to know those conditionnal probabilities...
Let us consider, for instance, two random variables X1, X2, gaussian, with zero mean,
variance 1, covariance r. Then, we have
X1|X2 ~ N(r*X2, 1-r^2)


and similarly for X2. At each step of the algorith, we either modify X1 or X2. The path is
thus “manhattanian”.
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my.gibbs <- function (x0=c(0,0), N=20, r=.5, plot.it=T) {
res <- matrix(NA, nr=N, nc=2)
res[1,] <- c(0,0)
for (i in seq(2,N-1,by=2)) {
x1 <- res[i-1,1]
x2 <- res[i-1,2]
res[i,2] <- x2
# WE are supposed to take the new point at random
# and accept or reject it depending of the conditionnal
# probability.
# Here, I directly sample from the conditionnal probability.
x1 <- rnorm(1, r*x2, sd=sqrt(1-r^2))
res[i,1] <- x1
res[i+1,1] <- x1
x2 <- rnorm(1, r*x1, sd=sqrt(1-r^2))
res[i+1,2] <- x2


}
if (plot.it) {


plot(res, type=’l’, xlab="x1", ylab="x2", main="Gibbs sampler")
points(res, pch=16)
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invisible(res)
} else {
res


}
}
my.gibbs()
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my.gibbs(N=1000)


With the Metropolis-Hastings, a path would rather look like
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r <- my.gibbs(N=40,plot.it=F)[2*(1:20),]
plot(r, type=’l’, xlab="x1", ylab="x2",


main="Path of a Metropolis simulation (almost)")
points(r, pch=16)
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r <- my.gibbs(N=2000,plot.it=F)[2*(1:1000),]
plot(r, type=’l’, xlab="x1", ylab="x2",


main="Path of a Metropolis simulation (almost)")
points(r, pch=16)


TODO: An example that shows that the general appearance of the paths do not depend on
the starting point (plot two paths, with completely different starting points, in two different
colors).


16.20.10 Interlude: a simple application of the Gibbs sampler


We are studying a family of proteins (a protein is a sequence of amino acids, i.e., a string of
characters written with a 20-letter alphabet) and we are looking for a pattern common to
this family.
To simplify, let us assume that we are looking for a pattern of length L (the length is known
in advance). We start by taking a segment of length L on each of the sequences: the set of
those segments is a (very bad) first approximation of our pattern.
Then, at each step of the algorithm, we choose one of the sequences and we check all the
possible positions of the window of length L: we choose the best (variant: we choose one at
random, with a probability proportionnal to its score; variant: simulated annealing).
A few problems can occur: you have to choose the width of the window; if you run the
algorithm several times, you will not get the same result (are they variants of the same
pattern? overlapping patterns? completely different patterns?)
See:
http://www.msci.memphis.edu/%7Egiri/compbio/papers/gibbs2.pdf


16.20.11 Application of the Gibbs sampler


Consider a model of the form
X = f(Y1,Y2)


where Y1 and Y2 are independant. We have observed X and we are trying to predict Y1
from X. For instance:
Y1 = The stalion has a certain gene
Y2 = The mare has this gene
X = The offspring has the gene


We shall use the Gibbs sampler to predict both Y1 and Y2.
Here Y1 and Y2 are the model parameters: in those methods, parameters and random
variables play the same role.
We first choose initial (random) values for Y1 and Y2. Then, we compute


P(X | Y1,Y2) * P(Y1 | Y2)
P(Y1 | X,Y2) = ---------------------------



http://www.msci.memphis.edu/%7Egiri/compbio/papers/gibbs2.pdf
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P(X | Y2)


P(X | Y1,Y2) * P(Y1)
= ---------------------- (because Y1 and Y2 are independant)


P(X | Y2)


This is possible, because we know the model, this allows us to sample at random a new
value for Y1.
We start again with Y2.
We iterate, many times: after a while, the algorithm has reache its stationnary regime and
the values of Y1 and Y2 we get follow the posterior distribution of those parameters: we can
use them to compute the mode (the mean, the median or any other relevant information)
of Y1.
TODO: give an example, with computations in R.


16.20.12 Another application of the Gibbs sampler


Exercise: implement a Gibbs sample to find the mean and the variance of a sample supposed
to follow a gaussian distribution.
TODO


P(mean | X, variance) = ...
P(variance | X, mean) = ...


16.20.13 TODO: Gibbs and EM


16.20.14 TODO: Gibbs, MCMC, Bugs (OpenBuGS, JAGS, Hydra)


16.20.15 Variant: Metropolis-Hastings-Green


This is a generalization of the Metrolopis–hastings in which we replace the probability densi-
ties by (non-necessarily continuous) probability distributions: this generalizes all the variants
above, including the Gibbs sampler.


16.20.16 Problems with the Metropolis–Hastings algorithm


The choice of the transition kernel (i.e., the notion of neighbourhood) is delicate.
First, we must accept new values quite often, otherwise, we could get stuck in a point. For
this, the “neighbours” have to be rather “near”.
On the other hand, in order to reach quite quickly states rather far away, we would need
“neighbours” that are not too near...
In order to see wether those problems occur, in order to choose (or parametrize) the tran-
sition kernel, we can make a few plots. In dimension one, these plots are simply the time
series plot, the AutoCorrelation Function (ACF) and the Partial AutoCorrelation Function
(PACF). The ACF will also help us build independant variables, by taking X(n), X(n+k),
X(n+2k), X(n+3k), etc., with k sufficient large so that the autocorrelation cor(X(n),X(n+k))
be sufficiently small.
One should also perform several simulations, with different starting points, in order to see
if the algorithm converges or not and, more importantly, how long it takes to converge. A
single longer simulation might also be useful to check the convergence.
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Gibbs sampler


Simulation length


E
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N <- 200
K <- 5
res <- matrix(NA, nr=N, nc=K)
for (i in 1:K) {
r <- my.gibbs(x0=runif(2,-1,1), N=N, plot.it=F)
res[,i] <- apply(r,1,cumsum)[1,] / 1:N


}
matplot(res, type=’l’, lty=1,


ylab="Estimator", xlab="Simulation length",
main="Gibbs sampler")


Usually, we discard the start of the time series, the “burn-in” phase, so that the Markov
chain reaches its stationnary distribution.


16.20.17 Application> Integral computation


In R:
Random


Time


x1


0 200 400 600 800 1000


−
3


2


MCMC


Time


x2


0 200 400 600 800 1000


−
2


2


MCMC, neighbours too near


Time


x3


0 200 400 600 800 1000


−
0.


3


MCMC, neighbours too far


Time


x4


0 200 400 600 800 1000


−
1.


0


library(ts)
MH <- function (N = 1000,


voisin = function (x) { rnorm(1,x,1) },
p = dnorm, # Probability distribution to simulate
q = function (x,y) { 1 } # Hastings Correction
) {


res <- rep(NA,N)
x <- 0
for (i in 1:N) {
y <- voisin(x)
u <- runif(1)
if ( u < q(x,y)/q(y,x) * p(y)/p(x) ) {
x <- y


}
res[i] <- x


}
ts(res)


}


x1 <- ts(rnorm(1000))
x2 <- MH()
x3 <- MH(voisin = function (x) { rnorm(1,x,.01) })
x4 <- MH(voisin = function (x) { rnorm(1,x,50) })


op <- par(mfrow=c(4,1))
plot(x1, main="Random")
plot(x2, main="MCMC")
plot(x3, main="MCMC, neighbours too near")
plot(x4, main="MCMC, neighbours too far")
par(op)
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op <- par(mfrow=c(2,2))
qqnorm(x1, main="Random"); qqline(x1);
qqnorm(x2, main="MCMC"); qqline(x2);
qqnorm(x3, main="MCMC, neighbours too near"); qqline(x3);
qqnorm(x4, main="MCMC, neighbours too far away"); qqline(x4)
par(op)
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op <- par(mfrow=c(2,2))
hist(x1, col=’light blue’, probability=T, main="Random")
curve(dnorm(x),col=’red’,lwd=3, add=T)
hist(x2, col=’light blue’, probability=T, main="MCMC")
curve(dnorm(x),col=’red’,lwd=3, add=T)
hist(x3, col=’light blue’, probability=T, main="MCMC, neighbours too near")
curve(dnorm(x),col=’red’,lwd=3, add=T)
hist(x4, col=’light blue’, probability=T, main="MCMC, neighnours too far away")
curve(dnorm(x),col=’red’,lwd=3, add=T)
par(op)
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op <- par(mfrow=c(4,1))
acf(x1, main="Random")
acf(x2, main="MCMC")
acf(x3, main="MCMC, neighbours too near")
acf(x4, main="MCMC, neighnours too far away")
par(op)
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MCMC, neighnours too far away


op <- par(mfrow=c(4,1))
pacf(x1, main="Random")
pacf(x2, main="MCMC")
pacf(x3, main="MCMC, neighbours too near")
pacf(x4, main="MCMC, neighnours too far away")
par(op)


For an order-1 Markov chain, it is normal: all the information we want is in the first
autocorrelation.
Application to an integral computation (this is the variance of a standard gaussian distri-
bution: it should be 1):
> mean(x1^2)
[1] 0.960904
> mean(x2^2)
[1] 1.004407
> mean(x3^2)
[1] 0.01575253
> mean(x4^2)
[1] 0.9143307


Other example: we can use this Markov chain to have iid random variables following the
distribution in question. We cannot directly take the values we get because they are not
independant – the is the gist of Markov chains: we can jump from one value to the next –
it is all but independant.
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The horizontal line comes from the rejection of some values: in this case, we have two
successive identical values.
On the contrary, if we take one value out of 10 or 100, it looks random.
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16.20.18 Simulated Annealing


On the MCMC algorithms, we can change the probability of accepting a new state as the
algorithm proceeds: at first, we are very lenient, we accpet states we should not really accept
and progressively, we get closer to the Metrolopis-Hastings probability.
This may help circumvent some pathologies of the Markov chain (irreducibility, etc.).
We can modify this idea to fit a completely different goal: maximizong (or minimizing) some
function, for instance, a log-likelihood. The algorithm (called “simulated annealing”) is the
following:
1. Take a value at random
2. Take a new value "near" the old one.
3. If it is better,


Then
Keep the value


Else
Keep the old value, with a certain probability


4. Go to 2.


A very, very long time a go, I wrote about optimization algorithms, including simulated
annealing:
http://zoonek.free.fr/Ecrits/1994_recuit_simule.ps.gz


16.20.19 MCMC and MLE


To estimate a paramter of a statistical model with the Maximum Likelohood Method, we
have to compute a “log-likelihood”, that will be a sum (or an integral, it is the same thing).
If this sum is too large, we can use Monte Carlo methods to estimate it.


16.20.20 Ergodicity


TODO


16.20.21 TODO: TO SORT Importance Sampling


In order to compute
I = Integral( f(x) p(x), x \in I )



http://zoonek.free.fr/Ecrits/1994_recuit_simule.ps.gz
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when we do not know how to sample elements from the distribtion defined by p, we can try
to write


p(x)
I = Integral( f(x) * ------ * q(x), x \in I )


q(x)


where q defines a distribution for which we can easily sample.
One can use this method even if we know p, because if we carefully choose q (namely, if q is
larger at the places where f changes (i.e., where we need more precision) and smaller where
f does not change much (i.e., when we can afford less precision)), we can lower the variance
of I.
http://galton.uchicago.edu/%7Eeichler/stat24600/Handouts/l9.pdf


16.21 Bayesian methods and MCMC


TODO: explain what it is (Gibbs sampling)
TODO: list of available software
OpenBUGS (new version of WinBUGS, that was only available under Windows)
JAGS
Hydra


From a user’s point of view, the idea is the following: we have an intuition of how the data
was generated or, more reasonably, of how we could generate similar data. This intuition is
a general process, that depends on parameters we do not know: we want to estimate those
parameters. You can see those parameters as hidden variables.
This sounds very much like maximum likehood estimation (or any other way of building
estimators), but there is a difference: we also have some vague information about those pa-
rameters. More precisely, we consider them as random variables, with a known distribution
(for instance, if we know that a parameter is always in the interval [0,1], this distribution
could be the uniform distribution on this interval; if we know that the parameter is “around
zero and not too large”, we this distribution could be a gaussian distribution with mean 0
and variance 1; if we know that the parameter is “around zero, often with large values”, this
distribution could be a Cauchy distribution).
Here is an example:
Parameters:
a is taken from a gaussian distribution N(0,1)
b is taken from a gaussian distribution N(0,1)
v is taken from a lognormal distribution LN(0,1)


Observations:
x[1],...,x[n] are taken from iid random variables N(0,1)
e[1],...,e[n] are taken from iid random variables N(0,v)
for (i in 1:n) {
y[n] <- a + b * x[n] + e[n]


}


16.21.1 BUGS, WinBUGS, OpenBUGS


konqueror http://mathstat.helsinki.fi/openbugs/Software.html
wget http://mathstat.helsinki.fi/openbugs/OpenBUGSRTApril5.zip
unzip *zip
cd OpenBUGS/
chmod +x cbugs


Ahhhhh....
It is not written in C or C++ but in Oberon (well, a successor of Oberon). There is no
makefile. They provide “Linux executable” – as if they were processor-independant. Well,
the executable is not executable (this may be due to their choice of the ZIP format for the
archive).



http://galton.uchicago.edu/%7Eeichler/stat24600/Handouts/l9.pdf

http://mathstat.helsinki.fi/openbugs/Software.html

http://mathstat.helsinki.fi/openbugs/OpenBUGSRTApril5.zip
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There are also redistribution restrictions (it is built on non-free libraries):
Some of the subdirectories in the OpenBUGS distribution
only contain /Code and /Rsrc subdirectories. These are the
libraries provided by Oberonmicrosystem. The symbol files
and documentation for these libraries are included with
the BlackBox tools. Oberonmicrosystems only allows the
/Code and /Rsrc subdirectories of these libraries to
be distributed!


The instructions to compile the program are Windows-specific:
Compiling the Source Code


The BlackBox tools can be downloaded as a self extracting
Windows exe file from www.oberon.ch . This unpacks into a
directory called BlackBox in Program Files.
...
To create an ELF version of brugs.so for Intel Linux click
in the first round blob containg an ! mark with the mouse.
...
Please note I am the only person who has the ELF linker at
present.
...


Still not afraid? Have a look at the HTML documentation:
<a href="../Docu/Introduction.html">
</font>
<font face="Arial" color="#0000FF" size="4">
<strong><u>Introduction</u></strong>


</font>
<font face="Arial" color="#0000FF" size="4">


</a>


(if you do not know HTML, you might not have jumped to the ceiling: an HTML document
is decomposed into blocks that start with <foobar> and end with </foobar> – and the
blocks are to be properly nested...)
The consequence is that you cannot click anywhere in the documentation – for an HTML doc-
ument, it is a very bad start... Of course, this behaviour is browser-dependant: yours might
encourage you not to respect the standards of the web: if its distributor has a monopoly, it
is a good means of locking out potential competitors before they start to threaten him.
Furthermore, the documentation only refers to the Windows interface: once you have written
a model, the tutorial tells you to click “this” and “that” in the menus. The naive solution,
to use the command line, does not really seem to work:
[zoonek@localhost OpenBUGS]$ ./cbugs test.model
error must give root directory of BUGS, temp directory and library name as


command line parameter
[zoonek@localhost OpenBUGS]$ ./cbugs --help
error must give root directory of BUGS, temp directory and library name as


command line parameter
[zoonek@localhost OpenBUGS]$ ./cbugs -help
error must give root directory of BUGS, temp directory and library name as


command line parameter
[zoonek@localhost OpenBUGS]$ ./cbugs -h
error must give root directory of BUGS, temp directory and library name as


command line parameter


In the *.c file (there is only one, that calls the rest of the application, written in Oberon (a
kind of Pascal whose source files are already... binary) and compiled as a shared library),
one can read:
...
/*
Compile with gcc -o CBugs CBugs.c -ldl on Linux and use the shell script LinBUGS
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to
provide the command line arguments.
*/
...


The aforementionned shell script is:
#!/bin/tcsh
setenv LD ASSUME KERNEL 2.4.1
cbugs "/home/ant/OpenBUGS" "/home/ant/temp" "/brugs.so"


Who would imagine that someone is still using tcsh?
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://groups-beta.google.com/group/comp.unix.shell/browse_thread/thread/c40f36099e2c8a4e/


5f74732614439811?q=csh&rnum=4&hl=en#5f74732614439811


So we can run bugs as
cbugs ‘pwd‘ /tmp/ ‘pwd‘/brugs.so


But the program immediately stops – well, it does not crash: it is not that bad...
I finally give up. In a few years, the software might become more mature and usable. The
only interesting thing is the documentation of the BUGS syntax (the way we describe the
models) and the numerous examples:
http://mathstat.helsinki.fi/openbugs/Examples.html
http://www.mrc-bsu.cam.ac.uk/bugs/examples/contents.shtml


16.21.2 JAGS


This is a competitor to BUGS, written in a more popular language (C++), so that more
people can contribute to it; it is portable; it is designed to work closely with R.
To compile it, you need the libRmath shared library (if you compiled R with the –enable-R-
shlib option, it is there; alternatively, you can simply type “make” in the src/nmath/standalone/
directory and install the *.so and *.a files) and LaPack (e.g., on Linux Mandriva, the lapack3-
devel and liblapack-devel packages).
wget http://www-fis.iarc.fr/~martyn/software/jags/JAGS-0.90.tar.gz
tar zxvf JAGS*.tar.gz
cd JAGS*/
./configure
make
make install


We can now try to use it. We need three files: the first describes the model (here, a
regression).
var x[N], Y[N], mu[N], alpha, beta, tau, sigma, x.bar;
model {
for (i in 1:N) {
mu[i] <- alpha + beta*(x[i] - x.bar);
Y[i] ~ dnorm(mu[i],tau);


}
x.bar <- mean(x[]);
alpha ~ dnorm(0.0,1.0E-4);
beta ~ dnorm(0.0,1.0E-4);
tau ~ dgamma(1.0E-3,1.0E-3);
sigma <- 1.0/sqrt(tau);


}


The second, the data (it comes from the “dump” command in R).
"x" <-
c(-1.21, -0.733, -0.407, -0.218, -0.262, -0.213, 1.61,
-1.21, -1.27, -0.168, 1.15, 0.527, 2.07, 0.478,
-0.988, 0.109, -0.0865, 0.612, -0.374, -0.491)



http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

http://groups-beta.google.com/group/comp.unix.shell/browse_thread/thread/c40f36099e2c8a4e/5f74732614439811?q=csh&rnum=4&hl=en#5f74732614439811

http://groups-beta.google.com/group/comp.unix.shell/browse_thread/thread/c40f36099e2c8a4e/5f74732614439811?q=csh&rnum=4&hl=en#5f74732614439811

http://mathstat.helsinki.fi/openbugs/Examples.html

http://www.mrc-bsu.cam.ac.uk/bugs/examples/contents.shtml

http://www-fis.iarc.fr/~martyn/software/jags/JAGS-0.90.tar.gz
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"Y" <-
c(5.39, 1.805, 0.887, 2.436, 1.6069, 1.323, -2.22835,
3.59, 4.04, -0.624, -3.61, -2.284, -2.183, 1.774,


4.466, -1.468, 1.2498, 1.036, 1.86, 2.192)
"N" <-
20


The third, the initial values of the parameters.
"alpha" <-
0
"beta" <-
0
"tau" <-
1


We can the run Jags
jags


ask it to load the model, the data, initialize the chain, run it for a burn-in period, gather
the values of the parameters for the rest of the run, print out the results.
model in "test1.model"
data in "test1.data"
compile
parameters in "test1.param"
initialize
update 10000
monitor alpha, thin(1)
monitor beta, thin(1)
monitor sigma, thin(1)
update 50000
coda *


This writes a file “jags.out” that can be read into R with the “coda” package.
Actually, we can put all those commands in a file and run them.
jags test1.jags


We can read the results into R with the “coda” package.
library(coda)
x <- read.jags()


After playing with JAGS for a couple of hours, its main drawback seems to be the inability
to create several chains.


16.21.3 The BUGS language


Draw the graph corresponding to your model.


Different kings of nodes: observed or not, stochastic or
deterministic ("logical"). Stochastic nodes are described
with the "~" operator while deterministic unobserved nodes
are described with the "<-" operator.


A variable should only appear once on the left handside of
those operators (with an exception if you want to
transform the variables).


Check the sensitivity to the priors: change them.


Check convergence: look at the paths.
Give two examples: convergence, non convergence (there is
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still a "trend"). With two chains: they should be mixed.


Available distributions:


dbern(p) Bernoulli
dbin(p,n) Binomial
dnegbin(p,r) Negative binomial
dpois(lambda) Poisson
dcat(p[]) Categorical variable with P[X==i] = p[i]
dmulti(p[],N) Multinomial


dnorm(m,tau) Gaussian (aka "normal") distribution (mean m, variance 1/tau)


dbeta(a,b) Beta distribution
dgamma(r,mu) Gamma distribution (use dgamma(1e-3,1e-3) for tau)
dchisqr(k) Chi^2
dexp(lambda) Exponential
ddexp(mu,tau) Double exponential centered in mu
dlnorm(mu,tau) Log-normal
dlogis(mu,tau) Logistic
dpar(alpha,c) Pareto
dt(mu,tau,k) Student T
dunif(a,b) Uniform
dweib(v,lambda) Weibul


ddirich Dirichlet
dmnorm Multivariate gaussian
dmt Multivariate T
dwish Wishart


TODO: Detail the following examples
- classical regression
- mixtures
- changepoint problems
- mixed models


Example prior distributions:
dnorm(0,1e-6) A very flat prior on R
dnorm(0,1e-6)I(,.0001) A very flat prior on R^- ???


TODO:
Conjugate distributions
Dirichlet (beta) and Wishart distributions -- look in
"bayesm" or "MCMCpack".


16.21.4 Example: classical regression


for (i in 1:N) {
y[i] ~ dnorm( alpha + beta * x[i], tau )


}
alpha ~ dnorm(0,1E-6)
beta ~ dnorm(0,1E-6)
tau ~ dgamma(.001,.001)
sigma <- sqrt(1/tau)


16.21.5 Example: logistic regression


for (i in 1:N) {
logit(p[i]) <- alpha + beta * x[i] # Note that "logit" is on the LEFT
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# handside of the "<-" operator...
y[i] ~ dbern(p[i])


}
alpha ~ dnorm(0,1E-6) # Beware: use "E" and not "e" for the scientific notation...
beta ~ dnorm(0,1E-6) # Beware: this is the inverse of the variance


16.21.6 Example: mixture


TODO


16.21.7 Example: Mixed effects model


Random data for this model:
number.of.subjects <- 5
N <- 200
subject <- sample(1:number.of.subjects, N, replace=TRUE)
a <- 1 + rnorm(number.of.subjects)
b <- -2 + .5 * rnorm(number.of.subjects)
x <- rnorm(N)
y <- a[subject] + b[subject] * x + rnorm(N)
dump(c("number.of.subjects", "N", "x", "y"))


TODO: Check that this works...
TODO: It does not work. Find why... (It says “Unable to find function dgamma”)
# Model: y ~ (1 | subject) + (x | subject)
# This is a classical regression where the intercept and the slope
# are subject-dependant


# The subject-level random effects
for (j in 1:number.of.subjects) {
alpha[j] ~ dnorm(mu.alpha, tau.alpha)
beta[j] ~ dnorm(mu.beta, tau.beta)


}


# The actual observations
for (i in 1:N) {
y[i] ~ dnorm( alpha[ subject[i] ] + beta[ subject[i] ] * x[i], tau )


}


# Prior distribution of the parameters of the random effects
tau.alpha <- dgamma(.001,.001)
tau.beta <- dgamma(.001,.001)
mu.alpha <- dnorm(0,1E-6)
mu.beta <- dnorm(0,1E-6)


# Prior distribution
tau <- dgamma(.001,.001)


# We convert the "precision" tau (the inverse of the variance) into
# a standard deviation.
sigma <- sqrt(1/tau)
sigma.alpha <- sqrt(1/tau.alpha)
sigma.beta <- sqrt(1/tau.beta)


16.21.8 Example: changepoint problem


TODO
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16.21.9 Example: model selection


TODO: URL
Gibbs variable selection using BUGS Ntzoufras


for (i in 1:N) {
for (j in 1:p) {
z[i,j] <- x[i,j] * b[j] * g[j]


}
ybar[i] <- sum( z[i,] )
y[i] <- dnorm( ybar[i], tau )


}
for (j in 1:p) {
b[j] ~ dnorm(0,1e6)
g[j] ~ dbern(.5)


}
tau <- dgamma(.001,.001)


16.21.10 Jags and coda


The coda package can be used to read the results of an MCMC simulation.
library(coda)
x <- read.jags()


This yields:
> str(x)
mcmc [1:50000, 1:3] 0.736 0.768 0.622 0.670 0.907 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:50000] "10001" "10002" "10003" "10004" ...
..$ : chr [1:3] "alpha" "beta" "sigma"


- attr(*, "mcpar")= num [1:3] 10001 60000 1
- attr(*, "class")= chr "mcmc"


> summary(x)


Iterations = 10001:60000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 50000


1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:


Mean SD Naive SE Time-series SE
alpha 1.063 0.3170 0.001418 0.001484
beta -2.280 0.3552 0.001589 0.001586
sigma 1.397 0.2482 0.001110 0.001075


2. Quantiles for each variable:


2.5% 25% 50% 75% 97.5%
alpha 0.4396 0.8564 1.063 1.270 1.693
beta -2.9777 -2.5101 -2.280 -2.049 -1.576
sigma 1.0095 1.2226 1.361 1.533 1.977
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system("jags jags regression test.jags")
library(coda)
x <- read.jags()
plot(x)
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N <- 3
op <- par(mfrow=c(N,1))
for (i in 1:N) {
pacf(x[,i], main=colnames(x)[i])


}
par(op)


So we have a big problem for sigma: the autocorrelation is too high. The solution is to
discard some values in the chain: for instance, only retain every other value, or one in ten
– or even fewer.
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f <- function (x, by=2) {
i <- seq(1, length(x), by=by)
x[i]


}
op <- par(mfrow=c(4,1), mar=c(2,4,4,2))
for (i in 2:5) {
pacf(f(x[,3],i), main=paste("sigma, thinning=", i, sep=""), xlab="")


}
par(op)


TODO: check the convergence.
> raftery.diag(x)


Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95


Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)
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alpha 2 3833 3746 1.02
beta 2 3897 3746 1.04
sigma 2 3833 3746 1.02


There is also a menu-driven function to assess the convergence (and other properties) of the
chain(s).
codamenu()


16.21.11 Hydra


TODO
Java program/library.
Probably easier to extend.
Slightly more difficult to use: you first have to install
Java (because of licencing issues, it cannot be as easy as
with free software), then to be able to program in Java.
Java used to be very slow, but this is no longer the case.
On the other hand, it is still very memory intensive.


16.22 Graph theory


The following packages will allow you to play with graphs:
graph Graph building, reading/writing GXL files
Rgraphviz Plotting graphs
sna Sociology
ergm
dynamicGraph


Examples of graphs: phylogenetic trees, citations linking research articles, metabolic path-
ways, interactions (regulation) between proteins and genes, social networks (friends, syringe
exchanges, love affairs, phone calls, co-authoring of research papers, etc.), road traffic.
For a single problem, you can often consider several different graphs. Let us take the Web
example.
1. Vertices: web pages


Edge from A to B if A contains a hyperlink to B
2. Vertices: web pages


Edge from A to B if A’s URL is a prefix of B’s URL
(e.g., "http://zoonek.free.fr/" is a prefix of
"http://zoonek.free.fr/foo.html")
This graph is a tree, that shows the structure of web sites.


3. Vertices: web pages
Edge between A and B if there is a document C containing
hyperlinks towards both A and B.
You can weight the edges with the number of such C documents.


4. Vertices: web pages
Edge between A and B if A and B both contain a link towards the
same document C.
Same weighting scheme as before.


5. Vertices: cartesian product {pages web} * {1,2}
Edge from (A,1) to (B,2) if A contains a hyperlink towards B.
This is a bipartite graph.


Some of those graphs are oriented graphs, i.e., each edge has a direction (they are depicted
as arrows), others are not (the edges are represented by segments).
A few documents that detail this:
http://www.research.att.com/%7Evolinsky/Graphs/program.html



http://zoonek.free.fr/"

http://zoonek.free.fr/foo.html"

http://www.research.att.com/%7Evolinsky/Graphs/program.html
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16.22.1 Installing RGraphviz


When I try to install RGraphviz by following the instructions from the BioConductor web
page, it crashes. So I install it by hand, as follows (Linux Mandrake 10.1, R-2.1.0, BioCon-
ductor 1.5).
urpmi graphviz libglib1.2-devel libgraphviz7-devel
wget http://www.bioconductor.org/packages/bioc/stable/src/contrib/Source/Rgraphviz_


1.5.10.tar.gz
wget http://www.bioconductor.org/repository/release1.5/package/Source/Rgraphviz_


1.5.0.tar.gz
wget http://www.bioconductor.org/repository/release1.5/package/Source/graph_


1.5.1.tar.gz
wget http://www.bioconductor.org/repository/release1.5/package/Source/Ruuid_


1.5.0.tar.gz
wget http://www.bioconductor.org/repository/release1.5/package/Source/Biobase_


1.5.0.tar.gz
R CMD INSTALL Ruuid 1.5.0.tar.gz
R CMD INSTALL Biobase 1.5.0.tar.gz
R CMD INSTALL graph 1.5.1.tar.gz
R CMD INSTALL Rgraphviz 1.5.10.tar.gz
echo /usr/lib/graphviz/ >> /etc/ld.so.conf
ldconfig


16.22.2 Miscellanies
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●3735●3723●3676 ●5198 ●3674


●5488


●3714 ●3712 ●8134


●30528


●5515


●5021●4714●4713●19199●4672●4888 ●4872●16301●16773


●3824●4871


●16772


●16740


●3821


●8369


●5070●5069●5066


●5057


●8289


●8047


●30234 ●5194


●5173●5530●5125●5529


●5102


●30246


●5216●15268●15267


●5215●3700


●3677


●4857


●4205●8234●4200●8233●4199


●16787


●4197


●5557


●5200


●4003●8270


●3678


●5505


●8026●8094●4002


●4386


●16887●5524●16818


●16817


●30554●17076


●166


●4930


●3779


●8092


●3781●3774


●4895


●4064●16789


●16788


●5001●4725●4721


●19198


●16791


●42578


●3702


●8237●3713 ●5096


●5516


●5083


●5519


●4840●4842


●8639


●16881●16879


●16874


●4563●15929●4553


●16798


●4177


●5520


●19838


●4096●16684


●16491


●3924


●5525●3800


●3793 ●19001


●3822


●3754


●3820


●5154


●5555


●3789


●3783


●3782


●8189


●16329


●3686●3685●8181


●5095


●3719


●5037


●5035


●16962


●4715


●3705


●3910●3909


●16886


●16251


●5178


●a●b●c●d●e●f ●g●h●i


# One of the graphs is too large to be displayed...
library(Rgraphviz)
data(graphExamples)
op <- par(mfrow=c(6,3), mar=c(0,0,0,0))
for (g in graphExamples) {
cat(object.size(g), "\n")
if (object.size(g) < 100000) {
cat("Drawing\n")
try( plot(g) )


} else {
cat("Skipping\n")


}
}
par(op)


Some random graphs:



http://www.bioconductor.org/packages/bioc/stable/src/contrib/Source/Rgraphviz_1.5.10.tar.gz

http://www.bioconductor.org/packages/bioc/stable/src/contrib/Source/Rgraphviz_1.5.10.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/Rgraphviz_1.5.0.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/Rgraphviz_1.5.0.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/graph_1.5.1.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/graph_1.5.1.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/Ruuid_1.5.0.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/Ruuid_1.5.0.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/Biobase_1.5.0.tar.gz

http://www.bioconductor.org/repository/release1.5/package/Source/Biobase_1.5.0.tar.gz
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library(Rgraphviz)
data(graphExamples)
op <- par(mfrow=c(3,3))
set.seed(2)
for (i in 1:9) {
try( plot(randomGraph(LETTERS[1:10], 1, .3)) )


}
par(op)
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
try( plot(randomGraph(LETTERS[1:10], 1, .5)) )


}
par(op)
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op <- par(mfrow=c(3,3))
for (i in 1:9) {
try( plot(randomGraph(LETTERS[1:10], 1, .8)) )


}
par(op)


A few methods on those objects:
> g <- randomGraph(LETTERS[1:10], 1, .8)
> g
A graph with undirected edges
Number of Nodes = 10
Number of Edges = 28


> edgeMatrix(g)
A1 A2 A3 A4 A5 A6 A7 C2 C3 C4 C5 C6 C7 E3 E4 E5 E6 E7 F4 F5 F6 F7 G5 G6


G7 H6 H7 I7
from 1 1 1 1 1 1 1 3 3 3 3 3 3 5 5 5 5 5 6 6 6 6 7 7


7 8 8 9
to 3 5 6 7 8 9 10 5 6 7 8 9 10 6 7 8 9 10 7 8 9 10 8 9


10 9 10 10


> numNodes(g)
[1] 10


> isConnected(g)
[1] FALSE


> connComp(g)
[[1]]
[1] "A" "C" "E" "F" "G" "H" "I" "J"
[[2]]
[1] "B"
[[3]]
[1] "D"


> acc(g, "A")
C E F G H I J
1 1 1 1 1 1 1
> acc(g, "B")
named numeric(0)


> degree(g)
A B C D E F G H I J
7 0 7 0 7 7 7 7 7 7
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> edges(g)
$A
[1] "C" "E" "F" "G" "H" "I" "J"
$B
character(0)
$C
[1] "A" "E" "F" "G" "H" "I" "J"
$D
character(0)
$E
[1] "A" "C" "F" "G" "H" "I" "J"
$F
[1] "A" "C" "E" "G" "H" "I" "J"
$G
[1] "A" "C" "E" "F" "H" "I" "J"
$H
[1] "A" "C" "E" "F" "G" "I" "J"
$I
[1] "A" "C" "E" "F" "G" "H" "J"
$J
[1] "A" "C" "E" "F" "G" "H" "I"


> complement(g)
A graph with undirected edges
Number of Nodes = 10
Number of Edges = 17


Do not forget to read the documentation:
?"graph-class"
?"graphNEL-class"


The incidence matrix of such a graph:
n <- numNodes(g)
m <- matrix(0, nr=n, nc=n, dimnames=list(nodes(g),nodes(g)))
e <- edges(g)
for(i in nodes(g)) {
for (j in e[[i]]) {
m[i,j] <- 1


}
}
m


Constructing a graph from its incidence matrix:
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op <- par(mfrow=c(2,2))
for (a in 1:4) {


n <- 10
V <- LETTERS[1:n]
m <- matrix(sample(0:1,n*n,replace=T,prob=c(.8,.2)), nr=n, nc=n, dimnames=list(V,V))
m <- m + t(m)
m <- 1 - (m-1)*(m-2)/2
m <- m - diag(diag(m))


e <- vector("list", length=n)
names(e) <- V
for (i in 1:n) {
e[[i]] <- list( edges = which(m[i,]==1) ) # Edge numbers, not names


}
g <- new("graphNEL", nodes=V, edgeL=e)
plot(g)


}
par(op)


TODO


A random Erdos-Renyi graph is obtained as follows: choose the number of vertices and,
for all vertices A and B, add an edge between A and B with probability p. One can then
investigate the properties.
For graphs with many vertices, if there is, on average, less that 1 edge at each vertex, the
graph will have many small connected components, if it is greater that 1, there will be a
huge one containing most of the vertices.
But those graphs do not look like real-life graphs. One problem is the “clustering coefficient”:
it is the probability that vertices A and C be linked given that A and C are both linked
to the same vertex B – in real-world networks, it is higher. Another problem is that the
distribution of the vertices valency is not poissonian.
http://arxiv.org/abs/cond-mat/0202208


16.23 Linguistics


library(help=corpora)



http://arxiv.org/abs/cond-mat/0202208





Chapter 17


Applications


17.1 Finance


TODO
Distribution of returns. EVT.
Time series. Stylized facts. GARCH. Jump processes.
Risk measures. Risk models. Mixed models. Cointegration.
Investment process. Investment strategies.
Option pricing.
Tick data. Complicated data (NLP, estimates). Neural networks.


17.2 Genetics


The structure of this section could be:
- Microarrays, gene clustering (SOM)
- Phylogenetics
- QTL


I could mention the following packages:
qtl (quantitative traits loci)
bqtl
GeneSOM Clustering genes using Self-Organizing Maps (SOMs).
ape Analyses of Phylogenetics and Evolution
sma micro-array analysis
permax (DNA array)
genetics
PHYLOGR (devel)


See also the Bioconductor, that mainly focuses on DNA microarrays.
http://www.bioconductor.org/packages/devel/html/


17.3 Image Analysis: Mathematical morphology


17.3.1 Introduction


“Mathematical morphology” refers to local image transformation algorithms – “local” means
that the new colour of a pixel depends on that of the neighbouring pixels.
For instance, the game of life is local transformation.
TODO: Explain, insert a few plots.


(The more rigorous definition, should you want it, refers to non-decreasing, involutive and
local transformations.)


1243



http://www.bioconductor.org/packages/devel/html/
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17.3.2 TODO


Introduction: explain what mathematical morphology is.
Give a few examples of images one could want to process.
http://www.mmorph.com/pymorph/
http://www.ensta.fr/~manzaner/Publis/These.ps.gz
morphology.R
http://zoonek.free.fr/Ecrits/2004_BioRet.pdf.bz2


Images (plot.image, plot3d.image)
Packages: mainly EBImage, but also rimage, pixmap


Basic operations:
translations
rotations


Structuring elements (plot.structuring.element)
Hit-and-Miss transform ("pattern matching")


Intersection (inf), union (sup), complementary, difference
Dilatation, Erosion
Opening, closing
Gradient, internal gradient, external gradient, laplacian
Top hat
Reconstruction: Hysteresis threshold, Hole filling
Local maxima, max.loc.hys,
regional maxima, geodesic dilatation, r.h.maxima
skeleton, hairy or not
Homotopic kernel (median axis)



http://www.mmorph.com/pymorph/

http://www.ensta.fr/~manzaner/Publis/These.ps.gz

morphology.R

http://zoonek.free.fr/Ecrits/2004_BioRet.pdf.bz2
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